Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Development of "new FADs" in the eastern Pacific Martin Hall, Marlon Román

9th Meeting of the Scientific Advisory Committee La Jolla, California USA, 14-18 May 2018

Characteristics of New FADs

- Non-entangling
- Degradable (bio or other)

- Attractive to tunas
- Durable
- Reasonable cost
- Practical to use

Develop and adopt New FADs with a much lower ecological footprint

CRITICAL STEPS:

Find replacement materials

Convince skippers of their adoption

Components of traditional FADs

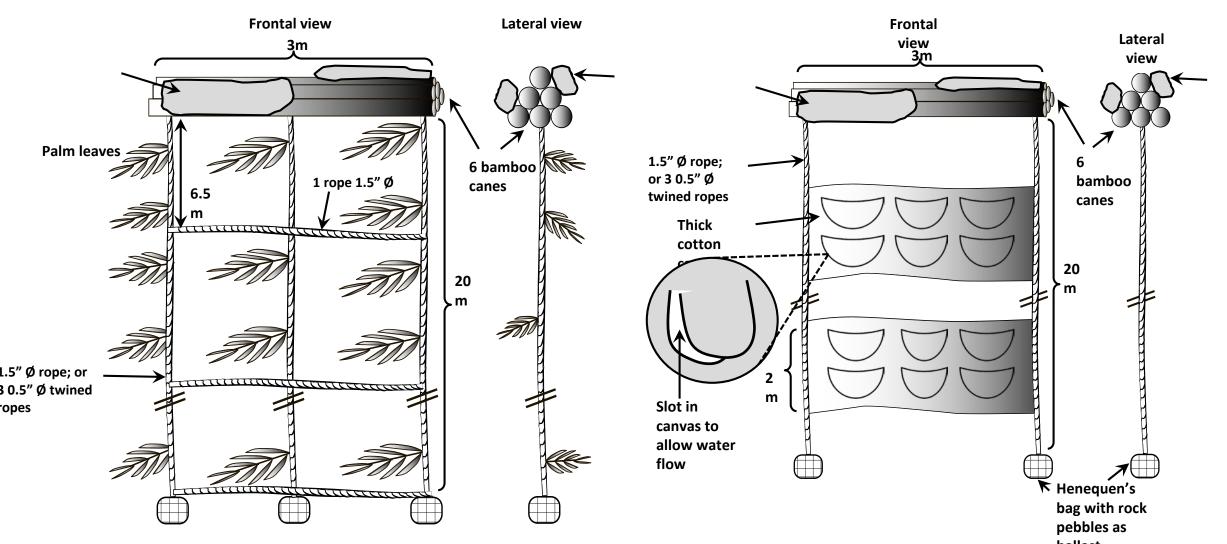
- Floatation structure:
 - bamboo raft, frequently wrapped in netting, floats, PVC pipes, satellite buoy. Netting maintains the structure together.

- Submerged structure (tail):
 - netting hanging under raft (up to 80 m long or more).
 Netting provides attraction and changes drift speed.

Components of New FADs

•Floatation structure:

• How to maintain the structure together ?


- •Submerged structure (tail):
 - hanging under raft ?

Options for submerged structure: materials

Prototype no. 1

Prototype no. 3

Types of ropes

- Cabuya (-) Abaca (+) Cotton (+ other experiments)
- Abaca (*Musa textilis*) origin Philippines, high production in Ecuador
- Industrial production, maritime uses
- Dyed black
- Choice material ABACA

Types of sails

- Cabuya (-) Abaca (-) **Cotton canvas (+)** Bamboo cloth ?
- Cabuya and abaca artisanal, low level production, not as resistant as canvas

Experimental Design

2 prototypes Abaca ropes abaca ropes + canvas sails (1.8 x 1.5 m) < 40 m 20 m ropes sail 20 m rope sail

Participating vessels 52 Deployment schedule: 3 new FADs/quarter per vessel 15/year Total deployment vessels 780 FADs Additional FADs EU grant 450 FADs Total year 1 1230

Tracking method: Prototype and traditional FAD deployment one next to another (2-5 miles away) Tag both prototype and traditional (FAD and buoy)

Schedule: deploy from June 1 on

Data collection

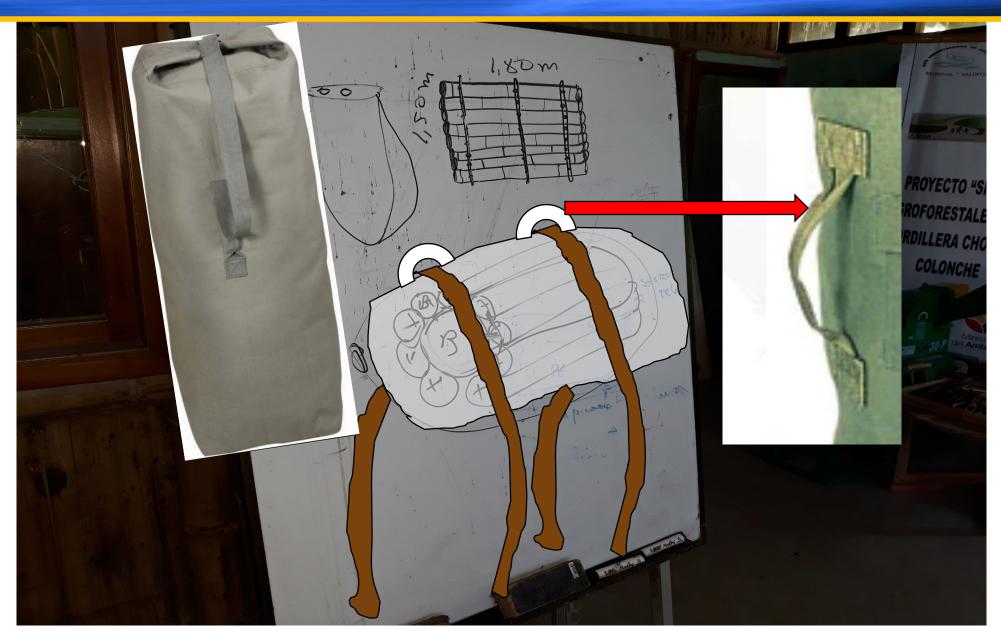
- Early process spontaneous: <u>data collection insufficient</u>. Observer may not be aware of the FAD type unless lifted out of the water. New FADs carried but not deployed. Or deployed but not checked
- Follow up process
 - Purchase materials
 - Local staff: supervise construction of FADs following designs selected
 - Provide to vessels committed to help (TUNACONS, OPAGAC, ATUNEC)
 - ACCESS TO BIOMASS ESTIMATES all FADs ?
 - Talk to skipper and observer prior to departure, verify FADs in use, request data on checks without fish, catches, FAD condition,
 - Talk to skipper and observer at end of trip. Data and impressions.
- As Peru season is shorter, deploy in May June for equatorial region (many boats, longer season)

Challenges

- Rafts come apart or don't last
- Condition of FAD not always visible
- Negatives not available
- Lack of confidence
- Secrecy

Floatation component

- Balsa wood identified early: widely adopted
- To keep bamboo together:
 - Bamboo nails continued by company
 - Joints (Frame FADs) Prototype in development in cooperative


s Sailor bags cooperative could try to develop prototype S Skipper's idea: custom made rectangular mouth bag

Prototype in development by manufacturer

Replace the netting of the raft: canvas bags

Bamboo nails

Bamboo joints

# CRUCERO	OBSERVADOR	FADS A BORDO	FADS SEMBRADOS	FADS ENCONTRADOS
151324		2	0	0
151444		0	0	4
151174		3	0	0
151238		2	2	2
151185		0	0	1
151443		5	5	1
151529		4	4	0

FORMA FLOTANTE/FORMA SUMERGIDA	COMP. AL ENCONTRARLO	COMP. AL DEJARLO	ESTADO PARTE FLOTANTE	ESTADO PARTE SUMERGIDA	MEDIDAS EST. METROS	Rb ENCONTRADA Rb DEJADA	# LANCE/CAPTURA
Parrilla/Lona en segmentos		bambu,sogas,balsa,plastico,saco cabuya con carnada	Buen estado, firmemente unida	Lonas de cabuya enteras, no presenta roturas	18 X 2 X 1,50		sin lance
Parrilla/Lona en segmentos		bambu,sogas,balsa,cont.carn, malla red 1,25"	Buen estado, firmemente unida	Lonas de cabuya enteras, no	18 x 9 X 1,50		sin lance
"	cabuyacont.cam.manareu 1,25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,	presenta roturas Lonas de cabuya enteras, no presenta roturas	18 x 9 X 1,50		sin lance
Parrilla/Lona en segmentos	,, bambu,sogas,balsa, lona cabuya	bambu,sogas,balsa,lona cabuya		Lonas de cabuya enteras, no presenta roturas	18 x 7 x 1,50		sin lance
"	"	"	"	11	18 x 7 x 1,50		20/6skj
Parrilla/Lona en segmentos	bambu,sogas,balsa,lona cabuya	Subido a bordo	Buen estado, firmemente unida	Lonas de cabuya enteras, no presenta roturas	15 x 8 x 1,50		sin lance
Parrilla/Lona en segmentos	bambu, sogas, balsa, lona cabuya	Subido a bordo y sembrado luego en otro lugar	Buen estado, firmemente unida	Lonas de cabuya enteras, no presenta roturas	22 x 14 x 1,40		sin lance
Parrilla/Lona en segmentos	plantado sembrado (Ver ROF 003/001)	bambu, sogas, balsa, lona cabuya	Buen estado, firmemente unida	Lonas de cabuya enteras, no presenta roturas	22 x 14 x 1,40		sin lance
Parrilla/red tradicional no enmallante	plantado tradicional	bambu,sogas,balsa,lona cabuya, red no enmallante	Buen estado, firmemente unida	red tradicional no enmallante	35 x 12 x 1,50		sin lance
Parrilla/Lona en segmentos	Objeto natural encontrado (petate)		Buen estado, firmemente unida (sembrado)	Lonas de cabuya enteras, no presenta roturas (sembrado)	20 x 10 x 1,50		sin lance
Parrilla/Lona en segmentos	bambu, sogas, balsa, lona cabuya, tacho plastico carnada	bambu, sogas, balsa, lona cabuya, tacho plastico carnada	Buen estado, firmemente unida	Lonas de cabuya enteras, no presenta roturas	33 x 13 x 2,20		sin lance
Parrilla/Lona en segmentos	plantado tradicional es subido a bordo	bambu,sogas,balsa,lona cabuya	Buen estado, firmemente unida (sembrado)	Lonas de cabuya enteras, no presenta roturas	20 x 10 x 1,50		sin lance
Parrilla/ Lona	bambu,sogas,balsa,lona cabuya	bambu,sogas,balsa,lona cabuya	Buen estado, firmemente unida		28 x 10 x 1,50		sin lance
Parrilla/ Lona	bambu,sogas,balsa,lona cabuya	bambu,sogas,balsa,lona cabuya	Buen estado, firmemente unida		28 x 10 x 1,50		sin lance
Parrilla/ Lona	bambu,sogas,balsa, lona cabuya	bambu,sogas,balsa,lona cabuya	Buen estado, firmemente unida		28 x 10 x 1,50		009/10

Methodology: Prototypes and materials

Ejes estratégico	Actividades ¿Qué hacer?	Método ¿Cómo hacerlo?	Recursos ¿Con qué?	Plazo de duración ¿Cuándo?	Responsable ¿Quién?
1. Material y prototipo	Definir materiales y prototipos de FADs Biodegradables y no enmallantes a probar en el piloto del OPO	Utilizando los siguientes prototipos: Prototipo 1 (tipo chorizo): Componente Flotante: Bamboo y palo de Balsa recubierto con material vegetal teñido de color. Componente Sumergido: Dos cabos flotantes de material vegetal de hasta 70 mm de ancho. Profundidad: 25 a 30 brazas. Prototipo 2: Componente Flotante: Bamboo (forrada con caña picada combinada con palo de balsa con material vegetal teñido color oscuro). Componente Sumergido: Tela de material vegetal en disposición de franjas Profundidad: 30 brazas Tiempo a lograr de duración: 6 a 8 meses, para ambos prototipos			
	Definir características específicas de cada Prototipo (Número de cañas, grosor de cabos, etc.)	 En reuniones de trabajo entre los técnicos TUNACONS y OPAGAC/ALBACORA. Validados con jefes de flotas de los FIP TUNACONS Y OPAGAC 	FIP TUNACONS	30 días	FIP TUNACONS

Methodology: Deployment

Ejes estratégico	Actividades ¿Qué hacer?	Método ¿Cómo hacerlo?	Recursos ¿Con qué?	Plazo de duración ¿Cuándo?	Responsable ¿Quién?
2. Estrategia de plantado	1. Definir el número de plantados totales a probar y por embarcación.	El número dependerá de la clase y tamaño de la embarcación. Así tenemos: - Clase 6 > 1200 m3: 20 FADs/año. - Clase 6 < 1200m3: 15 FADs/año. - Clase 4 y 5: 15 FADs. - Clase 1 al 3: 5 FADs			
	2. Construcción y puesta en operación del número de FADs establecidos	Contratación del servicio de construcción de los FADs	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	22 Meses de duración (4 de preparación 12 de siembra y 6 análisis de datos)	FIP TUNACONS FIP OPAGAC/ALBACOR A
	3. Definir método de comparación o validación	Se comparara con FADs tradicional pero de similares características y el mismo será sembrado Comparativo: cerca (2 a 5 millas) del biodegradable.	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	12 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A
	4. Definir método de siembra de FADs (temporalidad y ubicación)	Sembrar un solo tipo de prototipo cada trimestre; según estrategia de cada barco participante	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	12 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A
	5. Definir métodos de trazabilidad	 Elaborar e Instalar 2 placas tanto en la boya como en el plantado (prototipo y convencional). Se tomaran información de captura de los FADs tradicionales. Empresas proveerán información de trayectoria y biomasa del par y los observadores de los tradicionales. 	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	12 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A

Methodology: Data collection

Ejes estratégico	Actividades ¿Qué hacer?	Método ¿Cómo hacerlo?	Recursos ¿Con qué?	Plazo de duración ¿Cuándo?	Responsable ¿Quién?
3. Recolección de datos y envíos	1. Mapear los puntos de ubicación inicial de cada FADs sembrado y del convencional	 Se lo elaborara con los datos proporcionados por el proceso de trazabilidad. Cada FIPs elaborara los mapas. 	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	1 ir mes de iniciado el sembrado	FIP TUNACONS FIP OPAGAC/ALBACOR A
	2. Elaboración del Protocolo de recolección de datos de piloto.	Elaborado por técnicos de TUNACOMS; OPAGAC; CIAT y AZTI y validado en reuniones de trabajo con los jefes de la flotas de cada FIP.	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	45 días	FIP TUNACONS FIP OPAGAC/ALBACOR A
	3. Capacitación y puesta en práctica del Protocolo a personal de las embarcaciones	Mediante un proceso de capacitación que implicara: • Realizar talleres de capacitación • Visitas a capitanes de las embarcaciones • Desarrollo de materiales informativos • Entrenamientos a jefes de flotas como capacitadores.	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	2 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A
	4. Procesamiento y análisis de información	Se requiere contratar servicios profesionales para: - Diseñar y crear una base de datos para compilar y procesar información provenientes de los FADs - Capacitación en el manejo de la base de datos. - Ingreso de información - Experto en el procesamiento y análisis de la información.	FIP TUNACONS FIP OPAGAC/ALBAC ORA CIAT	12 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A
	5. Socialización y difusión periódica de resultados del Piloto	Mediante: - Talleres informativo - Desarrollo de Boletines de prensa - Presentaciones de resultados y avances en las reuniones anuales de la comisión.	FIP TUNACONS FIP OPAGAC/ALBAC ORA	12 meses	FIP TUNACONS FIP OPAGAC/ALBACOR A

References

Franco, J., Dagorn, L., Sancristobal, I. and Moreno, G. (2009). Design of ecological FADs. IOTC-2008-WPEB16. http://iotc.org/sites/default/files/documents/proceedings/2009/wpeb/IOTC-2009-WPEB-16.pdf

Goujon, M., Vernet, A-L. and Dagorn, L. (2012). Preliminary results of the Orthongel program "eco-FAD" as June 30th, 2012. IOTC-2012-WPEB08-INF21, 1-7 pp.

Lopez, J., Ferarios, J.M., Santiago, J., Alvarez, O.G., Moreno, G. and Murua, H. (2016). Evaluating potential biodegradable twines for use in the tropical tuna fishery. WCPFC-SC12-2016/EB-IP-11.

Maufroy, A., Chassot, E., Joo, R., Kaplan DM (2015) Large-Scale Examination of Spatio-Temporal Patterns of Drifting Fish Aggregating Devices (dFADs) from Tropical Tu Fisheries of the Indian and Atlantic Oceans. PLoS ONE 10(5): e0128023. doi: 10.1371/journal.pone.0128023

Moreno, G., Orue, B, and Restrepo, V. (2017) Pilot Project to test biodegradable ropes at FADs in real fishing conditions in the Western Indian Ocean SCRS/2017/FAD_006 Collect. Vol. Sci. Pap. ICCAT, 74(5): 2199-2208 (2018) 2199.

Moreno, G., Jauharee, R., Muir, J., Schaeffer, K., Adam, S., Holland, K., Dagorn, L. and Restrepo, V. (2017). FAD structure evolution: from biodegradeable FADs to biodegradeable FADs. Joint t-RFMO FAD Working Group meeting; Doc. No. j-FAD_08/2017.

Moreno, G., Restrepo, V., Dagorn, L., Hall, M., Murua, J., Sancristobal, I., Grande, M., Le Couls, S. and Santiago, J. (2016). Workshop on the use of biodegradeable Fish Aggregating Devices (FADs). ISSF Technical Report 2016-18A. International Seafood Sustainability Foundation, Washington, D.C., USA.

Murua, J., D. Itano, M. Hall, L. Dagorn, G. Moreno, and V. Restrepo. (2016). Advances in the use of entanglement-reducing drifting fish aggregating devices (dFADs) in tuna purse seine fleets. ISSF Technical Report 2016-08. International Seafood Sustainability Foundation, Washington, D.C., USA.

Winger, P., Legge, G., Batten, C., Bishop, G. (2015). Evaluating potential biodegradable twines for use in the snow crab fishery off Newfoundland and Labrador. Fis Res 161: 21-23

