COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL

COMITÉ CIENTÍFICO ASESOR DÉCIMA REUNIÓN

San Diego, California (EE. UU.) 13-17 de mayo de 2019

DOCUMENTO SAC-10-09

INDICADORES ACTUALIZADOS DE LA CONDICIÓN DEL ATÚN BARRILETE EN EL OCÉANO PACÍFICO ORIENTAL

Mark N. Maunder

Un objetivo principal de la ordenación de los atunes en el Océano Pacífico oriental (OPO) es mantener las poblaciones en niveles capaces de producir el rendimiento máximo sostenible (RMS). Se usan objetivos de ordenación basados en RMS o puntos de referencia relacionados (por ejemplo, una mortalidad por pesca que produce el RMS (F_{RMS}); sustitutos de reproductor por recluta) para muchas especies y poblaciones en todo el mundo. Sin embargo, estos objetivos requieren que se disponga de puntos de referencia y cantidades con que compararlos. Los distintos puntos de referencia precisan diferentes cantidades y tipos de información, desde información biológica (mortalidad natural, crecimiento, relación población-reclutamiento, etcétera) y características de las pesquerías (selectividad por edad, por ejemplo) hasta estimaciones absolutas de biomasa y tasas de explotación. Estas estimaciones absolutas requieren generalmente un modelo formal de evaluación de la población. Para muchas especies, la información necesaria para estimar estas cantidades no está disponible, y son necesarios métodos alternativos. Son necesarios todavía más datos si se pretende usar cuotas de captura como instrumento de ordenación.

El atún barrilete es una especie notoriamente difícil de evaluar. Debido a la alta y variable productividad de la especie (es decir, el reclutamiento anual representa una gran proporción de la biomasa total), es difícil detectar el efecto de la pesca sobre la población con los datos de pesca y métodos estándar de evaluación de poblaciones. Esto vale particularmente en el caso de la población del OPO, debido a la falta de datos de composición por edad, y especialmente de datos de marcado, sin los cuales no es posible una evaluación convencional del barrilete. El reclutamiento continuo y crecimiento rápido del barrilete significan que la estratificación temporal necesaria para observar modas en los datos de frecuencia de talla rinde insuficientes los tamaños de muestra actuales. Las evaluaciones previas tuvieron dificultades para estimar los niveles absolutos de biomasa y tasas de explotación, debido a la posibilidad de una curva de selectividad en forma de domo (Maunder 2002; Maunder y Harley 2005), la que significaría que existe una biomasa críptica de barrilete grande que no puede ser estimada. La evaluación más reciente del barrilete en el OPO (Maunder y Harley 2005) es también considerada preliminar porque se ignora si la captura por día de pesca de las pesquerías de cerco es proporcional a la abundancia. Es poco probable que un análisis de los datos de marcado actualmente disponibles mejore la evaluación de la población de barrilete (Maunder 2012a) y un modelo estructurado enteramente por talla produjo estimaciones no realistas (Maunder 2012b). Además de los problemas mencionados, los niveles de mortalidad natural por edad son inciertos, o hasta desconocidos, y los cálculos actuales de rendimiento por recluta (RPR) indican que el RPR sería maximizado si se capturara el barrilete más joven en el modelo (Maunder y Harley 2005). Por lo tanto, en el caso del barrilete en el OPO, no se dispone de puntos de referencia basados en biomasa ni en mortalidad por pesca, ni de los indicadores con los cuales se comparan.

Uno de los problemas principales antes mencionadas es la incertidumbre acerca de si la captura por unidad de esfuerzo (CPUE) de las pesquerías de cerco constituye un índice de abundancia apropiado para el barrilete, particularmente cuando los peces están asociados a dispositivos agregadores de peces (plantados). Los datos de CPUE de cerco son particularmente problemáticos, ya que es difícil identificar la unidad de esfuerzo apropiada. En el análisis actual, se define el esfuerzo como la cantidad de tiempo de búsqueda necesaria para encontrar un cardumen de peces sobre el cual calar la red, y se aproxima esto con el número de días de pesca. Se captura poco barrilete en las pesquerías de palangre o de cerco asociada con delfines, por lo que no se pueden usar estas pesquerías para elaborar índices fiables de abundancia para el barrilete. En un solo viaje, los lances cerqueros sobre atunes no asociados están generalmente mezclados con lances sobre objetos flotantes o delfines, lo cual complica los cálculos de CPUE. Maunder y Hoyle (2007) elaboraron un método novedoso para generar un índice de abundancia, usando datos de las pesquerías sobre objetos flotantes. Este método usa las proporciones de barrilete y patudo en la captura y la abundancia 'conocida' de patudo basada en los resultados de la evaluación de la población. Desgraciadamente, el método es de utilidad limitada, y son necesarias investigaciones adicionales para mejorarlo. No existe actualmente ningún índice de abundancia relativa fiable para el barrilete en el OPO. Por lo tanto, otros indicadores de la condición de la población, tales como el peso medio del pescado en la captura, deberían ser investigados.

Ya que las evaluaciones y los puntos de referencia son tan inciertos para el barrilete en el OPO, sería ventajoso elaborar métodos alternativos de evaluación y ordenación de la especie que fuesen robustos a estas incertidumbres. Una evaluación de estrategia de ordenación (EEO) completa para el barrilete sería el método más completo para elaborar y probar métodos de evaluación y estrategias de ordenación alternativos (Maunder 2007), pero elaborar una EEO implica mucho tiempo y todavía no ha sido llevado a cabo para el barrilete. Además, se asigna mayor prioridad a las EEO de los atunes aleta amarilla y patudo, ya que los datos disponibles indican que estas especies son más susceptibles a la sobrepesca que el barrilete. Por lo tanto, Maunder y Deriso (2007) investigaron unos indicadores sencillos de la condición de la población basados en cantidades relativas. En lugar de usar puntos de referencia basados en RMS, compararon los valores actuales de los indicadores con la distribución de los indicadores observada históricamente. Elaboraron también un modelo sencillo de evaluación de población para generar indicadores de biomasa, reclutamiento, y tasa de explotación. Actualizamos sus resultados para incluir datos de hasta 2018. Las distribuciones de los valores históricos de estos indicadores son algo asimétricas; por lo tanto, a fin de evaluar el valor actual de cada indicador relativo a la distribución de sus valores históricos, se usan los percentiles de 5 y 95% como puntos de referencia. Se presentan también indicadores del número de lances y de la captura por lance. En el documento SAC-10-06 se presentan indicadores pertinentes adicionales también.

En la Figura 1 se ilustran ocho indicadores basados en datos y en el modelo. El esfuerzo estandarizado, una medida de la tasa de explotación, es calculada como la suma del esfuerzo, en días de pesca, de las pesquerías sobre objetos flotantes (OBJ) y no asociadas (NOA). Se estandariza el esfuerzo sobre objetos flotantes para que sea equivalente al esfuerzo no asociado multiplicándolo por la razón de la CPUE media sobre objetos flotantes a la CPUE media no asociada. La captura de cerco comenzó a aumentar sustancialmente a mediados de los años 1990, y ha estado por encima del promedio desde 2003; durante 2015-2017 estuvo por encima del nivel de referencia superior, pero en 2018 descendió por debajo del mismo. La CPUE sobre objetos flotantes ha estado generalmente por encima del promedio desde principios de los años 1990, y estuvo por encima del nivel de referencia superior en 2016. La CPUE no asociada viene aumentando desde principios de los años 2000; ha estado por encima del promedio desde aproximadamente 2003, y estuvo por encima del nivel de referencia superior en 2017, pero en 2018 descendió por debajo del mismo. El indicador de esfuerzo estandarizado de la tasa de explotación aumentó a partir de principios de los años 1990, y ha estado por encima del nivel promedio desde aproximadamente 2000. El

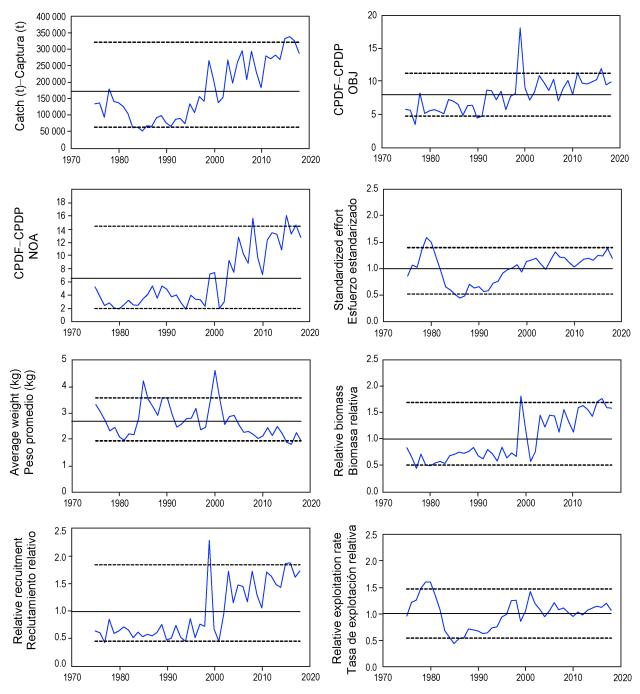
peso promedio del barrilete viene disminuyendo desde 2000, y en 2015 y 2016 se encontró por debajo del nivel de referencia inferior, pero aumentó ligeramente en 2017 por encima de dicho nivel, para entonces descender al nivel de referencia en 2018. La biomasa y el reclutamiento han aumentado durante los 20 últimos años, y estuvieron por encima de sus niveles de referencia superiores en 2015 y 2016. La tasa de explotación comenzó a aumentar a mediados de los años 1980, y ha fluctuado alrededor del promedio desde mediados de los años 1990.

El número de lances por buques cerqueros grandes y pequeños en la pesquería sobre objetos flotantes ha aumentado consistentemente durante al menos los últimos 15 años (Figura 3), y al mismo tiempo la captura por lance ha disminuido. El número de días de pesca no ha aumentado al mismo paso, y el número incrementado de lances es por lo tanto probablemente la causa del aumento de la captura y de la captura por día de pesca (CPDP). Se usa la CPDP para crear los indicadores basados en el modelo, y por lo tanto los aumentos estimados del reclutamiento y la abundancia son probablemente un artefacto causado por el incremento del número de lances.

Los indicadores basados en datos y en el modelo todavía no han detectado impactos adversos de la pesca, pero los indicadores basados en el modelo están probablemente sesgados y no deberían ser considerados fiables. El peso promedio estuvo por debajo de su nivel de referencia inferior durante 2015-2017, lo cual puede ser consecuencia de una explotación excesiva, pero puede también ser resultado de reclutamientos recientes mayores que los reclutamientos pasados, o la expansión de la pesca en zonas ocupadas por barrilete más pequeño. La talla promedio es más baja en la parte occidental del OPO, pero viene disminuyendo en todas las zonas (Figura 3). El patrón a largo plazo de peso promedio reducido se debe probablemente al aumento de la mortalidad por pesca que resultó del mayor número de lances. Sin embargo, no se sabe si los niveles actuales de mortalidad por pesca son apropiados porque no existen puntos de referencia para el barrilete en el OPO, pero toda disminución continua de la talla promedio es motivo de preocupación. Ni los análisis de datos de marcado, ni varios modelos previos (estructurado por talla, A-SCALA, y SEAPODYM) indican un riesgo creíble para la población (o poblaciones) de barrilete (Documento SAC-07-05c).

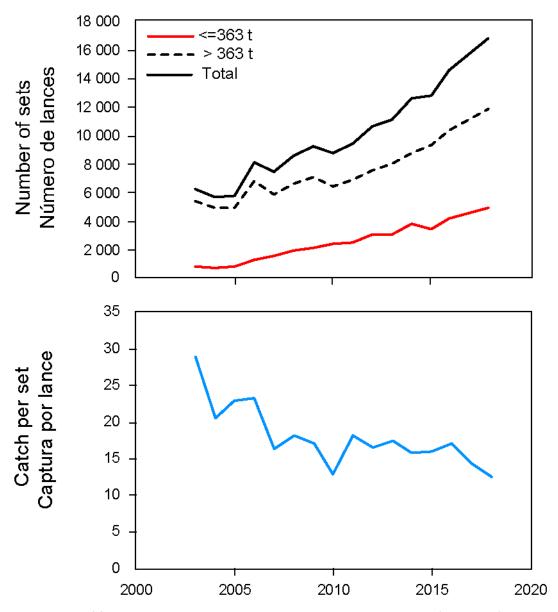
El análisis de productividad y susceptibilidad (APS; ver Informe de Situación de la Pesquería 12 de la CIAT, Figura L-4) indica que la productividad del barrilete es sustancialmente mayor que aquella del atún patudo. La biomasa (B) y la mortalidad por pesca correspondiente al RMS (F_{RMS}) están, respectivamente, negativa y positivamente correlacionados con la productividad. Por lo tanto, ya que el barrilete y el patudo tienen una susceptibilidad aproximadamente igual, y la susceptibilidad está relacionada con la mortalidad por pesca, la condición del barrilete puede ser inferida de la condición del patudo, pero únicamente si la mortalidad por pesca de patudo está por debajo del nivel de RMS (o sea, $F < F_{RMS}$). Ya que no se dispone de una evaluación del patudo, no se pueden formar inferencias en este momento acerca de la condición del barrilete. Es necesario realizar una evaluación convencional del barrilete para determinar la condición de la población, pero, tal como se comentó en lo anterior, esto no es posible sin datos de marcado mucho más extensos. Es por lo tanto crítico el programa de marcado a gran escala en el OPO que comenzó en 2019 (Proyecto E.4.a).

RECONOCIMIENTOS


Varios miembros del personal de la CIAT participaron en la preparación de los datos.

REFERENCIAS

Maunder, M.N. 2002. Condición del atún barrilete en el Océano Pacífico oriental en 2001 y perspectivas para 2002. Comisión Interamericana del Atún Tropical, Informe de Evaluación de Stocks, 3: 135-200.


Maunder, M.N. 2012a. Análisis preliminar de datos históricos y recientes de marcado de barrilete para

- explorar información sobre las tasas de explotación. <u>Comisión Interamericana del Atún Tropical,</u> Informe de Evaluación de Stocks, 13: 77-101.
- Maunder, M.N. 2012b. A length-structured meta-population stock assessment model: application to skipjack tuna in the eastern Pacific Ocean. IATTC SAC-03-INF A, 24pp. (https://www.iattc.org/Meetings/Meetings2012/May/_English/SAC-03-INF-A-Length-based-meta-population-stock-assess-ment-model-DRAFT.pdf)
- Maunder, M.N. y Deriso, R.B. 2007. El uso de indicadores de condición de población cuando no se dispone de puntos de referencia tradicionales: evaluación y aplicación al atún barrilete en el Océano Pacífico oriental. Comisión Interamericana del Atún Tropical, Informe de Evaluación de Stocks, 8: 229-248.
- Maunder, M.N. y Harley, S.J. 2005. Condición del atún barrilete en el Océano Pacífico oriental en 2003 y perspectivas para 2004. Comisión Interamericana del Atún Tropical, Informe de Evaluación de Stocks, 5: 109-167.
- Maunder, M.N. y Hoyle, S.D. 2007. Un método novedoso para estimar la abundancia relativa a partir de datos de captura cerquera por lance usando la abundancia conocida de otra especie. Comisión Interamericana del Atún Tropical, Informe de Evaluación de Stocks, 7: 283-297.

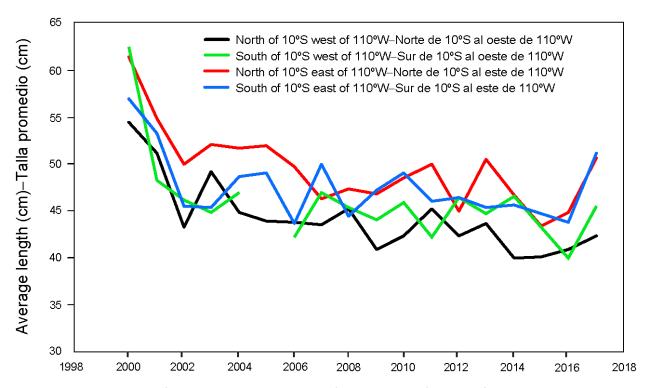

FIGURE 1. Indicators of stock status for skipjack tuna in the eastern Pacific Ocean. OBJ: floating-object fishery; NOA: unassociated fishery; CPDF: catch per day fished. All indicators are scaled so that their average equals one.

FIGURA 1. Indicadores de condición de la población de atún barrilete en el Océano Pacífico oriental. OBJ: pesquería sobre objetos flotantes; NOA: pesquería no asociada; CPDP: captura por día de pesca. Se ajusta la escala de todos los indicadores para que su promedio equivalga a uno.

FIGURE 2. Number of floating-object sets, by vessel carrying capacity and total (top panel), and catch per set in the floatingzobject fishery (bottom panel).

FIGURA 2. Número de lances sobre objetos flotantes, por capacidad de acarreo del buque y total (recuadro superior), y captura por lance en la pesquería sobre objetos flotantes (recuadro inferior).

FIGURE 3. Mean length of skipjack tuna caught in the floating-object fishery in four areas in the EPO. **FIGURA 3.** Talla promedio del atún barrilete capturado en la pesquería sobre objetos flotantes en cuatro zonas del OPO.