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ABSTRACT 

A risk assessment is developed to implement reference point-based fishery harvest control rules within a 
probabilistic framework that considers multiple hypotheses. This pragmatic approach is a compromise 
between computational demands, complexity, and statistical rigor. It acknowledges the need to weight 
models based on information in the available data, but does so in a context where the complexity of 
fisheries stock assessment models prevents strict adherence to statistical rigor. The main features of this 
approach are: 1) hypotheses about states of nature are represented by alternative stock assessment 
models with specific model structure, data use and parameters; 2) hypotheses are grouped into a 
hierarchical framework, which highlights similarities among models thereby avoiding that any one 
hypothesis, or overarching hypothesis, inadvertently dominates the outcome of the risk analysis, and 
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facilitates model development and weight assignment; 3) sub-hypotheses represent models with 
parameters that cannot be reliably estimated within the assessment model and are therefore fixed in the 
models; 4) multiple metrics are used to evaluate the reliability of the models and the plausibility of the 
hypotheses they represent; 5) model fit only plays a limited role in metrics used to evaluate models; 6) an 
efficient approach to eliminate unlikely hypotheses. This approach was illustrated by applying it to the 
stock assessment of EPO bigeye tuna and was used to evaluate a) probability statements about the current 
status relative to reference points and b) probability statements about the fishing mortality relative to 
reference points under different management scenarios.  

1. INTRODUCTION 

The management advice formulated by the IATTC scientific staff, on which the Commission bases its 
decisions for conserving and managing the tuna stocks in the eastern Pacific Ocean (EPO), has traditionally 
been based on the “best assessment” approach. This involves making a series of assumptions about the 
stocks, their biology, the fisheries and the environment, then fitting a stock assessment model to the 
available data to estimate the model parameters and quantities of interest (e.g. FMSY, the fishing mortality 
that corresponds to the maximum sustainable yield for that stock). This single model, called the “base 
case”, has hitherto formed the basis for the staff’s management advice. Although confidence intervals are 
usually also presented for the quantities of interest, along with sensitivity analyses (comparisons with 
other models), the management advice does not fully account for uncertainties in the estimates, nor does 
it address alternative management decisions and their potential implications. The staff has therefore been 
investigating and applying two related methodologies that overcome these limitations: management 
strategy evaluation (MSE) and risk analysis.  

Risk analysis, of which there are many types, takes uncertainty into account quantitatively in its 
management advice. It has a long history in fisheries: for example, decision tables that predict the 
outcomes of a range of management actions under different states of nature, and the probabilities 
associated with those states of nature, have been used for decision-making in several fisheries (Punt and 
Hilborn 1997). More recently, probability statements have been integrated directly into harvest control 
rules (HCRs), under which specified combinations of stock and fisheries status and trends trigger 
predefined management actions, and explicit estimates of uncertainty are used to evaluate the probability 
statements. HCRs are often based on target, limit, and threshold reference points: for example, the 
IATTC’s HCR for tropical tunas establishes that “if the probability that F will exceed the limit reference point 
(FLIMIT) is greater than 10%, as soon as is practical management measures shall be established that have a 
probability of at least 50% of reducing F to the target level (FMSY) or less, and a probability of less than 10% 
that F will exceed FLIMIT.”(Resolution C-16-02).  

MSE has become the gold standard for addressing uncertainty (Butterworth 2017, Punt et al. 2016), and 
has been widely used both nationally and internationally, including by all five regional fisheries 
management organizations for tuna (t-RFMOs: IATTC, IOTC, WCPFC, ICCAT, CCSBT) (Nakatsuka et al. 
2017). A management strategy is the combination of data, data analyses, and HCRs to determine what 
management measures are to be taken to meet a set of management objectives, and MSE compares the 
performance of different management strategies in meeting those objectives. In MSE, computer 
simulations of population and fishery dynamics are used to calculate relevant simulated fisheries 
performance metrics, such as annual variability in seasonal fishery closure length, under different types 
of uncertainty, including alternative states of nature, which are represented by different operating models 
in the simulation analysis.  

The methods for developing these operating models are similar to those used to incorporate uncertainty 
into a risk analysis. Because implementing an MSE is a long and complex process, the transition from a 
“best assessment” approach typically occurs in stages, and a risk analysis can serve as an intermediate 

https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-16-02-Active_Harvest%20control%20rules.pdf
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step in this process.  

To conduct a risk analysis in an HCR framework, uncertainty is expressed as alternative states of nature, 
such as the state of the stock (e.g. biomass (B)), the factors that control the dynamics of the stock (e.g. 
natural mortality (M), selectivity, stock-recruitment relationship), or how the data are related to the stock 
(e.g. catchability, sampling distributions). This requires implementing models that represent the 
alternative states of nature and using those models to calculate the probability of each state of nature 
being true.  

Three categories of uncertainty are addressed in risk analysis: 1) parameter uncertainty, 2) model 
structure uncertainty, and 3) uncertainty about the future (e.g. process variation). This document 
considers only the first two; the third will be addressed as the methodology is further developed. There is 
ambiguity in the difference between parameter uncertainty and model structure uncertainty, but they 
can both be used to represent alternative states of nature.  

One of the critical steps in conducting a risk analysis is to obtain estimates of parameter and model 
structure uncertainty. While estimating parameter uncertainty is straightforward, and common in stock 
assessment, estimating model structure uncertainty is more difficult. The model structure uncertainty 
used in a risk analysis should be informed by three information types: expert knowledge, theory, and 
available data. The goal of a risk analysis to evaluate a probabilistic HCR is to use these three types of 
information to develop probability distributions that represent the uncertainty in the estimates of the 
current status of the stock (e.g., biomass, fishing mortality) relative to the associated target and limit 
reference points. Since quantities of interest are typically the ratios of the current status to a reference 
point (e.g. Fcur/FMSY), probability distributions are calculated for the ratios, rather than for their individual 
components. 

Various methods (e.g. Privitera-Johnson and Punt 2020) can be used to calculate probability distributions 
for quantities of interest, most of which use approximations due to the computationally demanding 
nature of contemporary statistical integrated stock assessment models. These methods are not reviewed 
or discussed in detail in this study; instead, we describe a somewhat idealized approach, and then use this 
to develop a practical approach more suitable for the management of many species (among them tropical 
tunas in the EPO). Approximations (see Sections 3-4) are used to create the probability distributions for 
the quantities of interested and these are evaluated by comparison to Bayesian posteriors. 

As in any risk analysis, the models that represent the alternative states of nature must be assigned 
weights. At extremes of the spectrum of possible weighting schemes are three options, relative weighting 
based solely on model fit, equal weighting of all models, and expert opinion. Contemporary fishery stock 
assessments are complex, and using model fits alone to weight the various models may not be 
appropriate, or even possible, because biologically implausible models may be heavily weighted simply 
because they fit the available data better. Equal weighting of all models is a commonly used alternative, 
but may result in biased advice, as, for example, when many models representing similar states of nature 
result in a higher effective weight than a single model representing a different state of nature. A common 
use of expert opinion is the selection of a single base case model to use for providing management advice 
as selected by the assessment author. However, typically the choice is a somewhat subjective ad hoc 
approach of model development and testing that uses both model fit and expert opinion to choose the 
model. A more organized systematic approach is needed. To avoid the problems associated with these 
three options, we propose a range of metrics related to the reliability of a model, in addition to model fit, 
and combine them to assign a probability to each model. We also use a hierarchical framework to present 
possible states of nature to facilitate model development, as illustrated in the following application to 
bigeye tuna in the EPO.  
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1.1. Application to bigeye tuna  

The stock assessments for bigeye tuna in the EPO have become problematic in recent years, for various 
reasons (SAC-09 INF-B). In particular, an increase in the estimated recruitment starting in the mid-1990s 
results in an apparent “two-regime” pattern in recruitment, with estimates about doubling after 1993. 
This “recruitment shift” coincides with the rapid geographic expansion of the purse-seine fishery on fish-
aggregating devices (FADs) in the equatorial EPO in the mid-1990s, and the sudden and dramatic increase 
in associated catch. Some of the hypotheses proposed to explain this shift (Aires-da-Silva et al. 2010, 
Valero et al. 2019) ascribe the increase to a modelling artifact, while others postulate that recruitment 
really did increase (see Valero et al. (2019) and Punt et al. (2019) for details). In addition, the assessment 
results have become highly sensitive to new data points in the indices of relative abundance derived from 
the longline fishery (SAC-09 INF-B), due perhaps partially to the spatial contraction of that fishery. These 
and other issues, such as systematically poor model fits to length-composition data and the possibility of 
population structure not being captured in the model, have yet to be resolved, and some may never be 
completely resolved. Therefore, management advice could be improved by incorporating uncertainty 
when evaluating the IATTC HCR via a risk analysis. 

The goal of the risk analysis for tropical tunas in the EPO is to determine the probability of exceeding the 
target and limit reference points under alternative management actions, such as fishery closures. The 
IATTC HCR for tropical tunas (Resolution C-16-02, paragraph 3) states: 

a. “The scientific recommendations for establishing management measures in the fisheries for 
tropical tunas, such as closures, which can be established for multiple years, shall attempt to 
prevent the fishing mortality rate (F) from exceeding the best estimate of the rate 
corresponding to the maximum sustainable yield (FMSY) for the species that requires the 
strictest management. 

b. If the probability that F will exceed the limit reference point (FLIMIT) is greater than 10%, as 
soon as is practical management measures shall be established that have a probability of at 
least 50% of reducing F to the target level (FMSY) or less, and a probability of less than 10% that 
F will exceed FLIMIT. 
(…) 

c. If the probability that the spawning biomass (S) is below the limit reference point (SLIMIT) is 
greater than 10%, as soon as is practical management measures shall be established that have 
a probability of at least 50% of restoring S to the target level (dynamic SMSY) or greater, and a 
probability of less than 10% that S will descend to below SLIMIT in a period of two generations 
of the stock or five years, whichever is greater.” 

Various estimates are needed to evaluate the IATTC HCR in a risk analysis framework, including the 
probability of exceeding the target and limit reference points, both currently and in the future. Ideally, 
the estimated probabilities would encompass uncertainty in both current and future conditions but, as 
noted above, this study focuses on the calculation of uncertainty for the current status of bigeye tuna, as 
represented by the stock assessment estimates with respect to reference points, and leaves the future 
conditions for further work. The IATTC has started a MSE process for tropical tunas (IATTC MSE Workplan) 
that will define candidate reference points, HCRs, performance measures to be tested along with 
timeframes for specific objectives of alternative management strategies (Valero and Aires-da-Silva 2020). 

2. METHODS 

We first describe an “idealized” approach and then describe a more practical approach that we propose, 
illustrating its use with an application to bigeye tuna in the EPO. In what follows, we use the term 

http://www.iattc.org/Meetings/Meetings2018/SAC-09/PDFs/Docs/_English/SAC-09-INF-B-EN_Bigeye-tuna-investigation-of-change-in-F-multiplier.pdf
http://www.iattc.org/Meetings/Meetings2018/SAC-09/PDFs/Docs/_English/SAC-09-INF-B-EN_Bigeye-tuna-investigation-of-change-in-F-multiplier.pdf
https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-16-02-Active_Harvest%20control%20rules.pdf
https://www.iattc.org/Meetings/Meetings2019/IATTC-94/Docs/_English/IATTC-94-04_Staff%20activities%20and%20research%20plan.pdf#page=10
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hypothesis to refer to a state of nature. Each hypothesis is associated with one or more models that 
represent the hypothesis in a stock assessment context.  

2.1. “Idealized” approach 

In the “idealized” approach, all available data, alternative models, population dynamics theory, and expert 
opinion are used to calculate the probability distributions of the current status of the stock exceeding the 
target and limit reference points. In the case of bigeye in the EPO, such an approach is desirable because 
several alternative models (see ‘Reference models’ in Xu et al. 2020) have been formulated that explain 
the observed fishery data for bigeye, but there is uncertainty about which one best captures the reality 
of the population dynamics and fishery processes. The idealized approach takes into account any external 
data sources not used in the assessment, population dynamics theory, and expert opinion to develop the 
structure of the alternative models, priors for their parameter values, and then uses the data within each 
model to update this information. This, in conjunction with integrating over the parameters to provide 
posterior distributions for the quantities of interest, is the foundation of the Bayesian approach proposed 
by Punt and Hilborn (1997). Thus, the idealized approach is to use a Bayesian analysis integrating all the 
relevant data directly into the model or through data-based priors, parameterizing alternative model 
structure as much as possible, and estimating all the model parameters. Posterior distributions for the 
quantities of interest can then be used for management advice and for evaluating reference points in a 
probabilistic framework as required by some HCRs.  

In practice, however, implementation of the idealized approach is problematic for several reasons. First, 
using standard statistical methods of assessing model reliability, such as AIC, do not work well for complex, 
highly parameterized models fit to lots of data of different types. Furthermore, in fisheries, model 
assumptions are typically violated, invalidating the use of such likelihood-based measures. In addition, 
data weighting for fisheries models is usually not as well defined as in simple statistical models. Therefore, 
other metrics of model reliability need to be evaluated. 

A second issue is that not all hypotheses about uncertainty in model structure can be simply represented 
by a set of parameters. There are algorithms to estimate the probability of the model from the data (e.g. 
reverse jump MCMC), but these are seldom used in fisheries stock assessment. A more practical approach 
is to parameterize the model structural uncertainty and allow the parameter estimation to represent the 
uncertainty in the model structure. For example, the additional parameter in the Deriso (1980) stock 
recruitment model can be used to represent the two most common stock-recruitment models, Beverton-
Holt and Ricker, and all the models in between. However, this is not always possible or practical (e.g. when 
evaluating alternative fishery structures). One specific case is when there is the possibility that a data set 
is not representative, and alternative models are run with and without that data set. Conceptually, the 
inclusion of a data set can be parameterized by estimating the standard deviation of the likelihood that 
measures the fit to the data. However, this just produces a model that is a compromise among the data 
sets and does not reflect that one data set could be unrepresentative and completely misleading (Schnute 
and Hilborn 1993). 

A further issue is that in fisheries there is often a lack of appropriate data to estimate the different 
parameters. Preferably, the data already in the model would inform all choices of the model structure and 
the parameter values, but in practice, particularly for stock assessment applications, this is not the case 
due to lack of information. There is also the danger when information is insufficient that non data-based 
priors, even those that were chosen to be “uninformative”, can influence the results. Thus, some 
assumptions based on expert judgement need to be made regarding parameters. 

Finally, Bayesian models are typically fit using Markov chain Monte Carlo (MCMC) methods, but this 
approach to model fitting can be prohibitively slow, a particular disadvantage when multiple models need 
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to be evaluated. Although MCMC would be the preferred methodology for estimating probability 
distributions for quantities of interest (e.g., Fcur/FMSY), a simplification, such as using normal 
approximations based on frequentist statistics for possibly non-normal probability distribution functions, 
is necessary. In addition, the possible combinations of models can be very large and an approach is needed 
to limit the number of models considered.  

2.2. Practical approach 

There are 5 main steps involved in the implementation of the practical approach: 1) establishing a 
hierarchy of hypotheses and models; 2) defining a weighting system for hypotheses and models; 3) 
calculating the probability distributions for quantities of interest for a model; 4) combining probability 
distributions across models; 5) presenting the results in the form of a risk analysis. These steps are 
explained below. 

2.2.1. 1) Establishing a hierarchy of hypotheses and models 

In a risk analysis, hypotheses about the state of nature are represented by models. Typically, there will be 
multiple models that could be used to represent a single hypothesis. In addition, hypotheses may be 
nested, adding further complexity. In reality, there is an unlimited combination of hypotheses, and 
possible models to represent them, and some prudence is needed when defining the models and 
combinations. Therefore, to facilitate the development of models that represent hypotheses about the 
state of nature, we use a flow chart to represent a hierarchical structure of hypotheses that has three 
levels: 1) Overarching hypotheses; 2) hypotheses; 3) sub-hypotheses. These levels have different functions 
and are described below.  

2.2.1.A Level 1: Overarching hypotheses 

The overarching hypotheses correspond to broad states of nature (e.g. the number of stocks). They are 
represented by a variety of models of different complexity and that may use different data. These 
overarching hypotheses are put in the first level because it is difficult, impossible, or inappropriate to 
evaluate them simply by the fit of models to data. Therefore, the overarching hypotheses rely solely on 
expert opinion to provide weights and the weighting of any models under an overarching hypothesis are 
conditional on those weights.  

2.2.1.B Level 2: Hypotheses 

Level 2 hypotheses are specific hypotheses that can be represented by a model and can be differentiated 
by fitting the models to data. Level 2 may be divided into sub-levels (A, B, …) where each sub-level 
addresses an issue in the assessment. Models are developed for each of these sub-levels and typically 
need to be used in combination to solve all the assessment issues. The sub-levels provide a convenient 
way to organize the models and may aid in assigning weights (see Section 2).  

2.2.1.C Level 3: SUB-HYPOTHESES 

Level 3 sub-hypotheses are evaluated differently than the Level 2 sub-levels to avoid the influence of data, 
reduce the number of analyses, or for convenience. Level 3 sub-hypotheses are typically encompassed by 
a single hypothesis, can be represented by restricting a model (e.g. fixing the value of a parameter, such 
as steepness), and are applied to most, if not all, models on Level 2.  

2.2.2. 2) Defining a weighting system for hypotheses and models 

Once a hierarchy of hypotheses has been established (Step 1), various sources of information (both 
internal and external to each model) can be used to construct a system to evaluate which hypotheses are 
considered more likely than others. This is a necessary step because assigning the same weight (reliability) 
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to all hypotheses could introduce biases into the management advice if some hypotheses are, in fact, 
highly unlikely. Weights need to be assigned to each of the models (representing hypotheses) in the 
hierarchy outlined in Section 1 (mainly at Level 2). The model weights must then be rescaled so that they 
represent probabilities and can be used in the risk analysis. This is achieved through a weighting system 
involving the following steps: a) establish weight categories that will be used to assign weights to models 
and hypotheses; b) select weight metrics to be used to weight models and hypotheses; c) assign weights 
to models and hypotheses, and rescale weights so they can be used in a probabilistic framework; and d) 
ensure the number of hypotheses is practical (as too many or too similar hypotheses may be difficult or 
impractical to evaluate). Each of these steps is discussed in detail below. 

2.2.2.a 2a) Weight categories 

To assign weights to the various models and hypotheses, it is preferable to establish a system of discrete 
weight categories. The complex and uncertain nature of fisheries stock assessment models makes 
assigning continuous quantitative values as weights representing model structure uncertainty difficult, 
and as a result, assigning the weights is often qualitative and subjective. An attempt is made to facilitate 
and standardize the weighting by creating discrete weight categories to try to capture the degree of 
reliability of each model. The numerical values assigned to each weight category are themselves 
subjective. We suggest the following categories and numerical weights be used for all weight metrics 
except the metric for overall model fit (W(Fit); see Section 2.2.2b).  

Weight Category Value 
None:  0 
Low:  0.25 
Medium:  0.5 
High:  1.0 

2.2.2.b 2b) Weight metrics 

Using solely model fit to weight alternative models and hypotheses may not be possible, or even 
appropriate. Therefore, we develop a set of metrics related to the reliability of a model, in addition to 
model fit, which will later be combined to assign weights to each model representing a hypothesis. These 
metrics include:  

a. W(Expert): Expert opinion, assigned “a-priori”, without consideration of model fit.  
b. W(Convergence): Model convergence criteria of the estimation algorithm. 
c. W(Fit): The fit of the model to the data. 
d. W(Plausible parameters): The plausibility of the estimates of the parameters representing the 

hypothesis. 
e. W(Plausible results): The plausibility of the model results.  
f. W(Diagnostics): Reliability of the model based on diagnostics. 

The weight given to each model is then the product of the individual component weights, once each of 
those components has been rescaled (See Section 2c): 

W(model) = W(Expert) x W(Convergence) x W(Fit) x W(Plausible parameters) x W(Plausible results) x 
W(Diagnostics) [Equation 1] 

Depending on the application (i.e. particular stock the weighting system may be applied to), additional 
weighting metrics should be considered to represent how well the models address the issues represented 
in Level 2 of the hypothesis hierarchy. 
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The W(Diagnostics) component is calculated based on a variety of diagnostics. The same set of weight 
categories as presented above (i.e. None, Low, Medium, High) are used for calculating each of the 
diagnostic weights. The weights of each set of diagnostics are added together (rather than multiplied) to 
ensure that the individual diagnostics are not overweighted in the calculation of W(Model):  

W(Diagnostics) = W(ASPM, R0, Catch curve) + W(Retrospective analysis) + W(Composition residuals) + 
W(Index residuals) + W(Recruitment residuals) [Equation 2] 

Each metric is described below. 

a. W(Expert): represents the subjective judgment of the experts, taking into consideration past 
experience with the specific assessment, other assessments of that species, assessments of other 
species, and other biological, ecological and related factors. Population dynamics theory is also taken 
into consideration.  

b. W(Convergence): represents how well the parameter estimation procedure worked. If the Hessian 
matrix is not positive definite, it is considered that the model has not converged and W(Convergence) 
is given zero weight, independent of the other criteria.  

If the estimation procedure has not converged correctly, the parameter estimates may not be correct 
and therefore the model does not represent the hypothesis well. It also may indicate that the model 
is a misspecified representation of the hypothesis or that the hypothesis is not consistent with the 
data. However, effort should be made to understand the problem and get a positive definite Hessian 
and low maximum gradients before assigning weights (e.g., by checking parameter values relative to 
their estimating bounds, trying different starting parameter values, changing the phases in which 
each parameter is estimated, increasing the maximum number of function evaluations in the function 
minimizer). Jittering starting values and phases can also be used to investigate the stability of model 
results and determine whether local minima are present. Models with many local minima that 
produce different management results may need to be assigned lower weights, particularly if this 
problem will not otherwise be represented in the probability distributions of the quantity of interest 
for that model. The maximum gradient component or other aspects of model convergence could also 
be investigated as possible factors to use for determining this weighting metric. 

c. W(Fit): represents how well the model fits the data. This measure is based on the overall fit to the 
data and is not related to the residual pattern, which is covered by W(Diagnostics), as outlined below. 
The total negative log-likelihood could be used to measure overall fit. However, models representing 
different hypotheses often have different numbers of parameters (or data, described below) and 
adding parameters typically improves the fit, which is not accounted for by the total negative log-
likelihood. Therefore, AIC or similar statistics should be used to adjust for the number of estimated 
parameters. Burnham and Andersen (1998) provide the following guidelines regarding the use of AIC 
to evaluate a collection of models relative to the “best” model, where the best model is the model 
with the lowest AIC. The larger difference in AIC from the best model (Δ AIC) the stronger the evidence 
against that model (i.e. the lower the Δ AIC (or equivalently the AIC) the more support for that model):  

 Δ AIC ≤ 2 no evidence against the model 
2 < Δ AIC ≤ 4 weak evidence against the model 

 4 < Δ AIC ≤ 7 definite evidence against the model 
 10 < Δ AIC very strong evidence against the model 

where Δ AIC = AIC - AICmin, and AICmin is the lowest AIC over all models. 
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To address the complexities of assessing overall model fit in stock assessment models, we apply more 
liberal criteria than the guidelines shown above to ensure that all models are considered, but we 
realize that our criteria are inconsistent with those guidelines and also with the probability 
distributions estimated from the model for the management quantities. Our procedure gives High 
weight to the model with the lowest AIC (best fit) and Low weight to the model with the highest AIC 
(worst fit) and a linear function of AIC in between:  

W(Fit) = Low + (High - Low) x (1- [Δ AIC / max(Δ AIC)]) [Equation 3] 

However, the calculation of AIC gets complicated when the models do not use the same data, cover 
a different time frame, or use different data weighting. AIC is not valid if the data differs among 
models and applying the AIC based only on the data common among models favors the model with 
less data which is expected to fit the common data better because it is less constrained and is likely 
to be the minimum AIC model. We suggest three possible ways to deal with this issue: 

1. Calculate the AIC for models that use the same data and rescale the weights among these models 
to sum to one. 

2. For models with an additional data set that is specific to an additional parameter that is being 
estimated in the model (e.g. age-length data and estimating growth), calculate the AIC for all 
models without this data. 

3. When calculating the weight for models with less or downweighted data, replace Δ AIC in the 
numerator of the formula above with the quantity (max(AIClimited)-AIClimited), where AIClimited refers 
to the AIC calculated using only the data common to all models and are not down-weighted: 
 
W(Fit) = Low + (High - Low) x Max[1, (1- (max(AIClimited)-AIClimited) / max(ΔAIC))] [Equation 4] 

d. W(Plausible parameters): represents the realism of the estimates of the additional parameters that 
are added to represent the hypothesis. In many cases, a parameter that is added to the model to solve 
the perceived cause of the model misspecification is instead used by the model to compensate for the 
actual, but different, model misspecification. This may be apparent in estimates of that parameter 
that are unrealistic. This could be judged based on data, but if those data were in fact available, then 
they should be included in the model directly or used to create a prior for the parameter. Also, each 
set of parameters representing a hypothesis is different for each model. Therefore, evaluation of this 
metric is somewhat subjective. It should be noted that even though an unrealistic value is estimated, 
a more realistic value may also be supported by the data and so the uncertainty in the parameter 
estimate should also be considered.  

e. W(Plausible results): this metric is very subjective and care needs to be taken that the final outcome 
is not controlled by this metric. Stock assessments produce many results, so providing guidance on 
evaluation of this metric is difficult. However, one factor to consider is unrealistically high or low 
estimated fishing mortality.  

f. W(Diagnostics): represents the reliability of the model. W(Diagnostic) serves two purposes: 1) to 
evaluate if the data support the hypothesis represented by the model, assuming the model is correctly 
specified, and 2) evaluate if the model correctly specifies the hypothesis. As regards the first purpose, 
a model may fit the data well, as measured by an objective function (e.g. the likelihood) and adjusting 
for the number of parameters estimated (e.g. AIC), but if that model violates assumptions or provides 
unrealistic results then it suggests that the hypothesis may not be correct. As regards the second 
purpose, a model may violate assumptions or provide unrealistic results because it incorrectly 
specifies the hypothesis. In general, a model that violates assumptions or provides unrealistic results 
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should not be used to represent that hypothesis, and, the model should not be used in the risk 
analysis. However, it is still desirable to represent the hypothesis in the risk analysis, and a model that 
better represents the hypothesis should be found, if possible. In some cases, it may be difficult to 
determine if the violations of assumptions are due to the hypothesis being incorrect or the model 
incorrectly specifying the hypothesis.  

Here we outline how the model diagnostics are used to define weights for each component of 
W(Diagnostics).  

W(ASPM, R0, Catch curve)  

The R0 likelihood component profile, the Age-structured production model (ASPM) diagnostic, and the 
catch curve diagnostic all provide information about the abundance information content of different data 
sets. They provide information about how influential the composition data are on the estimates of 
absolute abundance. Therefore, they are grouped together in one category for assigning the weights. The 
ASPM and catch curve diagnostics also show the influence of composition data on the estimated trends 
in abundance. Preferably, all data sets provide consistent information, or at least the indices of abundance 
provide most of the information on absolute abundance and trends in abundance. It should be noted that 
annual estimates of relative recruitment might be needed to extract information on absolute abundance 
from the indices and these recruitments are informed by the composition data.  

Further information on these diagnostics is provided below. An overview of the algorithm to assign 
weights based on the R0 profile diagnostic and the ASPM diagnostic is presented in Figure 1. This weight 
is then multiplied by the weight from the Catch Curve diagnostic:  

W(ASPM, R0, Catch curve) = W(ASPM, R0) x W(Catch curve) [Equation 5] 

R0 profile 

The R0 likelihood component profile determines the information in the different data sets about absolute 
abundance and whether they are in conflict. Preferably, all the data provide the same information about 
absolute abundance. Any differences indicate possible model misspecification. In general, if there are 
differences, it is preferable that absolute abundance information come from the index of abundance and 
not from the composition data, particularly not from length composition data, assuming the index of 
abundance is considered representative. Achieving this may require down-weighting the composition 
data. However, the model will still be misspecified and the misspecification may be impacting results. 
Alternatively, the problem may be that the index is not be representative.  

The following choice of weight categories is recommended: High weight should be given to models were 
the data provide consistent information, Medium weight should be given to models with inconsistent 
information, but the index has more influence, and Low weight should be given to models with 
inconsistent information and the composition data have more influence. However, the consistency of 
information may be difficult to determine. For example, one data source may provide information that 
biomass must be higher than a certain amount but provides no information about how high the biomass 
should be. This type of ramping of the likelihood profile may simply be a consequence of the type of data 
but may look like data conflict. Also, one data set may be uninformative and so not show conflict.  

ASPM and ASPM-Rdev Diagnostics 

The ASPM diagnostic is used to determine whether the impact of the catch on the index of abundance is 
driving the estimates of absolute abundance and/or is consistent with the information from the 
composition data, and whether information on recruitment variation is needed to extract the absolute 
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abundance information (using ASPM-Rdev, the ASPM diagnostic with the recruitment deviates estimated, 
and its confidence intervals). Preferably, for the fully integrated model that fits to all the data (e.g. index 
of abundance and composition data), ASPM, and ASPM-Rdev provide similar estimates of absolute 
abundance and trends over time. However, for stocks that show variable autocorrelated recruitment, 
and/or for which recruitment makes up a substantial component of the abundance, the ASPM is expected 
to perform poorly (e.g. estimate much larger absolute abundance) and recruitment deviates are needed. 
If variable autocorrelated recruitment is not evident (i.e. is not estimated by the fully integrated model) 
then differences in the abundance estimates between the fully integrated model and the ASPM indicates 
that either the composition data is driving the estimates, which can be confirmed by the R0 profile, that 
the model is misspecified, or both. Large confidence intervals on biomass estimated by the ASPM-Rdev 
indicate that information on recruitment deviates (e.g. from composition data) may be needed to 
interpret the information on absolute abundance obtained from the impact of catch on the index of 
abundance. If the ASPM-Rdev confidence intervals are reasonable, then differences in the abundance 
estimates between the fully integrated model and the ASPM-Rdev indicates that either the composition 
data is driving the estimates, which can be confirmed by the R0 profile, that the model is misspecified, or 
both. 

Catch Curve Diagnostic 

The catch curve diagnostic simply estimates the model parameters without fitting to the indices of 
abundance by only fitting to the composition data. Differences in estimates of abundance, both in 
absolute terms and in trends over time, between the catch curve diagnostic and the fully integrated 
model, indicate model misspecification. Differences in absolute abundance indicate that growth 
(particularly the asymptotic average length) may be misspecified, if fitting to length composition data, or 
that the dome-shaped form of the selectivity may be misspecified. Differences in trends indicates that 
growth or selectivity may have changed over time, but are modelled as time invariant. The weight given 
to each model should be based on the size of the differences. There may be overlap in the information 
provided between this diagnostic and the R0 profile and the ASPM diagnostic. 

 Retrospective analysis 

Retrospective analysis determines if the results change as additional years of data are added. Changes in 
estimates of biomass, recruitment, or fishing mortality that are large and are in the same direction as 
more years of data are added indicates model misspecification. The weight category assigned to 
W(Retrospective analysis) should be based on the magnitude of the difference and whether the change is 
always in the same direction. More quantitative measures can be used (e.g. Mohn’s Rho), but we use a 
subjective approach.  

Residual analysis 

Model misspecification can be identified by characteristics of the residuals that are not consistent with 
the assumptions implicit in the likelihood functions used to fit the data. The misspecification could be in 
the system model (the population dynamics), the observation models that relate the system model to the 
data, or in the sampling distribution assumptions (the likelihood functions). Violation of model 
assumptions may manifest in the residuals in several ways. Here we focus on three characteristics: the 
magnitude of the residuals, trends in residuals (violating the independence assumptions), and the shape 
of the distribution of the residuals, including outliers, although we note that the distributional shape and 
outliers are typically indicative of lower-order issues and are therefore generally ignored. 

When assigning weights, there are two important considerations. First, automatic data weighting (e.g. 
Francis weighting for composition data) is becoming the standard approach to fit data and therefore the 
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absolute magnitude of the residuals is not useful as a diagnostic when using automatic weighting. Second, 
trends in residuals are common and therefore expected, so it may be best to only consider substantial 
trends in residuals when determining weights. There may be quantitative criteria that would be 
appropriate, and these should be investigated.  

Of course, preferably the model misspecification is corrected before the model is included in the risk 
assessment. The characteristics of the residuals may indicate what part of the model is misspecified. For 
example, if the absolute magnitude of the residuals is too large, this issue is often mitigated by estimating 
the quantity related to the variance of the likelihood function (e.g. the standard deviation of a normal or 
lognormal distribution-based likelihood function or the effective sample size of a multinomial distribution 
based likelihood function). Outliers can be addressed by using robust likelihood functions.  

W(Composition residuals) 

Methods that automatically estimate the data weighting should be used (the Francis method is currently 
recommended) and therefore the magnitude of the composition residuals does not have to be 
considered. Trends in residuals should be checked using plots of: 1) overall fits (although the “empirical” 
selectivity plots might be preferable, see below), 2) average age/size fits, 3) residuals vs time, 4) residuals 
vs age/length, 5) residuals by cohort (if age data), and 6) bubble plots of time and age/length. The weights 
should be based on any major issues found in any of these graphical methods to evaluate residuals.  

W(Index residuals) 

When the standard deviation of the likelihood function is fixed, it should be compared with the RMSE. 
Both the fit of the index and the raw residuals should be plotted to determine trends in the residuals.  

W(Recruitment residuals) 

Recruitment is typically modelled assuming a lognormal distributional assumption with a fixed standard 
deviation used in the associated penalty. The RMSE should be compared with the assumed standard 
deviation. Trends in recruitment are expected because recruitment is often driven by autocorrelated 
environmental processes. However, trends also may be related to a misspecified stock-recruitment 
relationship, and so residuals should be plotted against abundance (however care is needed in the 
interpretation because recruitment could drive abundance). Also, trends related to increases in catch may 
be an artifact of the model (see the bigeye tuna application below). The usefulness of a recruitment 
residual diagnostic is currently unclear.  

2.2.2.c Assigning and rescaling weights 

Weights need to be assigned to each of the models (using the weight categories described above) 
following the hierarchy and based on evaluation of the metrics described above. The model weights must 
then be rescaled so that they represent probabilities and can be used in the risk analysis. There are two 
related factors that need to be considered but may not necessarily be treated the same: i) when should 
the weights be rescaled to sum to one, and ii) how to assign the weights for a specific model relative to 
the other models. Since the grouping of models and hypotheses prior to rescaling may dictate how models 
and hypotheses are grouped for assigning weights, we first discuss rescaling, even though when 
implementing these procedures clearly the weighting must be done before rescaling. 

i) when should the weights be rescaled to sum to one  

Rescaling conditionally, according to the branches of the hierarchy, which turns the flow chart into a 
probability tree, may be desirable. For example, without rescaling conditionally on the hierarchy, the more 
models that are used to represent a hypothesis, the more weight that hypothesis gets when generating 
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management advice. This could lead to overweighting of a specific hypothesis. To illustrate this point, we 
use the example of steepness of the Beverton-Holt stock-recruitment relationship fixed at 0.7, 0.8, and 
0.9, in three different models. When all these models are given equal weight, the hypothesis that 
recruitment is related to spawning stock size, gets three times more weight than the alternative that 
recruitment is functionally independent of stock size (steepness fixed at 1.0). If additional models with 
steepness fixed at 0.5 and 0.6 were added, the weight would be 5 times higher, even if these additional 
values of steepness may be implausible for a particular stock. Of course, an approach for this example 
would be to estimate steepness and let the data determine the weight, but as discussed below (see text 
related to Level 3 above), estimating steepness is inappropriate in some cases, and particularly for 
steepness. 

We propose the following: 

1. Rescale the Level 1 overarching hypotheses weights to sum to one across all overarching 
hypotheses. These weights will then be multiplied by the weights from the other levels. 

2. Rescale the Level 2 weights to sum to one within each sub-level (e.g. A, B, …) within a branch of 
the hierarchy (i.e. for a given Level 1 overarching hierarchy). The exception to this is for model fit 
when some models have less/different data or down-weighted data. In this case, subdivide the 
models further into groups of models with the same data and data weighting and rescale the 
weights for models in each of these groups to sum to one. 

3. Rescale the Level 3 weights to sum to one within a branch of the hierarchy (i.e. for a given Level 
2 hypothesis).  

ii) How to assign the weights for a specific model relative to other models  

As with rescaling the weights, in some cases it may be beneficial to follow the hierarchy when assigning 
weights, while in other cases it may be more appropriate to assign weights to a metric based on evaluation 
of all models or a subset of models on different branches. For those metrics that measure an aspect of 
model reliability that is branch-specific or are not based on data (e.g. W(Expert)), the hierarchical structure 
of hypotheses should be followed when assigning weights. For those metrics that measure an aspect of 
model reliability that has the same interpretation across all branches in the hierarchy (e.g. W(Plausible 
results)), the weights should be assigned globally.  

We recommend the following: 

1) Assign the Level 1 W(Expert) weights relative to all overarching hypotheses.  
2) Assign Level 2 weights to W(convergence), W(Plausible parameters), W(Plausible results) and 

W(Diagnostics) relative to all models and hypotheses.  
3) Assign Level 2 weights to W(Fit) relative to models that use the same data or data-weighting, 

which may correspond to several different branches in the hierarchy. 
4) Assign Level 2 weights to W(Expert) relative to models in the same branch of the hierarchy (i.e. 

for a given Level 1 overarching hypothesis). 
5) Assign Level 3 weights relative to models in the same branch of the hierarchy (i.e. for a given Level 

2 hypothesis).  

We suggest that the weighting be done using a panel of experts who discuss the various models with 
respect to each of the metrics. If no consensus on weights for a particular metric is obtained among the 
experts, then each expert can assign his/her own weight, and those weights are then averaged over 
experts to obtain a weight for that metric for a model. We recommend rescaling the weights to sum to 
one for each expert before averaging so that each expert’s weights have more consistent influence. 
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Clearly, if a weight component is not relevant (e.g. the W(Plausible parameters) metric is not relevant if 
there is no parameter estimated that represents the hypothesis), it should be assigned to a value of 1.  

2.2.2.d 2d) Reducing the number of models and the analyses conducted 

There are usually a variety of hypotheses and combinations of the hypotheses that can address the stock 
assessment issues and represent the state of nature. The number of models representing these 
hypotheses can easily get impractical to implement, particularly since some of the diagnostics (e.g. R0 
profile and retrospective analysis) need the model to be run several times. Therefore, an approach is 
needed to efficiently eliminate unlikely models. Per the formula for W(Model), if any of the metrics is 
assigned a weight category of None (zero) then the model gets an overall weight of zero and is eliminated.  

One of the benefits of creating the hierarchy of models and hypotheses is that it may allow elimination of 
groups of models without running all the models. This can be done by defining a “base” model from which 
the other models in the sub-levels of Level 2 are derived. The base model would typically be a simpler 
model (e.g. some parameters that are estimated in the other models are fixed) and if this model fails, 
then the other models derived from this model are also eliminated. Implementation of this approach 
needs to consider the reason for the elimination of the base model, because models derived from the 
base model may in fact correct for the reason the base model was eliminated.  

It is also useful to check the categories W(Expert) and W(Convergence) early in the analysis because when 
these eliminate models, the calculations for the other categories do not need to be conducted, which will 
save time. 

2.2.3. Calculating probability distributions for quantities of interest for a model 

As mentioned above, a model with parameters representing alternative hypotheses run in a Bayesian 
framework would be preferable for estimating probabilities. However, at present, running MCMC on 
many contemporary assessments is impractical. The computational demands, potential for parameters 
estimated with low precision (e.g. selectivity parameters) and the correlation among parameters make 
for prohibitively long run times to get reliable posterior distributions. Models could be reparametrized to 
reduce parameter correlations, prior distributions could be added or parameters estimated with low 
precision could be fixed. However, this is not always possible, or doing so may be inappropriate, 
impractical, or time consuming for a large number of models. Therefore, it is necessary to use some 
approximations. First, we have to use frequentist approaches to approximate the posterior for the 
quantity based on a specific model m, P(Quantity|Model=m). This can work well when the data is very 
informative since, in a Bayesian analysis, one characteristic of a good prior is that it has frequentist 
matching properties (e.g. the correct coverage probability), which typically improve with increasing 
sample size for common frequentist approaches. Second, the probability distribution may be 
asymmetrical, but conducting a profile likelihood for the desired quantity may not be possible (e.g. for a 
derived quantity). Therefore, normal approximations based on the estimated standard deviation 
(standard error) of a derived quantity are used. The resulting distribution is rescaled to obtain 
P(Quantity|Model=m). Posteriors derived from limited MCMC analyses could be used to evaluate 
appropriateness of the approximation.  

2.2.4. Combining probability distributions across models 

The probability distribution function (PDF) for a quantity of interest, P(Quantity), that corresponds to a 
collection of models needs to be obtained in order to evaluate the probability that the quantity of interest 
exceeds a reference point. We estimate P(Quantity) using model-averaging. To compute P(Quantity), 
P(Quantity |Model=m) (from Section 3) is evaluated for each model m in the collection of models across 
an interval of regularly-spaced discrete values of the quantity of interest, and weighted by the rescaled 
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values of W(model), which we will refer to as “P(Model=m)”, before summing across models and rescaling. 
The spacing among values of the quantity of interest must be fine enough and cover a large enough range 
of values that the tails of P(Quantity) can be used to accurately assess tail probabilities [e.g. P(F > FLIMIT) > 
0.1]. More formally, P(Quantity) is given by: 

𝑃𝑃(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄) = ∑ 𝑃𝑃(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄|𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚)𝑃𝑃(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚)𝑚𝑚∊{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀}  [Equation 6] 

The full algorithm used to compute P(Quantity) can be summarized as follows:  

a) Determine the weight of each model in the collection (i.e. W(model) for each model, per Section 
2). 

b) Rescale the values from (a) to obtain P(Model = m) for every model in the collection.  
c) Calculate the probability of the quantity of interest for each model across an interval of regularly-

spaced discrete values (Section 3) and rescale so that they sum to one. This gives P(Quantity 
|Model=m).  

d) Multiply (b) and (d) for each model in the collection and sum across models to give P(Quantity). 
e) Evaluate (d) for all management quantities. 

Finally, in order to evaluate the probability of exceeding a reference point, the cumulative distribution 
function (CDF) for the quantity is computed from P(Quantity) using the trapezoidal rule. First, estimate 
the probability for the interval between that value qi and the previous value, qi-1,  

by: ∫ 𝑃𝑃(𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄)𝑞𝑞𝑄𝑄
𝑞𝑞𝑄𝑄−1

𝑀𝑀𝑄𝑄 ≈ abs(𝑞𝑞𝑄𝑄– 𝑞𝑞𝑄𝑄−1)
�(𝑃𝑃�𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄=𝑞𝑞𝑄𝑄�+𝑃𝑃�𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄=𝑞𝑞𝑄𝑄−1��

2
 [Equation 7] 

The CDF is then obtained by summing up these values in series and rescaling by dividing by the maximum. 
When the normal approximation is used to represent the pdf of the quantity of interest, the cumulative 
normal distribution can be used to reduce computational demands.  

2.2.5. Presenting the results in the form of a risk analysis 

The results can be presented in a number of different formats depending on the purpose of the analysis. 
Plotting the PDFs of the quantities of interest (e.g. the ratio of the current status to the reference point) 
can be used to present the shape of the distributions. It is often useful to present the pdfs by components 
or a combination of components to illustrate the influence of the weighting factors. Cumulative density 
functions (CDFs) can be used to determine the probability of exceeding the reference points.  

A variety of decision tables could also be created, but the most common is the outcome of specific 
management action under different states of nature. The states of nature could be the individual models, 
or if there are too many, combinations of models, or some derived quantity such as biomass level. The 
probability of each state of nature is usually also included in the table to help interpret the overall results 
integrated across all states of nature.  

Sensitivity analysis to the weights is also useful to determine how robust the results are to uncertainty in 
the weight assignments.  

3. BIGEYE TUNA APPLICATION 

Bigeye tuna in the EPO is used to illustrate the risk analysis approach. In this section we discuss the 
hierarchy of hypotheses and models and the weighting system that were developed for this application.  

Hierarchy of hypotheses and models 
There are two main issues to address in the bigeye tuna application: the regime shift in recruitment and 
misfit to the composition data for the fishery that has asymptotic selectivity. To address these issues many 
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combinations of models were initially considered, and their graphical presentation gets a little disorderly 
due to the early elimination of some models based on the weight assignments (see below) and the desire 
to keep the number of models limited. Figure 2 shows the full set of models considered and Figure 3 shows 
those that were not eliminated. In the text, models and hypotheses are identified in italic font.  

Level 1 

The main unresolved issue in the bigeye tuna assessment is the estimated regime shift in recruitment that 
coincides with the expansion of the purse-seine fishery on floating objects. This could be a real regime 
shift in recruitment caused by changes in environmental conditions, predation, or competition, or it could 
be due to model misspecification. The recruitment regime shift becomes the basis for the overarching 
hypotheses: 1a) the regime shift is real and 1b) the regime shift is an artifact of model misspecification 
(Figure 2).  

The issue of the recruitment regime shift forms the basis for the overarching hypotheses because available 
data cannot be used to clearly establish whether the recruitment regime shift is real. Obviously, adding a 
parameter representing a regime change in recruitment would easily explain the data, but this is a 
convenient fix and does not rule out model misspecification. Although the data used in the model cannot 
clearly differentiate between the two overarching hypotheses, they could be used to estimate parameters 
that represent the possible model misspecification.  

Level 2 

Within Level 2, hypotheses and corresponding models are grouped into sub-levels according to whether 
they address the regime shift in recruitment (Level 2A) or misfit to composition data for the fishery that 
has asymptotic selectivity (Level 2B). Some hypotheses may attempt to address both issues 
simultaneously, while in other cases multiple hypotheses may be needed (Figure 2).  

Level 2A 

In Level 2A are hypotheses that address the regime shift in recruitment. Two hypotheses are used to 
represent the overarching hypothesis that regime shift in recruitment is real, one representing a regime 
shift in the environment (Environment) and the other representing the purse seine fishery on floating 
objects reducing the level of predators or competitors (Ricker). Models under the Environment hypothesis 
estimate a parameter to represent the regime shift in recruitment, which allows the hypotheses on the 
next sub-level (Level 2B) to focus on processes that may improve the fit to the composition data without 
necessarily influencing the regime shift. 

Nine hypotheses are used to represent the overarching hypothesis that regime shift in recruitment is an 
artifact of model misspecification. Five of these hypotheses are based on preliminary model runs that 
indicated the regime shift in recruitment can be reduced by increasing the biomass so that the catch does 
not have such a large impact on the abundance. In these preliminary model runs, the low proportion of 
large fish in length composition data for the longline fishery, which was assumed to have an asymptotic 
selectivity, kept the abundance low because more larger fish would have been expected with a higher 
biomass (lower fishing mortality). Decreasing the asymptotic average length (Estimate growth) or allowing 
the selectivity for this fishery to be dome-shape (Dome selectivity) allows the biomass to be larger. 
Increasing adult natural mortality (Adult M) or down-weighting the length composition data for the fishery 
with asymptotic selectivity (Unreliable longline length composition) also allows the biomass to be larger 
while predicting few large fish in the catch. These models also address the misfit to the length composition 
data. There is one more hypothesis in this group, (Pre-adult movement), which does not necessarily 
increase the biomass estimates but potentially addresses both the regime shift and composition misfit 
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simultaneously. This hypothesis is based on the assumption that there is movement of fish between the 
central Pacific Ocean (CPO) and the EPO that are of an age between that of the fish caught in the purse-
seine fishery on floating objects and that of the fish caught in the longline fishery. Because the longline 
fishery CPUE is used to calculate the index of abundance, the abundance of these fish would not be 
represented by the index.  

The other four hypotheses can reduce the recruitment regime shift without necessarily increasing the 
biomass, but do not address the composition misfit. These include the early catch being under-estimated 
or the later catch being over-estimated (Misreported Catch), the index of abundance not being 
representative of the stock (Index not representative), and spatial structure within the EPO (EPO spatial 
structure). The final hypothesis (Short-term model) addresses the regime shift in recruitment by assuming 
it is due to some unknown model misspecification in the early period (prior to 2000) that cannot be 
identified/resolved with available data, and thus, is not addressed by the other models.  

Level 2B 

On Level 2B are the hypotheses that address the fit to the length composition data for those hypotheses 
in Level 2A that are solely focused on addressing the recruitment regime shift issue. Specifically, on Level 
2B are the hypotheses: Estimate growth, Dome-shape selectivity, and Estimate adult natural mortality. 
For the sake of completeness, a model without these changes is also included (labelled “Fixed”). As noted 
above, some of these hypotheses also potentially remove the regime sift in recruitment. This duality is 
indicated in Figures 2 and 3 by representing these hypotheses as vertical boxes that extend across both 
Level 2A and Level 2B.  

Level 3 

Finally, on the lowest level in the hierarchy (Level 3) are the models representing sub-hypotheses for 
different values of the steepness of the Beverton-Holt stock-recruitment relationship. Steepness is treated 
differently from the other model parameters because simulation work (e.g. Lee et al. 2012 ) has shown 
that steepness estimates within stock assessment models can be biased (particularly for higher productive 
stocks), and therefore it may be preferable to not use the data in the model to inform the value of 
steepness (with relatively unproductive stocks with good contrast in spawning biomass probably the 
exception). We run the models with different fixed levels of steepness so the fit to the data does not 
influence the weights assigned to models and hypotheses in Level 2. The weight for each value of 
steepness was only based on expert opinion and whether the model obtained a positive definite Hessian. 

Weighting system 

Weight metrics: new metrics 

The main issues in the bigeye assessment prompted us to add two more weight metrics to the metrics 
shown in Section 2.2 that are used to calculate the final weight of each model (i.e., W(model)): 

1) W(Fix regime): The ability of the model to correct the regime shift in recruitment. 
2) W(Empirical selectivity): How well the assumed selectivity curves represent the implied 

selectivity.  

In addition, several weight metrics needed modification to address specific issues in the bigeye tuna 
application and these are also discussed below. 

W(Fix regime) 
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The W(Fix regime) weight represents the ability of the model to remove the regime shift in recruitment. 
The magnitude of the estimated regime shift is measured by the ratio of the median recruitment in the 
late regime (1994-2019) to the median recruitment in the early regime (1979-1993). The values of the 
regime shift metric, Rshift, that correspond to each weight category are given in Table 1. For the models 
related to the overarching hypothesis that the regime shift is real (Environment, Ricker), and for the Short-
term hypothesis, the weight is set to 1.  

W(Empirical selectivity) 

The W(Empirical selectivity) weight represents the ability of the model to estimate the appropriate 
selectivities. Estimated and “empirical” selectivities should be similar (except for fisheries that are not fit 
to the composition data). The “empirical” selectivity is calculated by taking the average catch at length in 
numbers for a fishery and dividing it by the average numbers at length in the population, where the 
averages are evaluated across all years. Differences between the two indicate that the selectivity curve is 
inappropriate (e.g. too inflexible or assumed asymptotic but dome-shape is required to fit the data). In 
the case of asymptotic selectivity, misfit may indicate that either a dome-shape selectivity is needed, or 
when fitting to length composition data, that the growth curve is misspecified. The plot of estimated 
versus “empirical” selectivity provides a clearer visual picture of misfit than do plots of overall observed 
and predicted length compositions. This is because the latter gives less emphasis to large-sized fish, which 
are less abundant, whereas the former will clearly show misfit at large lengths, which can be strongly 
influenced by assumptions about selectivity.  

W(Empirical selectivity) is treated as a separate weight metric in the bigeye application, rather than adding 
it to W(Diagnostic) because it addresses one of the major issues with the assessment, and because misfit 
to the composition data typically has a large impact on the stock assessment results. As with other 
diagnostic criteria, lower weights should be given to larger misfits. 

Weight metrics: modifications to original procedures  

The W(Fit) weighting procedure had to be modified because some of the models use different data sets 
or data-weighting. Specifically, the model that estimates growth (Estimate growth) includes the otolith 
data and therefore W(Fit) for this model was evaluated based on the difference in AIC obtained when the 
otolith data were excluded. The Index not representative model uses the catch-curve diagnostic from the 
Environment model and therefore does not fit to the index of relative biomass; however, this model was 
eliminated before it was necessary to evaluate W(Fit) so there was no need to modify the W(Fit) 
procedure for this model. The Unreliable longline composition model down-weights the survey and 
longline fishery length composition data; however, this model was also eliminated early in the model 
weighting process, prior to evaluation of W(Fit). The Short-Term model has less data and therefore the 
AIC for these models were evaluated separately from the other models which all covered a longer time 
period (i.e., were medium-term models).  

Maximum gradient information was not used to evaluate W(Convergence). This is because it is not clear 
whether a large maximum gradient means that the model has not converged on the global MLE or 
whether the likelihood surface is flat and that it is appropriately reflected in the parameter uncertainty. 
Therefore, we assigned values to W(Convergence) based solely on whether the Hessian was positive 
definite.  

W(Diagnostics) was only evaluated for the sub-models in Level 3 with steepness of h=1.0. The steepness 
runs (h = 0.7, 0.8, 0.9, 1.0), which were applied to all models in Level 2, except the Ricker model, greatly 
increased the number of model runs. It was not feasible to run all the diagnostics for all of these models, 
so for each of these models we assumed that the diagnostics for sub-models with steepness values other 
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than 1.0 would be similar to those of the sub-model with steepness h=1.0. If sub-model with a steepness 
of h=1.0 was eliminated due to any of the weighting factors (assigned a value of None), then the sub-
models with different values of steepness were not run. The only weighting metrics used for the sub-
models with steepness less than 1.0 were W(Expert) and W(Convergence).  

Only W(Expert) was used to weight the overarching hypotheses of Level 1. Weights for all the models on 
the lower levels (Levels 2-3) were assigned W(Expert) conditional on the overarching hypothesis to which 
they belong. 

Assigning weights 

Weights were assigned by six experts. The results are presented for each expert (see below) but are 
randomized for each metric to obscure the expert. Due to the subjective nature of many of the weighting 
metrics, there was not always agreement on weights among the experts. There was consensus on some 
weighting assignments, but in most cases there were differences in the weighting assignments. Therefore, 
we took the approach where the weighting assignments were first discussed among all experts and then 
each expert provided their own weighting for each of the metrics. The average of the individual weighting 
assignments, first scaled to sum to one for each expert, were used as the final weighting assignments to 
compute the model weights.  

Weights were assigned according to the hierarchy of hypotheses shown in Figure 2. The sub-levels in Level 
2 of the hierarchy (i.e., Levels 2A and 2B) allow the assignment of weights for some metrics (e.g. 
W(Expert)) to models on Level 2a independent of Level 2b, and the model weight is the product of weights 
given to models on the two sub-levels. However, this is not possible for the models where the same 
hypotheses are used to solve both the recruitment regime shift and the composition data misfit, but they 
were still assigned weights independently for Level 2a and Level 2b.  
 
The method to reduce the number of models tested was based on selecting a “base” model for each Level 
2A hypothesis and if it was eliminated by receiving a weight of None for any metric then the other models 
based on that hypothesis were not conducted. The “base” model fixed parameters that were related to 
Level 2B and not Level 2A (i.e. the models that used the same hypothesis for Level 2A and 2B had the 
respective parameters estimated) and steepness equal to one. Several hypotheses were eliminated early 
in the assignment of weights. The Ricker model with fixed growth, fixed natural mortality, and asymptotic 
selectivity (Fixed) did not have a positive definite Hessian and no further Ricker models were run. The 
Index not representative model did not improve the recruitment regime shift. The EPO spatial structure 
and Misreported catch models were assigned the None weight category for W(Expert). The Unreliable 
longline composition model was assigned the None weight category for W(Empirical selectivity). The 
modified hierarchy flowchart without these models is shown in Figure 3. However, it is not certain that 
these hypotheses that were eliminated early in the weighting process would also have been eliminated if 
combined with other hypotheses at Level 2B. 

Calculation of reference points 

The IATTC HCR for tropical tunas in the EPO that applies to bigeye tuna is based on both fishing mortality 
and spawning biomass targets and limits. The targets are the fishing mortality (F) and spawning biomass 
(calculated dynamically; Sd) that correspond to maximum sustainable yield (MSY). The MSY quantities are 
based on the average fishing mortality over the last three years in the assessment. SMSY_d can be 
conceptualized as projecting the model forward under the historical estimated recruitment using FMSY. 
The limit reference points correspond to the spawning biomass where recruitment is reduced to 50% 
based on a Beverton-Holt stock-recruitment relationship with a steepness (h) of 0.75 (Maunder and Deriso 
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2014). The spawning biomass limit reference point (0.077S0) is based on equilibrium spawning biomass 
(using average recruitment, adjusted for the stock-recruitment relationship, over the modelling period) 
not the dynamic spawning biomass. The fishing mortality limit reference point is the fishing mortality 
corresponding to this spawning biomass. The evaluation of the current status relative to the reference 
points is done using the following ratios: Scur/SMSY_d, Scur/0.077S0, Fcur/FMSY, and Fcur/F0.077S0, where Scur is the 
spawning biomass at the start of 2020 and Fcur is the average fishing mortality from 2017 to 2019.  

Stock Synthesis (SS version 3.30.15 and modifications provided by Richard Methot (NOAA Fisheries) to 
calculate the standard deviations for the management quantities) are used to conduct the stock 
assessment for bigeye tuna (see Model descriptions section below for more details). However, obtaining 
the standard deviations for the ratios of the current status to the reference points is not always 
straightforward in SS. Thus, in the following we describe the methods used to calculate the standard 
deviations. 

The four quantities of interest are: 

Starget: Scur/SMSY_d 

The expected value of Scur/SMSY_d is calculated by projecting the model forward under FMSY using the recruitment 
deviates from the historic period (appropriately adjusted using the bias correction ramp). The standard deviation is 
not available for this quantity and therefore the CV is assumed to be the same as for Fcur/FMSY.  

SLIMIT: Scur/0.077S0 

The standard deviation of Scur/S0 is available from Stock Synthesis and based on Var[cX] = c2 Var[X], Var[Scur/0.077S0] 
= (1/0.077)2 x Var[Scur/S0] 

Ftarget: Fcur/FMSY 

Fcur/FMSY and its associated SD is available from Stock Synthesis.  

FLIMIT: Fcur/F0.077S0 

Fcur/F0.077S0 and its associated SD is available from Stock Synthesis (using the target biomass denominator option in 
the starter file). 

Decision table 

We provide a decision table presenting the outcome of different levels of fishery closures. We assume 
that the fishing mortality is proportional to the length of time the fishery is open, adjusted for changes in 
fishing capacity. This assumption can be used to determine the fishing mortality with a different closure 
compared to the current estimated fishing mortality under the current closure. The effective length of 
time the fishery is open is adjusted for the effect of the Corralito. 

Decision tables usually present the outcomes of alternative management actions. In the bigeye tuna 
example, the management action is the number of days of closure and the outcome is the probability of 
the fishing mortality rate being below that corresponding to MSY (FMSY) or the limit (FLIMIT). The calculation 
is not straightforward because: a) the closure must be converted into a fishing mortality rate, and b) the 
only information available to calculate the quantity of interest is a probability distribution for Fcur/FMSY (or 
Fcur/FLIMIT). The calculations are therefore made based on the ratio of the F associated with the desired 
closure (Fnew) to Fcur. We assume that the fishing mortality is proportional to the amount of time the fishery 
is open (365 - closure) adjusted by the change in fleet capacity and the corralito: F = q x (365 – (Closure + 
Corralito)) x Capacity, where q is an unknown scaling constant. Calculating the ratio Fnew/Fcur eliminates 
the scaling factor: 
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𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐

= (365 – (Closure𝑛𝑛𝑛𝑛𝑛𝑛 + Corralito)) x Capacity𝑛𝑛𝑛𝑛𝑛𝑛
(365 – (Closure𝑐𝑐𝑐𝑐𝑐𝑐 + Corralito)) x Capacity𝑐𝑐𝑐𝑐𝑐𝑐

≡ 𝑐𝑐 [Equation 8] 

where Capacitynew is the well capacity in cubic meters for 2020 and Capacitycur is the average well capacity 
over 2017 to 2019, Corralito is the equivalent number of days closure represented by the Corralito spatial 
closure (3 days), and ClosureDayscur is the average number of days of closure in 2017 to 2019 (72). 

Rewriting the above equation and dividing both sides by FMSY we have: 
𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

= 𝑐𝑐 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

≡ 𝑔𝑔 � 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

� [Equation 9] 

If we assume that c is a constant, we can represent the unknown quantity, 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

 , in terms of 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

 

multiplied by the constant c, which for simplicity we will label as the function “g”. Because the function g 
is strictly increasing its inverse is well-defined and we can use the method of transformations for CDFs to 
obtain the probability that 𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛

𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀
 is less than or equal to 1: 

𝑃𝑃 �𝐹𝐹𝑛𝑛𝑛𝑛𝑛𝑛
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

≤ 1� = 𝑃𝑃 � 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

𝑐𝑐 ≤ 1� = 𝑃𝑃 � 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐
𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀

≤ 1
𝑐𝑐
� [Equation 10] 

Model descriptions 

Stock Synthesis (Methot and Wetzel 2013) version 3.30.15 is used to implement catch-at-length age-
structured integrated models for the latest (2020) stock assessment of bigeye tuna in the EPO (Xu et al. 
2020). Fisheries are defined by area (geographic subdivisions of the EPO), fishing method (longline, purse-
seine), and purse-seine set type (on floating objects, on tunas associated with dolphins, and on 
unassociated schools of tuna). Typically, models are fitted to indices of abundance based on longline CPUE 
data and to length-composition data associated with the indices of abundance and the fisheries. When 
growth is estimated, the model is also fitted to conditional age-at-length composition data derived from 
otoliths. See Xu et al. (2020) for a full description of the models and results. 

A description of each hypothesis at Level 2A in the hierarchical flow chart (Figure X), including those that 
were eliminated during the assignment of weights (compare Figure Y to Figure X), and a brief rationale for 
the various hypotheses, are provided below. 

Base reference model: This model is the basis for all other models and is not used in the risk analysis. The 
selectivity for one of the longline fisheries is asymptotic. This model is similar to the base case model used 
in previous assessments except that the weighting for the composition data uses the Francis method.  

Environment: This model assumes that the regime shift is real and is caused by a change in the 
environment. The selectivity for one of the longline fisheries is asymptotic. This model is similar to the 
base case model used in previous assessments except that the weighting for the composition data uses 
the Francis method and it estimates a parameter representing the change in recruitment.  

Ricker: This model uses a Ricker stock-recruitment relationship and assumes that a reduction in predators 
caused the increase in recruitment. The model assumes that mature bigeye tuna are the predators 
(cannibalism), but the bigeye mature biomass can also be assumed to be a proxy for other tunas and 
predators impacted by the expansion of the purse-seine fishery on floating objects (e.g. skipjack, 
yellowfin, sharks) that may consume juvenile bigeye. This model would not converge resulting in a Hessian 
that was not positive definite and a large maximum gradient. Therefore, although it is included in the flow 
chart, it was assigned a zero weight for W(Convergence) and not included further in the calculations.  

Index not representative: The index from the longline fishery CPUE data does not show a substantial 
decline when the floating-object fishery expanded and therefore may not be proportional to abundance 
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or may represent the abundance of bigeye from a stock other than the one that is caught in the floating-
object fishery. This model is based on the catch curve diagnostic of the Base reference model, which does 
not use the index of abundance. 

Spatial structure within the EPO: The longline index of abundance may be representing an area different 
from that into which the floating-object fishery expanded. Many models were run investigating this 
hypothesis (Valero et al., 2018; Valero et al. 2019a; Valero et al., 2019b) and none could explain the regime 
shift in recruitment. Therefore, although it is included in the flow chart, it was assigned a zero weight for 
W(Expert) and not included further in the calculations.  

Misreported Catch: Higher catch in the historic period would require higher recruitment and reduce the 
recruitment regime shift. Lower catch in the floating-object fishery in the later period would not require 
as much of an increase in recruitment, reducing the regime shift. Models that increased historical catch 
or reduced recent catch had to make unrealistically large change in catch to explain the recruitment 
regime shift. Therefore, although it is included in the flow chart, it was assigned a zero weight for 
W(Expert) and not included further in the calculations. 

Short-term model: This hypothesis is evaluated using only the data from 2000 – 2019. It is assumed that 
the regime shift in recruitment is due to some unknown model misspecification in the early period (prior 
to 2000) that cannot be identified/resolved with available data, and thus, is not addressed by the other 
models. 

Pre-adult M (movement): This model approximates movement of fish into or out of the EPO from the 
central Pacific Ocean (CPO) by applying natural mortality to fish starting at an age that is between those 
selected by the floating-object fishery and those selected by the longline fishery. Higher natural mortality 
represents fish moving out of the EPO and lower natural mortality represents fish moving into the EPO. 
This modified mortality schedule also could capture actual differences in age-specific natural mortality 
driven by a variety of processes. 

Estimate growth: Estimating growth allows for a larger biomass and therefore reduces the regime shift in 
recruitment. The length composition data for the fishery with asymptotic selectivity has few fish around 
the asymptotic length and therefore the model estimates a high fishing mortality, and corresponding low 
biomass, to reduce the number of large fish and fit the length composition data. Estimating growth 
produces a low asymptotic length, reducing the predicted number of large fish and fits the length 
composition data without increasing fishing mortality, which allows for a larger biomass. All four 
parameters of the Richards growth curve and the two parameters representing the variation of length at 
age are estimated. The model is fit to the otolith age conditioned on length data. This model can also 
address the misfit to the length composition data at Level 2B. 

Dome selectivity: A dome-shape selectivity for the longline fishery allows for a larger biomass and 
therefore reduces the regime shift in recruitment. The length composition data for the fishery with 
asymptotic selectivity has few fish around the asymptotic length and therefore the model estimates a high 
fishing mortality, and corresponding low biomass, to reduce the number of large fish and fit the length 
composition data. Estimating a dome-shape selectivity reduces the predicted number of large fish caught 
allowing the model to fit the observed length composition data, but also produces a “cryptic biomass” 
increasing the biomass estimate. A double normal selectivity curve is used. This model can also address 
the misfit to the length composition data at Level 2B. 

Adult M: Estimating adult natural mortality allows for a larger biomass and therefore reduces the regime 
shift in recruitment. An increased value of natural mortality reduces the fishing mortality that is needed 
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to fit the length composition data and therefore increases the biomass for a given level of catch. This 
model can also address the misfit to the length composition data at Level 2B. 

Unreliable longline composition: Down-weighting the longline composition data allows for a larger 
biomass and therefore reduces the regime shift in recruitment. Down weighting the longline composition 
data frees up the model from having to keep the biomass low to fit the lack of observed large fish and 
therefore estimates a larger biomass to reduce the recruitment regime shift. Although, it is included in 
the flow chart, it was assigned a zero weight for W(Empirical selectivity) and not included further in the 
calculations. 

4. RESULTS 

The following provides the results of the Risk analysis and are based on the results from the bigeye tuna 
stock assessments that can be found in Xu et al. (2020). We present the weight categories assigned and 
the consequent probabilities that are scaled to sum to one within an overarching hypothesis. When 
presenting these results, we use the abbreviations shown in Table 2 to refer to the various models of Level 
2 (Figure 2). 

4.1. Assigning weights 

4.1.1. Level 1: Is the regime shift real? 

There was consensus among the experts that the probability of the recruitment regime shift being real 
was low. Either a change in the ecosystem occurring at the same time as the increase in catch of the 
floating-object fishery has to be a coincidence or the increased catch changed the ecosystem. There have 
been some physical and biological changes in the pelagic EPO (see IATTC 2013), but their timing and 
magnitude does not necessarily correspond to the increase in bigeye recruitment and similar recruitment 
patterns are not observed for yellowfin tuna in the EPO. There is some evidence of tuna eating juvenile 
tunas, but the consumption rates are low. Assessments of tropical tunas in other oceans have also found 
increases in estimated recruitment that correspond to expanding floating-object fisheries. Therefore, 
based on the fact that the recruitment increased when the floating-object fishery expanded and the lack 
of evidence of a corresponding ecosystem effect, the regime shift being real was given a Low weight and 
that it is an artifact of the modelling was given a High weight.  

4.1.2. Level 2 

W(Expert) 

The weight based on expert opinion is assigned before the results are considered for that model. There 
was some confusion of whether the weights should be assigned with consideration of the other models 
on the same level and branch of the flow chart or considering all models. It was concluded that they should 
be considered within a level and branch of the hierarchy (i.e. separately for each overarching hypothesis 
and issue being addresses). Describing the rationale for the weights by each expert and each model would 
be too voluminous to include here, so the general support for a model is included above in their 
description. W(Expert) was divided into Level 2A and Level 2B and was assigned based on whether the 
model addresses the regime shift in recruitment or the misfit to the composition data, respectively. The 
weights for the two components were multiplied and then rescaled within the overarching hypotheses 
for each expert before averaging. The models that were not run for combined hypotheses at Level 2B 
(Ricker, Index, and Composition) were given a weight of High for Level 2B. These models were eliminated 
from the analysis based on other weighting metrics and therefore this decision would have no impact on 
the results (they do influence the scaling of the weights to sum to one, but the relative size of the weights 
would remain the same).  
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Experts generally agreed on the W(Expert) weighting for each model, but some weight assignments 
differed by two categories (Table 3). 

W(Convergence) 

Weights were only assigned based on the Hessian being positive definite. All models (with h = 1) had a 
positive definite Hessian and were given a High weight except for the Ricker model (Table 4). For some 
models at other values of h, the Hessian was not positive definite: the h = 0.7, 0.8, and 0.9 steepness runs 
for the Environment model and the Index unrepresentative model, and h = 0.7 for the Short-Fixed model 
(Table 4). The maximum gradient components were low for most of the runs where the Hessian was 
positive definite.  

W(Fit) 

The Short-Growth and Environment-Growth models fit their respective data best based on AIC, and Short-
Fixed and Movement models fit their respective data the worst (Table 5). The Index unrepresentative 
model, which does not fit to the index of abundance, and the Longline composition unrepresentative 
model, were not included because they have different data or weighting and were eliminated due to other 
weighting metrics. W(Fit) was scaled to sum to one within models fitting to the same data/same data-
weighting and within each of the overarching hypotheses.  

W(Plausible parameter estimates)  

There were differences among experts about the plausibility of the estimates of parameters representing 
the hypotheses, with some weight assignments differing by two categories (Table 6). The CVs on the 
parameters were low and therefore the uncertainty of the estimates was not taken into consideration. 
The pre-adult natural mortality was estimated to be about 0.1 (CV = 0.06) higher indicating an additional 
natural mortality of about 10% or 10% movement out of the EPO per quarter. This was considered 
reasonable by all experts, giving it a High or Medium weight. The estimate of the average length of the 
oldest age represented in the model was reduced from 196 cm to below 170 cm for the Growth and 
Environment-Growth models. This is somewhat inconsistent with the tagging data, which has the oldest 7 
recovered fish having a length greater than 17 cm, but is consistent with historic length composition data. 
Given that the tagging data is limited in space and time, all experts considered the estimate reasonable 
and gave it a Medium or High weight. The Short-Growth model estimated average length of the oldest age 
at 184 cm, which is more consistent with the tagging data, and this model was also given High and Medium 
weights. For the Selectivity and Environment-Selectivity models, the estimated dome shape of the longline 
selectivity, which was considered asymptotic in other models, was very low for the oldest age represented 
in the assessment . Despite there being evidence that older fish spend some time deeper than the longline 
gear, this extent of doming of the selectivity curve was considered unreasonable by some of the experts, 
while others though it was reasonable, resulting in a mix of Medium and Low weights (Table 6). The 
estimated doming in the Short-Selectivity model was less and therefore was given High and Medium 
weights. The estimated adult natural mortality was double or more that estimated for the Mortality and 
Environment-Mortality models. It did not change much for the Short-Mortality model. The experts could 
not agree on the plausibility of these parameters, with weights ranging from High to Low. All the 
Environmental models estimated an increase in the recruitment and therefore this did not influence the 
weighting. The models that do not have parameters representing the Level 2A or 2B hypotheses (the Fixed 
models, Index unrepresentative, and Longline composition unrepresentative) are assigned a High weight. 

W(Plausible results)  
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The W(Plausible results) metric was based on the fishing mortality and initial conditions (estimate of 
equilibrium catch and the parameter that scales the equilibrium recruitment). One way to remove the 
recruitment regime shift is to estimate a high biomass so that the expansion on the floating-object catch 
does not have an impact on the abundance. However, this may cause the biomass to be too high. The 
plausibility of biomass levels is hard to judge, and fishing mortality levels, which are related to the biomass 
level, may be easier to judge. The initial depletion level is also related to the estimated biomass level, so 
we compare the predicted initial equilibrium catch (and other associated parameters, initial recruitment 
offset and recruitment deviates) with historical catch to make sure they are somewhat consistent. The 
model is not fit to the equilibrium catch and there is only limited composition data for old fish in the early 
years, so the models based on a medium time frame cannot differentiate between initial fishing mortality 
and reduced initial recruitment. The Short-term model starts in a different year and therefore the initial 
catch levels will be different than the other models, and there is substantial length composition data at 
the start of the model to differentiate between initial catch and initial recruitment.  

The experts generally agreed on most weights for the fishing mortality, although a few weight assignments 
differed by two categories, and they agreed on all the weights for the initial conditions (Table 7). The 
estimates of fishing mortality for the Index unrepresentative model were assumed unrealistically high and 
this model was given a weight of None. The Growth, Selectivity, and Environment-Selectivity models had 
extremely low fishing mortality for older fish and were given a weight of Low or Medium. The other models 
were generally assigned weights of Medium and High.  

It was difficult to judge the initial depletion tradeoff between initial catch and initial recruitment. All 
models estimated a reduced initial recruitment except for the Growth model and three of the Short 
models. Only the Short models and the Growth, Environment, and Environment-Mortality models 
estimated equilibrium catch for the longline or purse seine initial “fisheries”. The Index model was given 
a Low weight because the initial recruitment was substantially reduced, in addition to estimating initial 
catch, and this was thought to result in an unrealistically highly-depleted population. The Growth model 
was given a Low weight because the recruitment was not reduced and no initial catch was estimated, 
which resulted in an unrealistically undepleted population. The Short models were given a Medium weight 
because their estimated initial catch was substantially higher than the recent historical catch. The 
Environment-Fixed model was given a Medium weight because the initial recruitment is substantially 
reduced, and initial catch is estimated for both the longline and purse seine initial “fisheries”.  

W(Diagnostics) 

Many of the diagnostics were similar across the alternative models and therefore it was decided that only 
the R0 likelihood component profile, ADPM, and retrospective diagnostics would be used. The R0 likelihood 
component and ADPM are combined based on the algorithm presented in Figure 1. When using the 
algorithm, a lack of information in the abundance index about R0 was considered the same as no conflict 
between the abundance index and composition data. Several of the ASPM-Dev models did not converge 
and it was concluded that this meant that there was insufficient information, which was assumed 
equivalent to wide confidence intervals. All experts agreed on the weighting assignments. The Index 
unrepresentative model did not fit to the index of abundance and was given a default weight of High. This 
decision was not influential because the model was eliminated based on another weight metrics. 

The estimated recruitment was similar for all models and the main feature was the regime shift that is 
already taken into consideration in the W(Fix regime) metric. The recruitment residuals, which are around 
the stock-recruitment relationship, will change for different values of steepness, but weights based on 
these are assumed to be included in the W(h) component. The composition residuals show trends over 
time and with length, but are similar for all models and are consistent with residual patterns seen in most 
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assessments. The main concern are the misfits to the large fish (175-200 cm) in the length composition 
data for the fishery with asymptotic selectivity, but that is covered in the W(Empirical selectivity) metric. 
The index residuals are similar among all models except for the Longline composition unrepresentative 
model, but this made the “empirical” selectivity even more dome-shaped and was given a W(Empirical 
selectivity) of None (see below), so the W(Diagnostics) is not important for this model. The catch curve 
diagnostic is very similar for all models, but does show a possibly change in selectivity in recent years that 
has not been addressed. The low biomass in the early period estimated by the Catch Curve Diagnostic is 
due to limited or no composition data in that period. 

In all the models, except Environment-Fixed and Selectivity, the R0 likelihood component profile showed 
that the composition data was driving the absolute abundance estimates. In all these cases, except the 
Movement model, the composition data was consistent with the index data, often because the index data 
had little information on absolute abundance. Since bigeye has variable recruitment, the ASPM-Rdev 
diagnostic was used. The Environment and Short ASPM-Dev models did not converge and they were 
assumed to have wide confidence intervals and therefore given a Medium weight. The other models had 
narrow confidence intervals. Of these, the Movement and Selectivity models had inconsistent biomass 
levels between the full model and the ASPM-Rdev model and were given a Low weight. The other models 
were given a High weight.  

The retrospective analysis of spawning biomass ratio showed little retrospective pattern or variation for 
most of the models. Three Environment models were given Medium weight because the absolute scale 
varied with the retrospective runs. The Movement model was given Medium weight because the final 
estimate varied. The remaining models were given a High weight. A summary of the weight assignments 
for the components of W(Diagnostics) are shown in Tables 8 and 9 below.  

W(Fix regime) 

The probabilities were only based on the models with steepness equal to one. All the models, other than 
those that assumed the recruitment regime shift was real (Environment, Ricker) or did not model it (Short-
term), which were given a default weight of High, reduced the regime shift to some degree except for the 
Index model, which was given a weight category of None (Table 10). The other models were given a weight 
of Medium, based on Table 1, except for the Growth model which was assigned a weight of High. The 
implied weight would be increased from Medium to High for some lower values of steepness, although 
these were not used in the risk analysis.  

W(Empirical selectivity) 

The experts all agreed on the weighting based on W(Empirical selectivity). The consistency between the 
assumed selectivity curve and the “empirical” selectivity was generally good, except for the longline 
fishery that was assumed to have asymptotic selectivity. This fishery was the focus of this weighting 
metric. All models improved the consistency for this fishery over the Environment model except the 
Longline composition unrepresentative model. Because this fishery had down weighting of the 
composition data it was expected to fit worse, but because the dome shape of the “empirical” selectivity 
was even more extreme than the Environmental-Fixed model, this model was given a weight category of 
None. The models that estimated a dome shaped selectivity for this fishery (Selectivity, Environment-
Selectivity, and Short-Selectivity) and the Short-Mortality model provided the best consistency and were 
given High weight, the remaining models were given Medium weight (Table 11).  

4.1.3. Level 3: Weights for steepness 

As noted above, we use Level 3 in the hierarchy of models and hypotheses (Figure Y) to address steepness. 
The experts made their weight assignments for each level of the steepness parameter. The weights were 
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assumed the same independent of model. Weight assignments were then standardized within each expert 
and then averaged across experts. 

There was large variability in the experts’ opinions about weights for different values of the steepness of 
the Beverton-Holt stock-recruitment relationship. This parallels the general disagreement in the value of 
this parameter among fisheries scientists. Some experts gave High weight to high levels of steepness, 
which is consistent with the approach used in previous assessments of tropical tunas in the EPO, while 
others gave High weights to lower values of steepness, which is more consistent with other tuna RFMOs. 
One expert did not provide weights. The average of the weights across experts gave an almost linear 
positive relationship between the weight and the steepness value (Table 12).  

4.2. Risk assessment results 

The risk analysis for EPO bigeye tuna is used to evaluate several management quantities related to the 
HCR. These are grouped into 1) Current status as a ratio of the reference points, 2) Probability of exceed 
the reference points, and 3) Alternative management measures. These are all based on the probability 
distributions of the quantity of interest for each model and the model weights, which are presented first. 

4.2.1. Model probabilities 

The probabilities are first assigned conditional on the overarching hypotheses about the recruitment 
regime shift. The model probabilities conditional on the overarching hypotheses are then multiplied by 
the probability of the overarching hypotheses to give the final model probability in Table 1, which are 
integrated over steepness. The steepness probabilities are the same for all models. However, several 
models did not have a positive definite hessian and these models were not included in the analysis and 
the probabilities were rescaled to sum to one across models within an overarching hypothesis. Therefore, 
the hypotheses that these models received a lower model probability. There is a range in probabilities 
assigned to the models with Short-Growth and Growth getting over 20% probability each. Several of the 
models got very low probabilities (less than 2 %).  

4.2.2. Probability distributions 

Fcur/FMSY 

The combined distribution of Fcur/FMSY is bimodal (Figure 4). The bimodality is due to the substantial 
differences in the estimates from the Short models, which are more pessimistic (Fcur/FMSY mostly above 
1), and the medium term models that do not assume the regime shift in recruitment is real (Growth, 
Selectivity, Mortality, and Movement), which are more optimistic (Fcur/FMSY mostly below 1). The 
remaining models (Environment), which assume the recruitment regime shift is real, fall in between these 
two sets of models (still with most of the mass in the optimistic side, Fcur/FMSY mostly below 1), but were 
assigned less weight. There is a substantial amount of the combined distribution above one indicating that 
the probability of Fcur being above the target fishing mortality reference point is not negligible (50%, Table 
13). 

The hypotheses to explain the misfit to the longline composition data (Growth, Selectivity, Mortality) also 
have a large impact on the probability distribution with Growth and Selectivity being more optimistic and 
also having been assigned highest weights (Figure 4).  

Steepness of the Beverton-Holt stock-recruitment relationship also influences the distributions of Fcur/FMSY 
with higher steepness being more optimistic, as expected.  
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Fcur/FLIMIT  

The combined distribution of Fcur/FLIMIT is also bimodal and similar to the distribution for Fcur/FMSY with the 
distribution, but shifted to the left (Figure 5). The composition of the model distributions is similar to the 
distributions for Fcur/FMSY, as expected. There is little probability (5%) above one indicating that the 
probability of Fcur being above the fishing mortality limit reference point is low.  

Scur/SMSY_d 

The probability distribution for SMSY_d is generally bimodal, but also has some smaller modes (Figure 6). 
The small modes are because the individual model distributions for S are more separated than for F, but 
the CV used is based on the CV for Fcur/FMSY. The composition of the distribution is similar to that for F, but 
reversed on the X-axis. There is a substantial amount of the distribution below one indicating that the 
probability of the spawning biomass being below the target biomass reference point is high (at least 53%). 

Scur /SLIMIT 

 The probability distribution for Scur /SLIMIT is bimodal and similar to the distribution for Scur/SMSY_d, but 
without the smaller modes and shifted to the right (Figure 7). The composition of the distribution is similar 
to that for Scur/SMSY_d. There is little of the overall model distribution below one indicating that the 
probability of exceeding the spawning biomass limit reference point is low (below 6%). 

4.2.3. Current status relative to reference points 

Current status relative to reference points was calculated in two ways.  

1. Take the point estimate of the ratio from the alternative stock assessment models and then use model 
averaging weighted by the model weights to calculate the ratio.  

𝑥𝑥 = ∑ 𝑃𝑃(𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)𝑥𝑥�𝑚𝑚𝑚𝑚  [Equation 11] 

Where 𝑥𝑥�𝑚𝑚 is the maximum likelihood estimate (MLE) of the quantity of interest for model m 

2. Use the expected value by integrating over the quantity of interest and weighting by the model 
weights 

�̅�𝑥 = ∑ 𝑃𝑃(𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)∫ 𝑥𝑥 𝑃𝑃(𝑥𝑥|𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)𝑀𝑀𝑥𝑥𝑚𝑚  [Equation 12] 

However, since the normal distribution, which is used as an approximation, is symmetric, these two 
methods give the same answer. If the distributions were not symmetrical, as would be expected with a 
better approximation, then the answers would differ. 

Table 13 shows the ratio of the current status to the reference points for each model, averaged over 
steepness, and the value for all models combined. The results follow the central tendency of the 
distributions, as expected. Fcur is 7% above FMSY, Scur is 9% above SMSY, Fcur is well below FLIMIT, and Scur is 
well above SLIMIT.  

4.2.4. Probability of exceeding reference points 

The probability of exceeding the reference points are calculated using cumulative distribution functions 
(CDFs). P(Fcur>FMSY) generally shows two groups of models corresponding to the modes in the probability 
distribution and their composition as noted above (Table 13). One group with a high probability of being 
below FMSY and one group having a low probability of being below FMSY. The combined distribution has a 
50% probability of Fcur being above FMSY.  

The results for P(Fcur>FLIMIT) are like those for P(Fcur<FMSY), except in a few cases. The combined distribution 
has only a 5% probability of being above FLIMIT.  
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The results for P(Scur <SMSY_d) are like those for P(Fcur>FMSY), as expected. The combined distribution has a 
53% probability of being below SMSY. 

The results for P(Scur <SLIMIT) are similar to P(Fcur/FMSY ), as expected. The combined distribution has only a 
6% probability of being below SLIMIT. 

4.2.5. Alternative management measures  

The risk analysis was used to determine the probability of exceeding the fishing mortality reference points 
for different days of closure. No projections were conducted so the spawning biomass reference points 
could not be evaluated. The fishing mortality is assumed to be proportional to the number of days the 
fishery is open adjusted by the Corralito spatial closure and changes in capacity. The fishing mortality 
reference points are evaluated under 6 different days of closure 

1) Zero days of closure (0) 
2) Half the current days of closure (36) 
3) The days of closure that would give P(Fcur > FMSY) = 0.5 (70) 
4) The current days of closure (72) 
5) The days of closure needed to achieve FMSY based on the expected value of Fcur/FMSY (88) 
6) 100 days of closure 

P(Fcur > FMSY) is provided in Table 14. The sensitivity to the number of days of closure differs among models. 
This sensitivity depends on how close the probability distribution under the current days of closure is to 
1. For example, three of the Environment models are very sensitive. Obviously, increased days of closure 
have a lower P(F>FMSY). The days of closure that would give P(Fcur > FMSY) = 0.5 is very similar to the current 
days of closure. However, the days of closure needed to achieve FMSY based on the expected value of 
Fcur/FMSY is 16 days longer.  

P(Fcur>FLIMIT) is provided in Table 15. The sensitivity to the number of days of closure also differs among 
models. This sensitivity depends on how close the probability distribution under the current days of 
closure is to 1. For example, all the Short models are very sensitive. Obviously, increased days of closure 
have a lower P(Fcur>FLIMIT).  

5. DISCUSSION 

5.1. Introduction 

We have developed an approach to implement reference point-based fishery harvest control rules within 
a probabilistic framework that considers multiple hypotheses. The main features of this approach are: 1) 
hypotheses about states of nature are represented by alternative stock assessment models with specific 
model structure, data use and parameters; 2) hypotheses are grouped into a hierarchical framework, 
which highlights similarities among models thereby avoiding that any one hypothesis, or overarching 
hypothesis, inadvertently dominates the outcome of the risk analysis, and facilitates model development 
and weight assignment; 3) sub-hypotheses represent models with parameters that cannot be reliably 
estimated within the assessment model and are therefore fixed in the models; 4) multiple metrics are 
used to evaluate the reliability of the models and the plausibility of the hypotheses they represent; 5) 
model fit only plays a limited role in metrics used to evaluate models; 6) an efficient approach to eliminate 
unlikely hypotheses. This approach was illustrated by applying it to the stock assessment of EPO bigeye 
tuna and is the first attempt at a comprehensive risk analysis to evaluate the harvest control rule for 
tropical tunas in the EPO in a probabilistic framework that considers multiple alternative models. Some 
improvements could be considered in future developments of this approach. For example, research will 
involve fuller estimation of uncertain parameters (e.g. M), inclusion of additional data or data-based priors 
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(e.g. information on growth from growth increment data), and identification and removal of model 
misspecification. Hopefully, this will reduce the number of models needed to represent the alternative 
hypotheses. Further investigation will be conducted of the use of MCMC algorithms to improve the 
probability distributions, particularly at the tails of the distributions.  

5.2. General 

5.2.1. Number of hypotheses 

Evaluating multiple alternative hypotheses about states of nature has become common practice in 
fisheries stock assessment and management. However, the number of possible hypotheses, and models 
representing those hypotheses, can easily become impractical for contemporary stock assessment models 
that are computationally intensive. For example, in the bigeye tuna application, models were developed 
by combining the Level 2B hypotheses (misspecified growth, dome-shape selectivity, or increased natural 
mortality) with the Level 2A hypotheses (Figure 2). Fortunately, several of the Level 2A hypotheses-based 
models were eliminated for a variety of reasons and not applied to all Level 2B hypotheses (Figures 2 and 
3). An alternative approach would have been to evaluate many models, perhaps weighted by their fit to 
the data, without considering the relative reliability among models (e.g. applying diagnostics) in detail, if 
at all. The parameter values in such an approach are often selected by applying a grid to the space of all 
possible values of model parameters and can therefore involve thousands of models. However, we 
consider that doing so is inappropriate for the following reasons: 1) there is less guarantee that a model 
has converged on the global minimum of the objective function when only model fit is evaluated; 2) equal 
weighting of hypotheses ignores a priori any ancillary information about the plausibility of each 
hypothesis, 3) some combinations of hypotheses are not plausible; 4) traditional measures of model fit to 
data are usually biased in complex stock assessment models; and 5) diagnostics are needed to determine 
if a model is reliable.  

Our approach of efficiently eliminating models was based on defining and running “Base” models, each 
representing a Level 2A hypothesis (Figure 2). If a Base model was eliminated (for example due to the 
model not meeting convergence criteria), then any models dependent on it (e.g., models at Level 2B or at 
Level 3) were also eliminated (Figure 3). We consider that this is reasonable in the Level 3 steepness case 
since for models with ample composition data, the value of steepness generally does not influence model 
results and only substantially influences reference points. We are less confident for the Level 2B 
hypotheses (Growth, Selectivity, and Natural Mortality) since these are more likely to have an impact on 
model performance. The following Base models were eliminated by this procedure (see Figures 2 and 3): 
the model using a Ricker type stock recruitment curve because did not converge; the Unrepresentative 
longline length composition model because it had too much “doming” in the “empirical” selectivity for the 
longline fishery with asymptotic selectivity; and, the Index not representative model because it did not 
improve the regime shift. It is unclear if any of these models would be improved by estimating parameters 
that would both fix the recruitment regime shift and the misfit to the length composition data. Future 
research should investigate these models further.  

5.2.2. Steepness 

Steepness of the Beverton-Holt stock-recruitment relationship is notoriously difficult to estimate in 
fisheries stock assessment models (e.g. Lee et al. 2012). Estimates of steepness are frequently biased and 
often estimated at the parameter estimation bounds (1.0 or 0.2). The estimates are highly influenced by 
potential regime shifts in recruitment. Therefore, they are considered unreliable in may stock 
assessments. It is common to use priors from meta-analysis to inform estimation of the value of steepness 
in stock assessment models, but these meta-analyses are based on estimates of steepness that are subject 
to the same biases and therefore may also be unreliable. Unfortunately, it may therefore be inappropriate 
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to use the information about steepness contained in the data or data-based priors from meta-analysis, 
particularly for tuna, which are highly fecund pelagic spawners that exhibit large recruitment variability. 
We addressed this issue by constructing several sub-hypotheses representing discrete values of steepness 
on the lowest level of the hierarchy and did not allow the fit to the data to inform these sub-hypotheses. 
Ideally, the reason for the bias in the estimates of steepness would be identified and removed so that 
steepness can be treated like the other parameters in the model, but we leave this to further research 
and instead recommend our sub-hypothesis approach.  

The weightings assignments were all based on the model with recruitment independent of stock size 
(steepness = 1.0). Despite the fact that we considered this reasonable, as mentioned above, it is possible 
that some weightings may have differed based on varying levels of steepness (e.g. the recruitment regime 
shift metric), but we consider that this is a minor impact compared to the bias caused by allowing the 
model fit to influence steepness and the computational burden of evaluating all the diagnostics etc. for 
each value of steepness. 

5.2.3.  Within-branch probabilities 

We have used a conditional probability-type approach to rescale weights assigned to each model and to 
combine models to construct the probability distributions for the quantities of interest (e.g. Fcur/FMSY). This 
involved rescaling weights to hypotheses on the same level of the hierarchy in the same branch (e.g. all 
models that represent the regime shift in recruitment being real (Figure 3): Environment and Ricker 
models), without regard to models and hypotheses on other branches of the hierarchy. This approach 
avoids the concern that the resulting probability for an overarching hypothesis is overly influenced by the 
number of hypotheses (models) that represent it. However, the approach puts more emphasis on the 
weights assigned to the overarching hypotheses. For example, in the bigeye tuna application, there would 
always be 20% weight given to the regime shift is real branch of the hierarchy, no matter what weights 
were given to each of the model models on Level 2. This weight is strictly a result of the weights given to 
the overarching hypothesis by the experts and is not related to the expert judgment about the individual 
hypotheses, the model fit to the data, or the reliability of the model based, for example, on diagnostics. 
Therefore, the conditional probability approach might give too much weight to a lower-level model that 
is considered unreliable, if the higher-level hypothesis is given substantial weight. In this case, it may be 
reasonable to re-examine the weights given to the overarching hypotheses once the weights for the 
individual hypotheses have been assigned. However, this is somewhat circular, and it is not clear if it is 
appropriate. On the other hand, given the issues with using the model fit to weight hypotheses, and 
overweighting based on the number of hypotheses representing an overarching hypothesis, simply using 
model fit to assign weights may bias the result towards a single model, too. 

5.2.4. Nested hypothesis 

The complexity of fisheries and fish stocks, and our limited understanding of their dynamics and structure, 
often results in having several nested hypotheses about the state of nature, many of these with no data 
to differentiate them. In Level 2 of our hierarchy (Figure 2) we have explicitly accounted for nested 
hypotheses within the sub-levels. This nesting helps in formulating the models, assigning weights, and 
efficiently reducing the number of models as they are eliminated. However, in a different application, 
nested hypotheses might also be desirable in Levels 1 and 3. Therefore, the approach may have to be 
modified depending on the application, the issues with the particular assessment, and the data available. 
Adding nested overarching hypotheses in Level 1 would result in a conditional probability tree based on 
expert opinion. Nesting of hypotheses on Level 3 would be more case specific.  
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5.2.5. Subjectivity  

Although the proposed method produced probability distributions for models and quantities of interest, 
several aspects of the approach were subjective and qualitative. First, the set of hypotheses, and models 
that represent them, that were included for consideration in the risk analysis was chosen based on the 
experts’ subjective opinion. Next, many of the weighting metrics were subjective, some more so than 
others. To reduce the impact of subjectivity on the weighting process, we used discrete weight categories, 
rather than values on a continuous scale, to assign values to the various weighting metrics. However, even 
the choices of quantitative values given to each weight category, and the number of weight categories, 
were subjective. There were four weight categories used: None (value = 0), Low (value = 0.25), Medium 
(value = 0.5) and High (value = 1). Different values could have been used and would have changed the 
resulting distributions. In addition, for models considered less plausible, the choices could only be None 
(zero weight) and Low (0.25), with no option to select a weight category with a very low weight. An 
additional category could be added such as Very Low (e.g. 0.1 weight) to address this. However, research 
is needed to make the metrics more objective and quantitative. 

Care needs to be taken when assigning weights. Historically, subjectivity entered into this process 
whenever precautionary principles played a role in creating the stock assessment model because often 
this would result in the adoption of conservative options for model parameters (e.g. choosing a lower 
value of steepness). However, this is not consistent with the risk analysis approach. The risk assessment 
and other management advice should be based on the best available information. When this management 
advice is presented to managers, any uncertainty about the information on which this advice is based also 
should be presented. This allows the managers to take uncertainty into consideration when forming 
management actions. Therefore, the weighting should be based on the best available information. 

5.2.6. Data weighting 

In the idealized approach (Section 2.1), the data and appropriate priors inform the model structure and 
parameter values. Unfortunately, due to the complex nature of stock assessment models, our lack of 
complete understanding about the system, and the inability of parameter estimation methods to deal 
with large numbers of correlated parameters, stock assessment models are not well constructed in a 
statistical sense. The parameter estimates are based on large amounts of data, are often overly precise, 
and biased by model misspecification. Standard statistical measures typically overwhelmingly support a 
single hypothesis compared to the alternatives, while even the best model violates many of the statistical 
assumptions. Therefore, simply using a measure of fit (e.g. AIC) to weight models is inappropriate. We 
have addressed this by using a variety of metrics to weight the models, and we have evaluated model fit 
based on the range of AIC values seen among the models rather than on standard recommendations. We 
also avoided biases in estimates of the steepness of the Beverton-Holt stock-recruitment relationship by 
using a discrete range of values as sub-hypotheses to represent models with different values of steepness. 
However, this approach conflicts with our procedure for creating probability distributions of the 
management quantities conditional on the model. These probability distributions are created using the 
standard deviation (standard error) of those quantities obtained from the estimation procedure, which 
only represents parameter estimation error under the assumptions of the particular model, and are 
typically biased if those assumptions are wrong. That is, for model structure uncertainty we ignore 
standard statistical procedures, but for parameter uncertainty we use them. This conflict could in theory 
be improved by removing model misspecification, modelling parameter temporal variation, estimating 
parameters that are assumed known, and estimating the appropriate variances for the appropriate 
likelihood functions, including taking correlation among residuals into consideration. However, in practice 
it is unlikely that all the conflicts will be addressed for a particular application. Furthermore, the models 
may not converge on the global minimum of the objective function, and simplification of the model will 
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be required to address this problem. Therefore, appropriate statistical weighting for hypothesis testing 
and representing uncertainty will still need to be considered, and further research is needed. 

5.2.7. Tails 

The most important probability evaluations in the IATTC tropical tuna HCR are related to the tails of the 
probability distribution of the quantity of interest [e.g. P(Scur < SLIMIT) > 10%]. Therefore, to have an 
accurate evaluation of the HCR, the tails of the probability distribution must be well estimated. The 
approximations we use here are based on the normal distribution, which is a symmetrical probability 
distribution, and thus, our estimates of tail probabilities may be biased if the true distribution is 
asymmetrical, particularly when transformations were used to calculate the standard deviation. The 
estimated standard deviation (standard error) could also be biased and influence the tails of the 
distribution. We compared the normal approximation to the posterior distribution obtained from MCMC 
and found that although the posterior distribution and the normal approximation were centered on 
similar values, the tails of the posterior distributions were fatter, and some posterior distributions were 
not symmetrical, all of which may affect to some degree the appropriateness of the probabilities 
calculated assuming a normal distribution (see Figure 8). If probabilities in the tail of the distribution are 
continued to be used, more research is needed to more accurately represent the tails, including use of 
MCMC methods. 

5.2.8. Convergence 

Ensuring convergence of the estimation routine is an important part of model development and 
parameter estimation. Achieving convergence may get more challenging as the number of parameters 
and the amount and types of data increase. Contemporary statistical integrated fisheries stock 
assessment models are highly parameterized and use several different types of data, and convergence 
issues are common. To address this problem, our approach includes a weighting metric based on metrics 
of model convergence. In the bigeye tuna application, we simply used the metric that the estimated 
Hessian matrix had to be positive definite to be included in the risk analysis (Section 2.2.2.b). Although a 
non-positive definite Hessian generally means that that model did not converge, and the parameters are 
not reliable, it does not definitively mean that the model does not correctly represent the hypothesis or 
that the hypothesis has no support from the data. It may mean simply that the initial parameter values 
caused the model to wander into unreasonable parameter estimation space or that there is not enough 
information to estimate all the model parameters specific to the hypothesis. Therefore, substantial effort 
should be made to achieve convergence for models not producing a positive definite Hessian matrix. Of 
course, even if the Hessian is positive definite, that does not guarantee that the estimation procedure has 
reached the solution corresponding to the global minimum. There may be solutions in a different region 
of the parameter space that represent very different management advice that could have similar or even 
better objective function values. Multiple local minima of similar likelihood values suggest that the 
uncertainty represented based solely on parameter uncertainty is an underestimation for that model and 
some attempt should be made to represent the full uncertainty (e.g. using MCMC methods that better 
describe the parameter space). This is a common problem with complex models, becoming even more 
problematic when many models are considered since there is less time available to fully evaluate each 
model. This problem is compounded by the fact that when multiple models are used, there is more of a 
tendency to add additional parameters to represent a wider range of hypotheses. We did not use the 
maximum gradient criterion to evaluate whether the model converged since it is not clear what the 
criterion should be; we leave that to future research.  



SAC-11 INF-F - Implementing risk analysis REV 03 Sep 2020 34 

5.2.9. Residuals 

Evaluating residuals of model fits to data is standard practice in statistical modelling. However, this 
becomes more difficult as the models become more complex and multiple data types are used. The bigeye 
tuna example considered three types of residuals typically used to evaluate the performance of fisheries 
stock assessment models (Section 2.2.2b): 1) residuals of the fit to indices of abundance, 2) residuals of 
the fit to composition data, and 3) recruitment deviations. However, we decided to ignore the residuals 
when determining weights for the models because, in most cases, the residuals were similar for all models, 
and other weighting factors were considered more important. In addition, the composition residuals were 
also covered by the W(Empirical selectivity) weighting metric. A more quantitative approach is needed to 
evaluate residuals in general, and specifically for weighting the models. The criteria need to address any 
violation of the likelihood function assumptions, including the shape of the distribution of the residuals 
(including outliers), the magnitude of the residuals, and lack of independence. In stock assessment models 
this evaluation can be complicated because the likelihood function measures the total misfit to the data 
and therefore not only represents the sampling distribution, but also model misspecification and 
unmodelled process variation, which are common in stock assessment models. Approaches have been 
developed to estimate the variance parameter of the likelihood function and this may remove the need 
to evaluate the magnitude of the residuals.  

We introduced the W(Empirical selectivity) diagnostic to compare the selectivity implied by the model 
estimates with the selectivity pattern assumed in the stock assessment. The “empirical” selectivity is 
dependent on the model, but is not constrained by the assumed selectivity curve, and hence the use of 
the terminology “empirical”. The “empirical” selectivity is calculated as the model estimated catch-at-age 
(or length) divided by the estimates of the population numbers-at-age (or length). This diagnostic provides 
similar information to measures of the overall fit of the observed and predicted composition data (plotted 
for a fishery averaged over all years, perhaps weighted by the sample size), but gives more emphasis to 
older and larger fish. This diagnostic was very informative in the bigeye assessment when assessing model 
fit to the length composition for large fish in the longline fishery that had asymptotic selectivity. We 
recommend that calculating this diagnostic be standard practice in fisheries stock assessment. 
Consideration should be given to weighting the calculations by the composition sample size when taking 
the average and plotting the diagnostic annually.  

5.3. Bigeye application 

5.3.1. Improving the assessment 

The goal of the risk analysis for EPO bigeye tuna was to determine the probability of exceeding the target 
and limit reference points under current and alternative management actions, such as fishery closures. 
The risk assessment for bigeye tuna was hierarchically structured around two major issues with the stock 
assessment: 1) the estimated regime shift in recruitment and 2) the misfit to the length composition data 
for the longline fishery with assumed asymptotic selectivity. Some of the hypotheses used in the risk 
analysis ascribe issue (1) to a modelling artifact, while others postulate that recruitment really did 
increase. Results to date suggest that issue (2) could be due to model misspecification on growth, natural 
mortality and other processes. Preferably, it would be best to resolve these issues rather than include 
them in a risk analysis, therefore research on these issues should continue. In addition to these issues, the 
assessment results had become highly sensitive to new data points in the indices of relative abundance 
derived from the longline fishery. The over-sensitivity of the previous assessment to the addition of new 
data, which was the reason for not using it for management advice during the two years prior to this work, 
is no longer an issue for most of the models according to the retrospective analysis. The previous 
assessment sensitivity was due to the addition of a new year (four quarters) of abundance index data 
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(SAC-09 INF-B), while the retrospective analysis tests the removal of all data one year at a time, and 
therefore although the comparison is not perfect it suggest that this issue no longer remains. The new 
spatio-temporal modelling framework used to standardize the indices of abundance may have removed 
this sensitivity. The risk analysis for bigeye tuna has identified two major avenues of research to improve 
the stock assessment: 1) estimating growth and 2) investigating the differences between the models of 
different time spans. The models that estimate growth have a combined 58% of the model weight and 
therefore obtaining data to improve the estimates of growth (particularly for the older/larger fish) should 
be a priority. The bimodal probability distributions for the current status relative to reference points is 
driven by several factors, (e.g. growth, natural mortality, selectivities), but mainly by the time span of the 
models. This analysis used two classes of model: short-term and medium- term. Research should be 
conducted using models of different time spans and to investigate why short-term models estimates 
equilibrium catches much higher than the catch in the years prior to the start of the model.  

5.3.2. Model time-spans 

There are several research avenues that could be pursued to investigate differences between the models 
of different time span. One such research would be to start with medium-term models and drop data sets 
to see which causes different results. Another would be to fit short-term models to an estimate of the 
equilibrium catch (e.g. the average of the 5 years previous to the start of the model), although this would 
be similar to the medium-term model only using catch prior to the start of the short-term model. Further 
research could be conducted using historical time span models starting when the earliest commercial 
catches are available.  

5.3.3. Growth 

Model results are highly influenced by how growth is parameterized; therefore it is important to use the 
available growth data properly and evaluate any potential improvements in both data and estimation 
methods. The models using fixed growth parameters are based on an external analysis that integrated 
both the otolith age-length data and the individual growth-increment from tagging data. However, only 
the otolith age-length data is used when growth is estimated inside the stock assessment model. The 
tagging growth-increment data should be included in the assessment model, but this functionality is not 
currently available in Stock Synthesis. An alternative approach is to use the external analysis estimates 
and their covariance matrix to construct prior distributions for use in the stock assessment model. Stock 
Synthesis does not currently have the capability to include joint priors so they would have to be included 
as independent priors on each parameter, which may create issues for example for highly correlated 
growth parameters. Estimation of growth inside the stock assessment model has several advantages: 1) 
information on growth is also contained in other types of data (such as length composition data) in an 
integrated model; 2) length- or age-based selectivity is automatically taken into account; and 3) length 
based sampling of age-length data can be addressed using age conditioned on length composition data. 
Therefore, the most appropriate and priority approach is to integrate the tagging growth increment data 
into the stock assessment model. 

5.3.4. Natural mortality 

Natural mortality (M) is one of the most uncertain and influential parameters in fisheries stock assessment 
models. We included two hypotheses about natural mortality: Adult M that estimated the natural 
mortality of adults and Movement that estimated the natural mortality of pre-adults and assumed that it 
was the same for adults as well. Both hypotheses kept the same ratio as that of the models not estimating 
M for the difference between male and female natural mortality. Differences between the assumed fixed 
M and those estimated by the additional hypotheses could represent either incorrectly assumed natural 
mortality or unmodeled movement (M as a proxy for movement). Other hypotheses about natural 

http://www.iattc.org/Meetings/Meetings2018/SAC-09/PDFs/Docs/_English/SAC-09-INF-B-EN_Bigeye-tuna-investigation-of-change-in-F-multiplier.pdf
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mortality could also be included in the analysis. For example, the Lorenzen curve was used in a previous 
analysis (Valero et al. 2019) and it also removed the regime shift in recruitment. Other analyses not 
presented here have shown that natural mortality for juveniles does not reduce the estimated 
recruitment regime shift (Document SARM-9-INF-B), but only estimating natural mortality of pre-adults 
(and not extending it to adults) does. The natural mortality based on the Lorenzen curve also increases 
the natural mortality of pre-adults and it is likely that the increase of natural mortality for these ages using 
the Lorenzen curve is what reduces the recruitment regime shift. This is because the increase of catches 
in the floating object fisheries (catching primarily pre-adults) would have a smaller effect on indices of 
adult abundance because less fish would reach the longline fishery since they had moved out of the EPO 
or died. The bigeye assessment assumes that the differences in sex ratios with size is due to differences 
in natural mortality, but due to the limited information of sex specific growth, particularly for older ages, 
there may be an effect of sex-specific growth. Further research is needed to determine the appropriate 
levels of length-, age- and sex-specific bigeye tuna natural mortality.  

5.3.5. Improving the risk assessment for bigeye tuna 

A better way to eliminate models or evaluate more models is needed. Due to the large number of models 
(48) and the computational demands of some of the diagnostics (e.g. ASPM, R0 profile, retrospective 
analysis, catch curve diagnostic) it was not feasible to conduct all the diagnostics on the models with the 
different values for steepness (h) or some of the Level 2B hypotheses in combination with every Level 2A 
hypothesis. Therefore, we eliminated models that performed poorly with h = 1.0 and assumed that the 
weightings for the models that had h < 1.0 were the same as those for h = 1.0, except the W(convergence) 
weight. Since the diagnostics were not run and evaluated, we do not know if this assumption is correct. 
We found that the W(Fix regime) weight scores were different among some of the steepness values (not 
used it in the model weighting). Making the diagnostics quantitative and automating them will allow for 
more models to be evaluated.  

The risk analyses presented here relied on quantities of interest (such as ratios of stock status relative to 
reference points) for which approximations were made on the type of distribution as well the standard 
error describing its uncertainty. The validity or potential departure of this approximations should be 
tested for example via simulation work or MCMC techniques. The extent to which the model weighting 
scheme could be treated as probabilities should also be further evaluated.  

5.3.6. Management implications 

The inconsistency of management implications between the expected value and the probability 
statements is due to the asymmetric nature of the combined probability distribution. The current closure 
produces a 50% probability that Fcur < FMSY. However, the expected value (or model weighted MLEs) of 
Fcur/FMSY suggests that the current fishing mortality is 7% too high. This is caused by the asymmetric nature 
of the combined probability distribution. Even though the distributions of the individual model quantities 
of interest are assumed to be normal, when they are combined with different model weights, the 
combined distribution becomes asymmetrical. The expected value is the mean and the probability-based 
statement is related to the median. However, this difference is relatively minor, and has smaller 
management implications than the bimodality obtained for all probability distributions. Results from the 
bigeye risk analysis essentially fall in between two possible states (an optimistic and a pessimistic, relative 
to reference points) that cannot be discerned based on data, model valuation or other criteria currently 
available. 

The use of a limit reference point based on equilibrium S0 causes a dilemma, particularly when evaluating 
models with different time spans. Equilibrium S0 is a function of R0, which itself is a function of the average 
recruitment over the modelling time frame and assumptions about model initial conditions, adjusted 

http://www.iattc.org/PDFFiles2/SARM-9-INF-B-Comments-on-Document-SARM-9-11d.pdf
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appropriately by the stock-recruitment relationship. The calculation of R0 is typically defined over the time 
span of the model, which is convenient because no decision on the years used to calculate R0 needs to be 
made. However, when models with different time spans are included in the risk analysis, they are no 
longer consistent, and the evaluation of this reference point may be more a function of the time span of 
the model and not the hypothesis being represented by that model. In the bigeye tuna application, the 
short-term models assume that the initial low recruitment is unrepresentative and should not be use in 
the calculation of R0. Therefore, the results may be appropriate. In other applications, it may be 
appropriate to choose a range of common years across models to estimate R0 that differ from the time 
span of the model to make the results consistent among models. However, this concept does bring in to 
question the construction of limit reference points when there may be regime shifts in recruitment and 
the definition of years to calculate R0 should be given more explicit consideration, particularly when 
potential changes in productivity may be confounded with fishery impacts on the stock. Dynamic 
reference points like SMSY_d do not use average recruitment and are therefore not dependent on defining 
the time period.  

As stated before, all the probability distributions for the management quantities for bigeye tuna show two 
modes. This produces a dilemma because management action based on fishing at FMSY should not simply 
take the average value of two different states of nature, since it is unclear which state of nature is correct 
and this will either highly under or over exploit the stock. A precautionary approach might imply basing 
management on the pessimistic models, but this might severely under exploit the stock and would require 
a substantial reduction in the fishing effort. One approach might be to project the stock into the future 
assuming a high biomass while using the FMSY estimated using the low biomass and vice versa, to 
determine the impacts and potential tradeoffs of taking management action assuming the wrong state of 
nature. 

6. CONCLUSIONS 

Given these results, the recommended way forward would be to put substantial effort into collecting data, 
improving the stock assessment models, identifying and correcting model misspecifications, particularly 
as it relates to the two modes in the probability distributions for the management quantities, and 
evaluating management strategies robust to uncertainty. We also should acknowledge that there may 
always be unresolved issues in knowledge, their impact on taking appropriate management action, and 
the inherent limits of modelling complex and changing natural systems and their fisheries. An alternative, 
or complementary approach while both data and modelling approaches improve, would be to conduct 
MSE to evaluate setting management actions based on simpler models or trends in data such as empirical 
HCRs. The models and their weighting developed here could be used as a basis for developing MSE 
operating models. 

Given the substantial uncertainty in stock assessments in general, management decisions should not 
simply be based on point estimates from a single base case model or even point estimates derived from 
an average from multiple models. Management should take into consideration the uncertainty in the 
estimates, model structure and other components of the system (implementation, etc.). Developing 
management strategies that incorporate, and are evaluated via MSE to be robust to, the different forms 
of unavoidable uncertainties involved in fishery management are a formal way to evaluate management 
actions designed to achieve fisheries objectives.  
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TABLE 1. Weighting criteria for the recruitment regime shift metric. 

Regime Shift category Weight category Weight value 
1.75 < Rshift  None 0 
1.50 < Rshift ≤ 1.75 Low 0.25 
1.25 < Rshift ≤ 1.5  Medium 0.5 
 Rshift ≤ 1.25 High 1 
Regime shift is real NA 1 

 

 

 

Table 2 Model names and acronyms.  

Env-Fix Environment, Fixed 
Env-Gro Environment, Estimate growth 
Env-Sel Environment, Dome selectivity 
Env-Mrt Environment, Adult mortality 
Rcr Ricker 
Ind Index not representative 
Srt-Fix Short-term, Fixed 
Srt-Gro Short-term, Estimate growth 
Srt-Sel Short-term, Dome selectivity 
Srt-Mrt Short-term, Adult mortality 
Mov Pre-adult movement 
Gro Estimate growth 
Sel Dome selectivity 
Mrt Adult mortality 
Cmp Unreliable longline composition 
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TABLE 3. W(Expert) weights assigned by each expert to the alternative models. 

 Level 2A      Level 2B      Probability 
Env-Fix High High High High High High Low Low Medium Low Low Medium 0.13 
Env-Gro High High High High High High High High Medium High High High 0.33 
Env-Sel High High High High High High High High Medium High Medium Medium 0.27 
Env-Mrt High High High High High High Medium Medium Medium Medium Medium Medium 0.18 
Rcr Low Low Low Low Low Low NA NA NA NA NA NA 0.09 
Ind Low Medium Medium Low Low Low NA NA NA NA NA NA 0.08 
Srt-Fix Medium High Low High High Medium Medium Low High Low Low High 0.07 
Srt-Gro Medium High Low High High Medium Medium Medium High High High High 0.12 
Srt-Sel Medium High Low High High Medium Medium Medium Low Medium Medium Low 0.07 
Srt-Mrt Medium High Low High High Medium Medium Medium Low Medium Medium Medium 0.07 
Mov High High Medium High High High Medium High Medium Low Medium Medium 0.11 
Gro High Medium Medium High High High High High Medium High High High 0.17 
Sel High High Medium Medium High Medium High High Medium High Medium Medium 0.13 
Mrt Medium Medium Medium Medium Medium High Medium Medium Medium Medium Medium Medium 0.07 
Cmp Medium Medium Medium Medium Medium Medium NA NA NA NA NA NA 0.12 

 



SAC-11 INF-F - Implementing risk analysis REV 03 Sep 2020 41 

 

 

TABLE 4. Maximum gradient components for the alternative models. NPD indicates that the hessian was 
not positive definite. The Ricker model did not have a steepness parameter.  

 h = 1.0 h = 0.9 h = 0.8 h = 0.7 
Env-Fix 0.0002 NPD NPD NPD 
Env-Gro 0.00009 0.00003 0.00008 0.00002 
Env-Sel 0.00007 0.00006 0.00007 0.00005 
Env-Mrt 0.00003 0.0002 0.00005 0.00007 
Rcr NPD NA NA NA 
Ind 0.00005 NPD NPD NPD 
Srt-Fix 0.00005 0.00007 0.006 NPD 
Srt-Gro 0.00008 0.0003 0.001 0.002 
Srt-Sel 0.00007 0.00002 0.00004 0.00001 
Srt-Mrt 0.00008 0.00005 0.01 0.003 
Mov 0.00007 0.0001 0.0001 0.0002 
Gro 0.00003 0.00008 0.00005 0.0001 
Sel 0.001 0.0009 0.001 0.0002 
Mrt 0.00006 0.00006 0.001 0.00007 
Cmp 0.00003 0.0001 0.0003 0.0003 
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TABLE 5. AIC values calculated using all the data except the otolith age-length data, the score based on 
the formula and the associated recalled probability. 

 h = 1.0 h = 0.9 h = 0.8 h = 0.7 
Score (h 
= 1.0) Probability 

Env-Fix 5245.92 NA NA NA 0.28 0.12 
Env-Gro 5125.20 5125.16 5125.44 5125.29 1.00 0.42 
Env-Sel 5178.30 5178.82 5179.56 5180.66 0.68 0.29 
Env-Mrt 5226.02 5226.96 5228.36 5230.50 0.40 0.17 
Rcr NA NA NA NA NA NA 
Ind 5568.80 NA NA NA NA NA 
Srt-Fix 3890.20 3891.98 3894.98 NA 0.25 0.06 
Srt-Gro 3858.33 3859.15 3860.31 3862.33 1.00 0.23 
Srt-Sel 3876.74 3877.42 3878.42 3879.84 0.57 0.13 
Srt-Mrt 3889.82 3890.94 3892.82 3895.28 0.26 0.06 
Mov 5251.30 5253.16 5255.14 5258.70 0.25 0.06 
Gro 5127.69 5128.34 5129.21 5130.38 0.99 0.23 
Sel 5185.30 5186.64 5188.32 5190.44 0.64 0.15 
Mrt 5238.62 5240.76 5243.40 5246.70 0.33 0.08 
Cmp 1928.73 1931.69 1934.99 1938.76 NA NA 

 

 

TABLE 6. W(Plausible parameter estimates) weights assigned by each expert to the alternative models, 
where appropriate. 

Model       Probability 
Env-Fix NA NA NA NA NA NA 0.37 
Env-Gro High Medium High High High High 0.34 
Env-Sel Low Medium Low Low Low Medium 0.13 
Env-Mrt High Low Medium Low Medium Low 0.16 
Ind NA NA NA NA NA NA 0.14 
Srt-Fix NA NA NA NA NA NA 0.14 
Srt-Gro High Medium Medium High High High 0.11 
Srt-Sel Medium Medium High Medium Medium Medium 0.08 
Srt-Mrt High Low Low High High High 0.10 
Mov High Medium Medium Medium High Medium 0.09 
Gro High Medium High High High High 0.12 
Sel Low Medium Low Low Low Medium 0.05 
Mrt High Low Medium Low Low Low 0.05 
Cmp NA NA NA NA NA NA 0.14 
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Table 7. Weights for W(Plausible F) and W(Plausible initial catch). 

Model Plausible F      

Plausible 
initial 
conditions Probability 

Env-Fix High High Medium High High High Medium 0.24 

Env-Gro Medium Medium High Medium Medium Low High 0.24 

Env-Sel Low Medium Medium Low Medium Low High 0.21 

Env-Mrt Medium High High High High High High 0.31 

Ind None None None None None None Low 0.02 

Srt-Fix Medium High High High High High Medium 0.11 

Srt-Gro Low High High High Medium Medium Medium 0.09 

Srt-Sel Medium High High High High Medium Medium 0.10 

Srt-Mrt Medium High High High High High Medium 0.11 

Mov Medium High Medium High High High High 0.14 

Gro Low Low High Low Low Low Low 0.05 

Sel Low Low Medium Low Low Low High 0.10 

Mrt Medium High High High Medium Medium High 0.14 

Cmp Medium Low High High High Medium High 0.13 
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TABLE 8. Results of applying the algorithm shown in Figure 1 to calculate the W(R0, ASPM) component. 

 R0  ASPM-dev  Weight Probability 

Model 
Composition 
driven Consistent 

Confidence 
interval Consistent   

Env-Fix No NA Wide NA Medium 0.25 
Env-Gro Yes Yes Wide NA Medium 0.25 
Env-Sel Yes Yes Wide NA Medium 0.25 
Env-Mrt Yes Yes Wide NA Medium 0.25 
Ind NA NA NA NA High 0.15 
Srt-Fix Yes Yes Wide NA Medium 0.08 
Srt-Gro Yes Yes Wide NA Medium 0.08 
Srt-Sel Yes Yes Wide NA Medium 0.08 
Srt-Mrt Yes Yes Wide NA Medium 0.08 
Mov Yes No Narrow No Low 0.04 
Gro Yes Yes Narrow Yes High 0.15 
Sel No NA Narrow Yes High 0.15 
Mrt Yes Yes Narrow Yes High 0.15 
Cmp Yes Yes Narrow No Low 0.04 

 

 

TABLE 9. Results of the W(Retrospective) component. 

Model  Probability 
Env-Fix High 0.40 
Env-Gro Medium 0.20 
Env-Sel Medium 0.20 
Env-Mrt Medium 0.20 
Ind High 0.11 
Srt-Fix High 0.11 
Srt-Gro High 0.11 
Srt-Sel High 0.11 
Srt-Mrt High 0.11 
Mov Medium 0.05 
Gro High 0.11 
Sel High 0.11 
Mrt High 0.11 
Cmp High 0.11 
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TABLE 10. Rshift metric (a) and the associated weights (b). The probabilities were only based on the models 
with h = 1.0. 

Model h = 1.0 h = 0.9 h = 0.8 h = 0.7 Probability 
(h = 1.0) 

Env-Fix NA NA NA NA 0.20 
Env-Gro NA NA NA NA 0.20 
Env-Sel NA NA NA NA 0.20 
Env-Mrt NA NA NA NA 0.20 
Rcr NA NA NA NA 0.20 
Ind None None None None 0.00 
Srt-Fix NA NA NA NA 0.14 
Srt-Gro NA NA NA NA 0.14 
Srt-Sel NA NA NA NA 0.14 
Srt-Mrt NA NA NA NA 0.14 
Mov Medium Medium High High 0.07 
Gro High High High High 0.14 
Sel Medium High High High 0.07 
Mrt Medium Medium Medium High 0.07 
Cmp Medium Medium Medium Medium 0.07 

 

 

 

TABLE 11. Weights assigned based on the W(Empirical selectivity) metric. 

Model Score Probability 
Env-Fix Medium 0.20 
Env-Gro Medium 0.20 
Env-Sel High 0.40 
Env-Mrt Medium 0.20 
Ind Medium 0.08 
Srt-Fix Medium 0.08 
Srt-Gro Medium 0.08 
Srt-Sel High 0.17 
Srt-Mrt High 0.17 
Mov Medium 0.08 
Gro Medium 0.08 
Sel High 0.17 
Mrt Medium 0.08 
Cmp None 0.00 
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TABLE 12. Weights assigned by each expert to the alternative values of steepness. 

h       Probability 
0.7 Low None Low - None None 0.04 
0.8 Medium Low High - Low Low 0.21 
0.9 High Low High - Medium Medium 0.31 

1 Medium High Medium - High High 0.44 
 

TABLE 13. Model probabilities, expected values of the management quantities, and probabilities of 
exceeding the reference points. 

 Env-Fix Env-Gro Env-Sel Env-Mrt Srt-Fix Srt-Gro Srt-Sel Srt-Mrt Mov Gro Sel Mrt Total 
P(Model) 0.01 0.13 0.05 0.02 0.04 0.22 0.11 0.07 0.01 0.24 0.09 0.02 1.00 
Fcur/FMSY 1.82 0.82 0.99 1.25 1.84 1.42 1.36 1.57 0.81 0.59 0.73 0.89 1.07 
Fcur/Flimit 0.96 0.47 0.58 0.69 0.97 0.78 0.77 0.84 0.47 0.34 0.43 0.50 0.60 
Scur/SMSY_dyn 0.34 1.32 1.02 0.69 0.32 0.56 0.59 0.45 1.31 1.85 1.53 1.16 1.09 
Scur/Slimit 0.97 3.61 2.67 2.04 0.97 1.65 1.65 1.38 3.84 5.24 4.21 3.63 3.07 
P(Fcur>FMSY) 1.00 0.18 0.44 0.84 1.00 0.97 0.92 0.99 0.15 0.01 0.07 0.25 0.50 
P(Fcur>Flimit) 0.33 0.00 0.00 0.01 0.38 0.07 0.06 0.14 0.00 0.00 0.00 0.00 0.05 
P(Scur<SMSY) 1.00 0.19 0.49 0.96 1.00 1.00 1.00 1.00 0.16 0.03 0.07 0.27 0.53 
P(Scur<Slimit) 0.59 0.00 0.00 0.02 0.50 0.06 0.09 0.19 0.00 0.00 0.00 0.00 0.06 

 

TABLE 14. P(Fcur > FMSY) for different closure days adjusted for the corralito spatial closure and changes in capacity. 

Closure days Env-Fix Env-Gro Env-Sel Env-Mrt Srt-Fix Srt-Gro Srt-Sel Srt-Mrt Mov Gro Sel Mrt Total 
0 1.00 0.48 0.78 0.98 1.00 1.00 0.99 1.00 0.47 0.09 0.31 0.65 0.62 

36 1.00 0.32 0.63 0.93 1.00 0.99 0.97 1.00 0.30 0.03 0.17 0.45 0.56 
70 1.00 0.19 0.44 0.84 1.00 0.97 0.92 0.99 0.15 0.01 0.07 0.25 0.50 
72 1.00 0.18 0.43 0.83 1.00 0.96 0.91 0.98 0.14 0.01 0.06 0.24 0.49 
88 1.00 0.13 0.35 0.75 1.00 0.93 0.87 0.97 0.09 0.00 0.04 0.17 0.46 

100 1.00 0.09 0.28 0.67 1.00 0.88 0.81 0.95 0.06 0.00 0.02 0.11 0.43 

 

TABLE 15. P(Fcur > FLIMIT) for different closure days adjusted for the corralito spatial closure and changes in 
capacity. 

Closure days Env-Fix Env-Gro Env-Sel Env-Mrt Srt-Fix Srt-Gro Srt-Sel Srt-Mrt Mov Gro Sel Mrt Total 
0 0.97 0.00 0.04 0.17 0.89 0.39 0.37 0.57 0.00 0.00 0.00 0.00 0.21 

36 0.79 0.00 0.01 0.06 0.67 0.19 0.18 0.33 0.00 0.00 0.00 0.00 0.12 
70 0.33 0.00 0.00 0.01 0.38 0.07 0.06 0.14 0.00 0.00 0.00 0.00 0.05 
72 0.30 0.00 0.00 0.01 0.36 0.06 0.06 0.13 0.00 0.00 0.00 0.00 0.05 
88 0.11 0.00 0.00 0.00 0.25 0.03 0.03 0.08 0.00 0.00 0.00 0.00 0.03 

100 0.04 0.00 0.00 0.00 0.17 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.02 
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FIGURE 1. Algorithm for assigning weights based on the R0 likelihood component profile and ASPM diagnostics. 
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FIGURE 2. Flow chart describing the calculation of probabilities for the alternative hypotheses for bigeye tuna initially considered for the risk 
assessment.  
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FIGURE 3. Flow chart describing the calculation of probabilities for the alternative hypotheses for bigeye tuna used in the final risk assessment.  
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FIGURE 4. Probability density functions for Fcur/FMSY broken down into different components. 
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FIGURE 5. Probability density functions for Fcur/FLIMIT broken down into different components.  
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Figure 6. Probability density functions for Scur /SMSY_d broken down into different components.  
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FIGURE 7. Probability density functions for Scur/SLIMIT broken down into different components. 



SAC-11 INF-F - Implementing risk analysis REV 03 Sep 2020 54 

 
FIGURE 8. Bayesian posterior distribution (vertical bars) for the ratio of current biomass over equilibrium 
virgin biomass (Scur/S0) from MCMC of the bigeye Short-term, Fixed model. Red line is biomass limit 
reference point (SLIMIT =0.077S0), blue vertical line is the mean Scur/S0 from the MLE, blue curve is the 
normal distribution from MLE estimates of mean and variance, “P < 0.077” are the probabilities of being 
below SLIMIT derived from both the MCMC posterior (black text) and the MLE normal distribution (blue 
text). 
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