Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

Comparisons of length-based growth rates from models fit separately to high confidence tagging data and length-at-age data based on daily increment counts from bigeye otoliths from the EPO

Haikun Xu, Kurt Schaefer, Dan Fuller, and Mark Maunder

Workshop on age and growth of bigeye and yellowfin tunas in the Pacific Ocean, La Jolla, CA, Jan 23-25, 2019

Outline

- Otolith-based length-at-age data
- Estimated growth rate based on length-at-age data
- Tagging data
- Estimated growth rate based on tagging data
- Comparison of the two estimated growth rates

Estimated growth rate based on otolith data

Schaefer and Fuller (2006): $L_{\infty} = 400.3$, K = 0.108, $t_0 = -0.398$

Estimated growth rate based on otolith data

Schaefer and Fuller (2006): $L_{\infty} = 400.3$, K = 0.108, $t_0 = -0.398$

Tagging data for EPO bigeye: release and recapture

463 recaptured bigeye were released at ~95W 586 recaptured bigeye were released at ~140W

The von Bertalanffy growth curve: $L_{rec} = L_{rel} + (L_{\infty} - L_{rel}) \left(1 - e^{-K(t_{rep} - t_{rel})}\right)$

	Fish	Release	Release	Recapture	Recapture
_	Number	Date	Length	Date	Length
n=1049 •	363	5/6/2000	112	8/4/2000	120
	425	5/7/2000	106	7/11/2000	107
	455	5/8/2000	106	9/13/2000	115
	917	5/12/2000	114	7/13/2001	137
L	1412	4/15/2000	102	7/1/2001	135

The fresh length-thawed length relationship was expressed as: $L_f = 1.01814L_t + 0.1481$

The von Bertalanffy growth curve: $L_{rec} = L_{rel} + (L_{\infty} - L_{rel}) \left(1 - e^{-K(t_{rep} - t_{rel})}\right)$

we used the adjusted length

	Fish	Release	Release	Recapture	Recapture	Adjusted Recapture
_	Number	Date	Length	Date	Length	Length
n=1049	363	5/6/2000	112	8/4/2000	120	122.32
	425	5/7/2000	106	7/11/2000	107	109.09
	455	5/8/2000	106	9/13/2000	115	117.23
	917	5/12/2000	114	7/13/2001	137	139.63
	1412	4/15/2000	102	7/1/2001	135	137.60

The fresh length-thawed length relationship was expressed as: $L_f = 1.01814L_t + 0.1481$

The von Bertalanffy growth curve: $L_{rec} = L_{rel} + (L_{\infty} - L_{rel}) \left(1 - e^{-K(t_{rep} - t_{rel})}\right)$ where $L_{\infty} = 208.8$ and K = 0.313

The von Bertalanffy growth curve: $L_{rec} = L_{rel} + (L_{\infty} - L_{rel}) \left(1 - e^{-K(t_{rep} - t_{rel})}\right)$ where $L_{\infty} = 208.8$ and K = 0.313

The von Bertalanffy growth curve: $L_{rec} = L_{rel} + (L_{\infty} - L_{rel}) \left(1 - e^{-K(t_{rep} - t_{rel})}\right)$ 95W: $L_{\infty} = 210.1$ and K = 0.315; 140W: $L_{\infty} = 179.3$ and K = 0.413

Growth rate based on tagging data at 95W AND 140W

von Bertalanffy: $L_t = L_{\infty} (1 - e^{-K(t-t_0)})$, where $L_{\infty} = 208.8$ and K = 0.313Richards: $L_t = L_{\infty} (1 - e^{-K(t-t_0)}/p)^p$, where $L_{\infty} = 201.9$, K = 0.387, and p = 1.49Richards-2 (up-weight >150cm fish by 25X): $L_{\infty} = 197.8$, K = 0.498, and p = 7.04

No obvious reduction in the residual pattern

Comparison of estimated growth rate

Otolith-VB: $L_t = L_{\infty} (1 - e^{-K(t-t_0)}); L_{\infty} = 400.3 \text{ and } K = 0.108$ Tagging-VB: $L_t = L_{\infty} (1 - e^{-K(t-t_0)}); L_{\infty} = 208.8 \text{ and } K = 0.313$ Tagging-Richards: $L_t = L_{\infty} (1 - e^{-K(t-t_0)}/p)^p; L_{\infty} = 201.9, K = 0.387, \text{ and } p = 1.49$

Growth rate (cm/year) vs. Length (cm)

The same growth model (VB) fitted to tagging or otolith data suggests different growth rates

Only fit to bigeye samples with length < 150 cm

$$L_t = L_\infty \left(1 - e^{-K(t - t_0)} \right)$$

- Otolith: $L_{\infty} = 400.3$ and K = 0.108
- Tagging (95W): $L_{\infty} = 304.5$ and K = 0.167
- Tagging (140W): $L_{\infty} = 179.3$ and K = 0.413

Based on the von Bertalanffy curve

Only fit to bigeye samples with length < 150 cm

Based on the von Bertalanffy curve

Only fit to bigeye samples with length < 150 cm

Based on the von Bertalanffy curve

Silva et al. (2015): integrating the two data sources

An improved growth model for EPO bigeye

- The growth cessation model (Maunder et al. 2018): "A linear relationship between length and age followed by a near cessation in growth, typically after the onset of sexual maturity."
- The growth cessation model fits data **best.**

- Minor residual pattern in fit to the otolith-based length-atage data
- Notable residual pattern in fit to the tagging data
- Length-at-age data and tagging data suggest similar growth rates for 95W-released bigeye (consistent with Schaefer and Fuller 2006)
- Tagging data suggest a spatial pattern in growth: larger *K* and **probably** smaller L_{∞} at 140W in comparison to 95W
- L_{∞} is informed by samples released only at 95W

Thank you!

Daily increment counts from EPO bigeye otolith

Otolith daily increments (see Schaefer and Fuller (2016))

CLAT

Days of liberty-Días en libertad

Daily increment counts from EPO bigeye otolith

- Bigeye (38cm-135cm) produce one otolith increment per day.
- If the deposition rate holds for other lengths, the increment count is a observation of absolute age (in days)
- Counting increment is difficult after age 4 yrs (150cm)

Length-at-age data for EPO bigeye

- Length-at-age data based on daily increment counts
- The von Bertalanffy growth curve fits **best** to this data $L_t = L_{\infty} (1 - e^{-K(t-t_0)})$
- Growth rates of the two sexes are not significantly different

Residuals for 140W tagging data

Spatial variation in growth (bigeye tuna)

Jess Farley and Paige Eveson, CSIRO

GAM predictions of bigeye mean length at age 3.3 yr

GAM predictions of bigeye mean length at mean otolith weight of 0.06 g

Hampton et al. 2018 (CAPAM spatial workshop)

95W