INTER-AMERICAN TROPICAL TUNA COMMISSION COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL

Fishery Status Report–Informe de la Situación de la Pesquería No. 13

TUNAS, BILLFISHES AND OTHER PELAGIC SPECIES IN THE EASTERN PACIFIC OCEAN IN 2014 LOS ATUNES, PECES PICUDOS Y OTROS PECES PELÁGICOS EN EL OCEANO PACÍFICO ORIENTAL EN 2014

La Jolla, California 2015

COVER PHOTOGRAPH BY WAYNE PERRYMAN FOTOGRAFÍA EN LA PORTADA POR WAYNE PERRYMAN

INTER-AMERICAN TROPICAL TUNA COMMISSION COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL

Fishery Status Report—Informe de la Situación de la Pesquería No. 13

TUNAS, BILLFISHES AND OTHER PELAGIC SPECIES IN THE EASTERN PACIFIC OCEAN IN 2014 LOS ATUNES, PECES PICUDOS Y OTROS PECES PELÁGICOS EN EL OCÉANO PACÍFICO ORIENTAL EN 2014

La Jolla, California 2015

TUNAS, BILLFISHES AND OTHER PELAGIC SPECIES IN THE **EASTERN PACIFIC OCEAN IN 2014**

A.	The fishery for tunas and billfishes in the eastern Pacific Ocean	5
B.	Yellowfin tuna	67
C.	Skipjack tuna	83
D.	Bigeye tuna	88
E.	Pacific bluefin tuna	104
F.	Albacore tuna	112
G.	Swordfish	121
H.	Blue marlin	125
I.	Striped marlin	127
J.	Sailfish	131
K.	Updated stock status indicators for silky sharks in the eastern Pacific Ocean (1994-2014)	136
L.	Ecosystem considerations.	141

INTRODUCTION

This report provides a summary of the fishery for tunas in the eastern Pacific Ocean (EPO), summary assessments of the major stocks of tunas and billfishes that are exploited in the fishery, and an evaluation of the pelagic ecosystem in the EPO, in 2014.

The report is based on data available to the IATTC staff in March 2015. As a result, some of the data tables for 2014 are incomplete, and all data for 2013 and 2014 should be considered preliminary.

All weights of catches and discards are in metric tons (t). In the tables, 0 means no effort, or a catch of less than 0.5 t; - means no data collected; * means data missing or not available. The following acronyms are used:

Specie	s:
ALB	Albacore tuna (Thunnus alalunga)
BET	Bigeye tuna (Thunnus obesus)
BIL	Unidentified istiophorid billfishes
BKJ	Black skipjack (Euthynnus lineatus)
BLM	Black marlin (Makaira indica)
BUM	Blue marlin (Makaira nigricans)
BZX	Bonito (Sarda spp.)
CAR	Chondrichthyes, cartilaginous fishes nei ¹
CGX	Carangids (Carangidae)
DOX	Dorado (Coryphaena spp.)
MLS	Striped marlin (Kajikia audax)
MZZ	Osteichthyes, marine fishes nei
PBF	Pacific bluefin tuna (<i>Thunnus orientalis</i>)
SFA	Indo-Pacific sailfish (Istiophorus
	platypterus)
SKJ	Skipjack tuna (Katsuwonus pelamis)
SKX	Unidentified elasmobranchs

SSP	Shortbill spearfish (Tetrapturus										
	angustirostris)										
SWO	Swordfish (Xiphias gladius)										
TUN	Unidentified tunas										
YFT	Yellowfin tuna (Thunnus albacares)										
Fishing gears:											
FPN	Тгар										
GN	Gillnet										
HAR	Harpoon										
LL	Longline										
LP	Pole and line										
LTL	Troll										
LX	Hook and line										
OTR	Other ²										
NK	Unknown										
PS	Purse seine										
RG	Recreational										
ΤX	Trawl										

¹ not elsewhere included

² Used to group known gear types

Ocean areas:		
EPO	Eastern Pacific Ocean	
WCPO	Western and Central Pacific	
	Ocean	
Set types:		
DEL	Dolphin	
NOA	Unassociated school	
OBJ	Floating object	
	LOG: Flotsam	
	FAD: Fish-aggregating device	

Stock assessment:										
В	Biomass									
С	Catch									
CPUE	Catch per unit of effort									
F	Rate of fishing mortality									
MSY	Maximum sustainable yield									
S	Index of spawning biomass									
SBR	Spawning biomass ratio									
SSB	Spawning stock biomass									

Flags:

1 1450	
IATTO	C Members & cooperating non-Members
BLZ	Belize
BOL	Bolivia
CAN	Canada
CHN	China
COL	Colombia
CRI	Costa Rica
ECU	Ecuador
EU	European Union
FRA	France
GTM	Guatemala
HND	Honduras
IDN	Indonesia
JPN	Japan
KIR	Kiribati
KOR	Republic of Korea
LBR	Liberia
MEX	Mexico
NIC	Nicaragua
PAN	Panama
PER	Peru
SLV	El Salvador
TWN	Chinese Taipei
USA	United States of America
VEN	Venezuela
VUT	Vanuatu
Other i	flags
CHL	Chile
COK	Cook Islands
CYM	Cayman Islands
CYP	Cyprus
FSM	Federated States of Micronesia
NZL	New Zealand
PRT	Portugal
RUS	Russia
SEN	Senegal
VCT	St. Vincent and the Grenadines
UNK	Unknown

A. THE FISHERY FOR TUNAS AND BILLFISHES IN THE EASTERN PACIFIC OCEAN

Catches and landings of tunas, billfishes, and associated species	5
Catches by species	6
Distributions of the catches of tunas	9
Size compositions of the catches of tunas	10
Catches of tunas and bonitos, by flag and gear	11
Fishing effort	12
Purse seine	12
Longline	12
The fleets	12
The purse-seine and pole-and-line fleets	12
Other fleets of the EPO	14
	Catches and landings of tunas, billfishes, and associated species Catches by species Distributions of the catches of tunas Size compositions of the catches of tunas Catches of tunas and bonitos, by flag and gear Fishing effort Purse seine Longline The fleets The purse-seine and pole-and-line fleets Other fleets of the EPO

This document summarizes the fisheries for species covered by the IATTC Convention (tunas and other fishes caught by tuna-fishing vessels) in the eastern Pacific Ocean (EPO). The most important of these are the scombrids (Family Scombridae), which include tunas, bonitos, seerfishes, and mackerels. The principal species of tunas caught are yellowfin, skipjack, bigeye, and albacore, with lesser catches of Pacific bluefin, black skipjack, and frigate and bullet tunas; other scombrids, such as bonitos and wahoo, are also caught.

This document also covers other species caught by tuna-fishing vessels in the EPO: billfishes (swordfish, marlins, shortbill spearfish, and sailfish) carangids (yellowtail, rainbow runner, and jack mackerel), dorado, elasmobranchs (sharks, rays, and skates), and other fishes.

Most of the catches are made by the purse-seine and longline fleets; the pole-and-line fleet and various artisanal and recreational fisheries account for a small percentage of the total catches.

Detailed data are available for the purse-seine and pole-and-line fisheries; the data for the longline, artisanal, and recreational fisheries are incomplete.

The IATTC <u>Regional Vessel Register</u> contains details of vessels authorized to fish for tunas in the EPO. The IATTC has detailed records of most of the purse-seine and pole-and-line vessels that fish for yellowfin, skipjack, bigeye, and/or Pacific bluefin tuna in the EPO. The Register is incomplete for small vessels. It contains records for most large (overall length >24 m) longline vessels that fish in the EPO and in other areas.

The data in this report are derived from various sources, including vessel logbooks, observer data, unloading records provided by canners and other processors, export and import records, reports from governments and other entities, and estimates derived from the species and size composition sampling program.

1. CATCHES AND LANDINGS OF TUNAS, BILLFISHES, AND ASSOCIATED SPECIES

Estimating the total catch of a species of fish is difficult, for various reasons. Some fish are discarded at sea, and the data for some gear types are incomplete. Data for fish discarded at sea by purse-seine vessels with carrying capacities greater than 363 metric tons (t) have been collected by observers since 1993, which allows for better estimation of the total amounts of fish caught by the purse-seine fleet. Estimates of the total amount of the catch that is landed (hereafter referred to as the retained catch) are based principally on data from unloadings. Beginning with Fishery Status Report 3, which reports on the fishery in 2004, the unloading data for purse-seine and pole-and-line vessels have been adjusted, based on the species composition estimates for yellowfin, skipjack, and bigeye tunas. The current species composition sampling program, described in <u>Section 1.3.1</u>, began in 2000, so the catch data for 2000-2014 are adjusted, based on estimates by flag for each year. The catch data for the previous years were adjusted by applying the average ratio by species from the 2000-2004 estimates, by flag, and summing over all flags. This has tended to increase the estimated catches of bigeye and decrease those of yellowfin

and/or skipjack. These adjustments are all preliminary, and may be improved in the future. All of the purse-seine and pole-and-line data for 2013 and 2014 are preliminary.

Data on the retained catches of most of the larger longline vessels are obtained from the governments of the nations that fish for tunas in the EPO. Longline vessels, particularly the larger ones, direct their effort primarily at bigeye, yellowfin, albacore, or swordfish. Data from smaller longliners, artisanal vessels, and other vessels that fish for tunas, billfishes, dorado, and sharks in the EPO were gathered either directly from the governments, from logbooks, or from reports published by the governments. Data for the western and central Pacific Ocean (WCPO) were provided by the Ocean Fisheries Programme of the Secretariat of the Pacific Community (SPC). All data for catches in the EPO by longlines and other gears for 2013 and 2014 are preliminary.

The data from all of the above sources are compiled in a database by the IATTC staff and summarized in this report. In recent years, the IATTC staff has increased its effort toward compiling data on the catches of tunas, billfishes, and other species caught by other gear types, such as trollers, harpooners, gillnetters, and recreational vessels. The estimated total catches from all sources mentioned above of yellowfin, skipjack, and bigeye in the entire Pacific Ocean are shown in <u>Table A-1</u>, and are discussed further in the sections below.

Estimates of the annual retained and discarded catches of tunas and other species taken by tuna-fishing vessels in the EPO during 1985-2014 are shown in Tables A-2a-c. The catches of yellowfin, bigeye, and skipjack tunas, by gear and flag, during 1985-2014 are shown in Tables A-3a-e, and the purse-seine and pole-and-line catches of tunas and bonitos during 2013-2014 are summarized by flag in <u>Table A-4</u>. There were no restrictions on fishing for tunas in the EPO during 1988-1997, but the catches of most species have been affected by restrictions on fishing during some or all of the last six months of 1998-2014. Furthermore, regulations placed on purse-seine vessels directing their effort at tunas associated with dolphins have affected the way these vessels operate, especially since the late 1980s, as discussed in <u>Section 3</u>.

The catches have also been affected by climate perturbations, such as the major El Niño events that occurred during 1982-1983 and 1997-1998. These events made the fish less vulnerable to capture by purse seiners due to the greater depth of the thermocline, but had no apparent effect on the longline catches. Yellowfin recruitment tends to be greater after an El Niño event.

1.1. Catches by species

1.1.1. Yellowfin tuna

The annual catches of yellowfin during 1985-2014 are shown in <u>Table A-1</u>. The EPO totals for 1993-2014 include discards from purse-seine vessels with carrying capacities greater than 363 t. The El Niño event of 1982-1983 led to a reduction in the catches in those years, whereas the catches in the WCPO were apparently not affected. Although the El Niño episode of 1997-1998 was greater in scope, it did not have the same effect on the yellowfin catches in the EPO. In the EPO, catches increased steadily to a high of 443 thousand t in 2002; they decreased substantially in 2004, reaching their lowest level during 2006-2008, at only 44% of the highest catches of the 2001-2003 period. The 2014 catch of 234 thousand t is equal to the average for the current 5 year period. In the WCPO, the catches of yellowfin increased steadily to a high of 604 thousand t in 1998, then settled into a range of 468 to 590 thousand t during 1999-2013.

The annual retained catches of yellowfin in the EPO by purse-seine and pole-and-line vessels during 1985-2014 are shown in Table A-2a. The average annual retained catch during 1999-2013 was 260 thousand t (range: 167 to 413 thousand t). The preliminary estimate of the retained catch in 2014, 233 thousand t, was 7% larger than that of 2013, but 10% less than the average for 1999-2013. The average amount of yellowfin discarded at sea during 1999-2013 was about 1% of the total purse-seine catch (retained catch plus discards) of yellowfin (range: 0.1 to 2.4%) (Table A-2a).

The annual retained catches of yellowfin in the EPO by longliners during 1985-2014 are shown in Table A-2a. During 1990-2003 catches averaged about 23 thousand t (range: 12 to 35 thousand t), or about 8% of the total retained catches of yellowfin. Longline catches declined sharply beginning in 2005, averaging 10 thousand t per year (range: 8 to 13 thousand t), or about 4% of the total retained catches, through 2013. The lower longline catch total for 2014 is due to incomplete data for the year. Yellowfin are also caught by recreational vessels, as incidental catch in gillnets, and by artisanal fisheries. Estimates of these catches are shown in Table A-2a, under "Other gears" (OTR); during 1999-2013 they averaged about 1 thousand t.

1.1.2. Skipjack tuna

The annual catches of skipjack during 1985-2014 are shown in Table A-1. Most of the skipjack catch in the Pacific Ocean is taken in the WCPO. Prior to 1999, WCPO skipjack catches averaged about 900 thousand t. Beginning in 1999, catches increased steadily from 1.1 million t to an all-time high of 1.8 million t in 2013. In the EPO, the greatest yearly catches occurred between 2003 and 2014, with the highest catch of 309 thousand t in 2006, and a range from 153 to 309 thousand t.

The annual retained catches of skipjack in the EPO by purse-seine and pole-and-line vessels during 1985-2014 are shown in <u>Table A-2a</u>. During 1999-2013 the annual retained catch averaged 234 thousand t (range 144 to 297 thousand t). The preliminary estimate of the retained catch in 2014, 262 thousand t, is 12% greater than the average for 1999-2013, and 12% less than the record-high retained catch of 2008. Discards of skipjack at sea decreased each year during the period, from 11% in 2000 to a low of less than 1% in 2013. During the period about 5% of the total catch of the species was discarded at sea (Table A-2a).

Small amounts of EPO skipjack are caught with longlines and other gears (Table A-2a).

1.1.3. Bigeye tuna

The annual catches of bigeye during 1985-2014 are shown in Table A-1. Overall, the catches in both the EPO and WCPO have increased, but with considerable fluctuations. In the EPO, the average catch for the period was 103 thousand t, with a low of 72 thousand t in 1985 and a high of 149 thousand t in 2000. In the WCPO the catches of bigeye increased to more than 77 thousand t during the late 1970s, decreased during the early 1980s, and then increased steadily to 111 thousand t in 1996. In 1997 the total jumped to 154 thousand t, and reached a high of 180 thousand t in 2004. Since 2004 the catch has fluctuated between 128 and 153 thousand t.

The annual retained catches of bigeye in the EPO by purse-seine and pole-and-line vessels during 1985-2014 are shown in Table A-2a. During 1993-1994 the use of fish-aggregating devices (FADs), placed in the water by fishermen to aggregate tunas, nearly doubled, and continued to increase in the following years. This resulted in greater catches of bigeye by purse-seine vessels. Before this increase, the annual retained catch of bigeye taken by purse-seine vessels in the EPO was about 5 thousand t (Table A-2a). As a result of the development of the FAD fishery, it increased from 35 thousand t in 1994 to between 44 and 95 thousand t during 1995-2013. The preliminary estimate of the retained catch in the EPO in 2014 is 60 thousand t.

During 1999-2013 the purse-seine catch of the species discarded at sea has steadily decreased, from 9% in 1999 to less than 1% in 2013, for an average discard rate of about 2.5%. No bigeye catch has been reported by pole-and-line vessels in recent years.

From 1985 to 1993, before the increase in the use of FADs, longliners caught an average of 95% of the bigeye in the EPO (average 86 thousand t; range; 66 to 104 thousand t). During 1999-2013 this average dropped to 39%, with a low of 25% in 2008 (average: 42 thousand t; range: 26 to 74 thousand t) (Table A-2a). The preliminary estimate of the longline catch in the EPO in 2014 is 35 thousand t (Table A-2a).

Small amounts of bigeye are caught in the EPO by other gears, as shown in Table A-2a.

1.1.4. Bluefin tuna

The catches of Pacific bluefin in the EPO during 1985-2014, by gear, are shown in Table A-2a. Purseseine and pole-and-line vessels accounted for over 94% of the total EPO retained catch during 1999-2013. During this period the annual retained catch of bluefin in the EPO by purse-seine vessels averaged 4.6 thousand t (range 1.2 to 9.9 thousand t). The preliminary estimate of the retained purse-seine catch of bluefin in 2014, 4.9 thousand t, is slightly greater than the average for 1999-2013 (Table A-2a).

The catches of Pacific Bluefin in the entire Pacific Ocean, by flag and gear, are shown in <u>Table A-5a</u>. The data, which were obtained from the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC), are reported by fishing nation or entity, regardless of the area of the Pacific Ocean in which the fish were caught.

Catches of Pacific bluefin by recreational gear in the EPO are reported in numbers of individual tuna caught, whereas all other gears report catch in weight (metric tons). These numbers are then converted to metric tons for inclusion in the EPO catch totals for all gears. The original catch data for 1985-2014, in numbers of fish, are presented in Table A-5b.

1.1.5. Albacore tuna

The catches of albacore in the entire Pacific Ocean, by gear and area (north and south of the equator) are shown in Tables A-6a and A-6b. The catches of albacore in the EPO, by gear, are shown in Table A-2a. A significant portion of the albacore catch is taken by troll gear, included under "Other gears" (OTR) in Table A-2a. The catch data were obtained from IATTC data for the EPO and from data compiled by the SPC for the WCPO.

1.1.6. Other tunas and tuna-like species

While yellowfin, skipjack, and bigeye tunas comprise the most significant portion of the retained catches of the purse-seine and pole-and-line fleets in the EPO, other tunas and tuna-like species, such as black skipjack, bonito, wahoo, and frigate and bullet tunas, contribute to the overall harvest in this area. The estimated annual retained and discarded catches of these species during 1985-2014 are presented in Table A-2a. The catches reported in the "unidentified tunas" category (TUN) in Table A-2a contain some catches reported by species (frigate or bullet tunas) along with the unidentified tunas. The total retained catch of these other species by these fisheries was 7.0 thousand t in 2014, which is greater than the 1999-2013 average retained catch of 6.4 thousand t (range: 500 t to 19 thousand t).

Black skipjack are also caught by other gears in the EPO, mostly by coastal artisanal fisheries. Bonitos are also caught by artisanal fisheries, and have been reported as catch by longline vessels in some years.

1.1.7. Billfishes

Catch data for billfishes (swordfish, blue marlin, black marlin, striped marlin, shortbill spearfish, and sailfish) are shown in Table A-2b.

In general, dolphins, sea turtles, whale sharks, and small fish are the only animals captured in the purseseine fishery that are released alive. In previous versions of this report, all billfishes caught in that fishery were classified as discarded dead. When most of the individuals of species caught incidentally are discarded, the difference between catches and discards is not significant for those species, but as the rate of retention of species formerly discarded increases, part of the bycatch becomes catch, and the distinction becomes important. As a result of a review in 2010, this has been clarified in Table A-2b with the addition of a column for retained catch next to the column for discards.

Swordfish are caught in the EPO with large-scale and artisanal longline gear, gillnets, harpoons, and occasionally with recreational gear. During 1999-2008 the longline catch of swordfish averaged 12 thousand t, but during 2011-2013 the average almost doubled to over 22 thousand t. It is not clear whether this is due to increased abundance of swordfish or increased effort directed toward that species.

Other billfishes are caught with large-scale and artisanal longline gear and recreational gear. The average annual longline catches of blue marlin and striped marlin during 1999-2013 were about 4.1 thousand and 1.9 thousand t, respectively. Smaller amounts of other billfishes are taken by longline.

Unfortunately, little information is available on the recreational catches of billfishes, but they are believed to be substantially less than the commercial catches for all species.

Small amounts of billfishes are caught by purse seiners, some are retained, and others are considered to be discarded although some may be landed but not reported. These data are also included in Table A-2b. During 1999-2013 purse seiners accounted about 1% of the total catch of billfishes in the EPO.

1.1.8. Other species

Data on the catches and discards of carangids (yellowtail, rainbow runner, and jack mackerel), dorado, elasmobranchs (sharks, rays, and skates), and other fishes caught in the EPO are shown in <u>Table A-2c</u>.

Bycatches in the purse-seine fishery are reported in Table A-2c as either retained or discarded. A revision was made to the allocation of catches into those categories as a result of a review in 2010.

Dorado are unloaded mainly in ports in Central and South America. Although the reported catches have been as high as 71 thousand t in recent years, the fishing gears used are often not reported.

1.2. Distributions of the catches of tunas

1.2.1. Purse-seine catches

The average annual distributions of the purse-seine catches of yellowfin, skipjack, and bigeye, by set type, in the EPO during 2009-2013, are shown in <u>Figures A-1a</u>, <u>A-2a</u>, and <u>A-3a</u>, and preliminary estimates for 2014 are shown in <u>Figures A-1b</u>, <u>A-2b</u>, and <u>A-3b</u>.

The majority of the yellowfin catches in 2014 were taken in sets associated with dolphins from 3 general areas: between 5°N and 15°N west of 115°W longitude, north of 15°N and east of 115°W longitude, and between 5°N and 15°N east of 105°W longitude. Offshore catches of yellowfin in association with dolphins were found further south than in the previous year.

Yellowfin catches on unassociated schools in 2014 decreased by 27% from the previous year, mainly due to a substantial decrease in catch in the inshore areas off southern Mexico. Inshore catches around the equator were lower than the 2009-2013 average. Smaller amounts of yellowfin were caught south of the equator throughout the EPO, mostly in association with floating objects.

Inshore skipjack catches in 2014 were similar to those of previous years, though the percentage of catch in association with floating objects increased. Offshore catches of skipjack were almost exclusively in association with floating objects, and the overall 2014 offshore catches decreased from the previous year.

Bigeye are not often caught north of about 7°N, and the catches of bigeye have decreased in the inshore areas off South America for several years. With the development of the fishery for tunas associated with FADs, the relative importance of the inshore areas has decreased, while that of the offshore areas has increased. Most of the bigeye catches are taken in sets on FADs between 5°N and 5°S.

1.2.2. Longline catches

Data on the spatial and temporal distributions of the catches in the EPO by the distant-water longline fleets of China, French Polynesia, Japan, the Republic of Korea, Spain, Chinese Taipei, the United States, and Vanuatu are maintained in databases of the IATTC. Bigeye and yellowfin tunas make up the majority of the catches by most of these vessels. The distributions of the catches of bigeye and yellowfin tunas in the Pacific Ocean by Chinese, Japanese, Korean, and Chinese Taipei longline vessels during 2009-2013 are shown in Figure A-4. Data for the Japanese longline fishery in the EPO during 1956-2007 are available in IATTC Bulletins describing that fishery.

1.3. Size compositions of the catches of tunas

1.3.1. Purse-seine, pole-and-line, and recreational fisheries

Length-frequency samples are the basic source of data used for estimating the size and age compositions of the various species of fish in the landings. This information is necessary to obtain age-structured estimates of the populations for various purposes, including the integrated modeling that the staff has employed during the last several years. The results of such studies have been described in several IATTC Bulletins, in its Annual Reports for 1954-2002, and in its Stock Assessment Reports.

Length-frequency samples of yellowfin, skipjack, bigeye, Pacific bluefin, and, occasionally, black skipjack from the catches of purse-seine, pole-and-line, and recreational vessels in the EPO are collected by IATTC personnel at ports of landing in Ecuador, Mexico, Panama, the USA, and Venezuela. The catches of yellowfin and skipjack were first sampled in 1954, bluefin in 1973, and bigeye in 1975. Sampling has continued to the present.

The methods for sampling the catches of tunas are described in the <u>IATTC Annual Report for 2000</u> and in <u>IATTC Stock Assessment Reports 2</u> and <u>4</u>. Briefly, the fish in a well of a purse-seine or pole-and-line vessel are selected for sampling only if all the fish in the well were caught during the same calendar month, in the same type of set (floating-object, unassociated school, or dolphin), and in the same sampling area. These data are then categorized by fishery (Figure A-5), based on the staff's most recent stock assessments.

Data for fish caught during the 2009-2014 period are presented in this report. Two sets of lengthfrequency histograms are presented for each species, except bluefin and black skipjack; the first shows the data by stratum (gear type, set type, and area) for 2014, and the second shows the combined data for each year of the 2009-2014 period. For bluefin, the histograms show the 2007-2012 catches by commercial and recreational gear combined. For black skipjack, the histograms show the 2009-2014 catches by commercial gear. Only a small amount of catch was taken by pole-and-line vessels in 2013 and 2014, and no samples were obtained from these vessels.

For stock assessments of yellowfin, nine purse-seine fisheries (four associated with floating objects, three associated with dolphins, and two unassociated) and one pole-and-line fishery are defined (Figure A-5). The last fishery includes all 13 sampling areas. Of the 815 wells sampled during 2014, 625 contained yellowfin. The estimated size compositions of the fish caught are shown in Figure A-6a. The majority of the yellowfin catch was taken in sets associated with dolphins in the Northern and Inshore dolphin fisheries throughout the year. Most of the larger yellowfin (>100 cm) were caught in the Northern dolphin fishery in all four quarters, and in the Inshore dolphin fishery in the first and second quarters. Smaller yellowfin (<100 cm) were caught primarily in the Inshore floating object fishery during the first quarter.

The estimated size compositions of the yellowfin caught by all fisheries combined during 2009-2014 are shown in <u>Figure A-6b</u>. The average weight of the yellowfin caught in 2014 (9.8 kg) was about the same as the previous year, but much less than the high for the 6 year period of 14.4 kg in 2009.

For stock assessments of skipjack, seven purse-seine fisheries (four associated with floating objects, two unassociated, one associated with dolphins) and one pole-and-line fishery are defined (Figure A-5). The last two fisheries include all 13 sampling areas. Of the 815 wells sampled, 479 contained skipjack. The estimated size compositions of the fish caught during 2014 are shown in Figure A-7a. Large amounts of skipjack in the 40- to 60-cm size range were caught in the Equatorial floating-object fishery in the third and fourth quarters, in the Inshore floating-object fishery in the first, second and third quarters, in the Southern floating-object fishery throughout the year, and in the Southern unassociated fishery during the first quarter. Larger skipjack in the 60- to 70-cm size range were taken in the Equatorial floating-object fishery during the fourth quarters, and in the Southern floating-object fishery during the fourth quarter, and in the Southern unassociated fishery during the fourth quarter, and in the Southern unassociated fishery during the fourth quarter, and in the Southern unassociated fishery during the fourth quarter, and in the Southern unassociated fishery during the second and fourth quarters.

The estimated size compositions of the skipjack caught by all fisheries combined during 2009-2014 are shown in Figure A-7b. The average weight of skipjack in 2014 (2.2 kg) was equal to the average of the previous five years (range: 2.0 to 2.5 kg).

For stock assessments of bigeye, six purse-seine fisheries (four associated with floating objects, one unassociated, one associated with dolphins) and one pole-and-line fishery are defined (Figure A-5). The last three fisheries include all 13 sampling areas. Of the 815 wells sampled, 159 contained bigeye. The estimated size compositions of the fish caught during 2014 are shown in Figure A-8a. Bigeye in the 40- to 100- size range was taken primarily in the Northern floating-object fishery during the second and fourth quarters, and in the Southern floating-object fishery in the third and fourth quarters. Larger bigeye (>100 cm) were caught primarily in the Equatorial floating-object fishery in the second and fourth quarters, and in the Southern floating-object fishery in the third and fourth quarters.

The estimated size compositions of bigeye caught by all fisheries combined during 2009-2014 are shown in <u>Figure A-8b</u>. The average weight of bigeye in 2014 (5.7 kg) was slightly higher than the previous year, but lower than the 8.0 and 6.7 kg recorded in 2011 and 2012, respectively.

Pacific bluefin are caught by purse-seine and recreational gear off California and Baja California from about 23°N to 35°N, with most of the catch being taken during May through October. During 2012 bluefin were caught between 28°N and 32°N from June through August. The majority of the catches of bluefin by both commercial and recreational vessels were taken during July and August. Prior to 2004, the sizes of the fish in the commercial and recreational catches have been reported separately. During 2004-2012, however, small sample sizes made it infeasible to estimate the size compositions separately. Therefore, the sizes of the fish in the commercial and recreational catches of bluefin were combined for each year of the 2004-2012 period. The average weight of the fish caught during 2012 (14.2 kg) was less than that of 2011 (15.4 kg), but very close to the average weights in 2009 and 2010. The estimated size compositions are shown in Figure A-9. Prior to 2013, IATTC staff collected length-frequency samples from recreational vessels was taken over by the U.S. National Marine Fisheries Service (NMFS). Very few samples were collected from commercial purse-seiners in 2013 and 2014. The size composition estimates for bluefin will be updated after development of a methodology that will incorporate the changes in sampling.

Black skipjack are caught incidentally by fishermen who direct their effort toward yellowfin, skipjack, and bigeye tuna. The demand for this species is low, so most of the catches are discarded at sea, but small amounts, mixed with the more desirable species, are sometimes retained. The estimated size compositions for each year of the 2009-2014 period are shown in Figure A-10.

1.3.2. Longline fishery

The estimated size compositions of the catches of yellowfin and bigeye by the Japanese longline fishery in the EPO during 2009-2013 are shown in Figures A-11 and A-12. The average weight of yellowfin in 2013 (61.3 kg) was considerably greater than the previous 4 years (44.7 to 56.3 kg). The average weight of bigeye in 2013 was consistent with the previous 4 years at 46.3 kg. Information on the size compositions of fish caught by the Japanese longline fishery in the EPO during 1958-2008 is available in IATTC Bulletins describing that fishery.

1.4. Catches of tunas and bonitos, by flag and gear

The annual retained catches of tunas and bonitos in the EPO during 1985-2014, by flag and gear, are shown in <u>Tables A-3a-e</u>. These tables include all of the known catches of tunas and bonitos compiled from various sources, including vessel logbooks, observer data, unloading records provided by canners and other processors, export and import records, estimates derived from the species and size composition sampling program, reports from governments and other entities, and estimates derived from the species-and size-composition sampling program. Similar information on tunas and bonitos prior to 2001, and historical data for tunas, billfishes, sharks, carangids, dorado, and miscellaneous fishes are available on

the <u>IATTC website</u>. The purse-seine catches of tunas and bonitos in 2013 and 2014, by flag, are summarized in <u>Table A-4</u>. Of the 566 thousand t of tunas and bonitos caught in 2014, 45% were caught by Ecuadorian vessels, and 24% by Mexican vessels. Other countries with significant catches of tunas and bonitos in the EPO included Panama (9 %), Venezuela (7%), and Colombia (8%).

2. FISHING EFFORT

2.1. Purse seine

Estimates of the numbers of purse-seine sets of each type (associated with dolphins, associated with floating objects, and unassociated) in the EPO during the 1999-2014 period, and the retained catches of these sets, are shown in <u>Table A-7</u> and in Figure 1. The estimates for vessels \leq 363 t carrying capacity were calculated from logbook data in the IATTC statistical data base, and those for vessels >363 t carrying capacity were calculated from the observer data bases of the IATTC, Colombia, Ecuador, the European Union, Mexico, Nicaragua, Panama, the United States, and Venezuela. The greatest numbers of sets associated with floating objects and unassociated sets were made from the mid-1970s to the early 1980s. Despite opposition to fishing for tunas associated with dolphins and the refusal of

U.S. canners to accept tunas caught during trips during which sets were made on dolphin-associated fish, the numbers of sets associated with dolphins decreased only moderately during the mid-1990s, and in 2003 were the greatest recorded.

There are two types of floating objects, flotsam and fish-aggregating devices (FADs). The occurrence of the former is unplanned from the point of view of the fishermen, whereas the latter are constructed by fishermen specifically for the purpose of attracting fish. The use of FADs increased sharply in 1994, with the percentage of FADs almost doubling from the previous year, to almost 60% of all floating-object sets. Their relative importance has continued to increase since then, reaching 97% of all floating-object sets by vessels with >363 t carrying capacity in recent years, as shown in <u>Table A-8</u>.

2.2. Longline

The reported nominal fishing effort (in thousands of hooks) by longline vessels in the EPO, and their catches of the predominant tuna species, are shown in Table A-9.

3. THE FLEETS

3.1. The purse-seine and pole-and-line fleets

The IATTC staff maintains detailed records of gear, flag, and fish-carrying capacity for most of the vessels that fish with purse-seine or pole-and-line gear for yellowfin, skipjack, bigeye, and/or Pacific bluefin tuna in the EPO. The fleet described here includes purse-seine and pole-and-line vessels that have fished all or part of the year in the EPO for any of these four species.

Historically, the owner's or builder's estimates of carrying capacities of individual vessels, in tons of fish, were used until landing records indicated that revision of these estimates was required.

Since 2000, the IATTC has used well volume, in cubic meters (m³), instead of weight, in metric tons (t),

to measure the carrying capacities of the vessels. Since a well can be loaded with different densities of fish, measuring carrying capacity in weight is subjective, as a load of fish packed into a well at a higher density weighs more than a load of fish packed at a lower density. Using volume as a measure of capacity eliminates this problem.

IATTC The staff began collecting capacity data bv volume in 1999, but has not yet obtained this information for all vessels. For vessels for which reliable information on well volume is not available, the estimated capacity in metric tons was converted to cubic meters.

Until about 1960, fishing for tunas in the EPO was dominated by pole-and-line vessels operating in coastal regions and in the vicinity of offshore islands and banks. During the late 1950s and early 1960s most of the larger pole-and-line vessels were converted to purse seiners, and by 1961 the EPO fishery was dominated by these vessels. From 1961 to 2014 the number of pole-and-line vessels decreased from 93 to 2, and their total well volume from about 11 thousand to about 226 m³. During the same period the number of purse-seine vessels increased from 125 to 217, and their total well volume from about 32 thousand to about 229 thousand m³, an average of about 1,055 m³ per vessel. An earlier peak in numbers and total well volume of purse seiners occurred from the mid-1970s to the early 1980s, when the number of vessels reached 282 and the total well volume about 195 thousand m³, an average of about 700 m³ per vessel (Table A-10; Figure 2).

The catch rates in the EPO were low during 1978-1981, due to concentration of fishing effort on small fish, and the situation was exacerbated by a major El Niño event, which began in mid-1982 and persisted until late 1983 and made the fish less vulnerable to capture. The total well volume of purse-seine and pole-and-line vessels then declined as vessels were deactivated or left the EPO to fish in other areas, primarily the western Pacific Ocean, and in 1984 it reached its lowest level since 1971, about 119 thousand m³. In early 1990 the U.S. tuna-canning industry adopted a policy of not purchasing tunas caught during trips during which sets on tunas associated with dolphins were made. This caused many U.S.-flag vessels to leave the EPO, with a consequent reduction in the fleet to about 117 thousand m³ in 1992. With increases in participation of vessels of other nations in the fishery, the total well volume has increased steadily since 1992, and in 2014 was 229 thousand m³.

The 2013 and preliminary 2014 data for numbers and total well volumes of purse-seine and pole-and-line vessels that fished for tunas in the EPO are shown in Tables A-11a and A-11b. During 2014, the fleet was dominated by vessels operating under the Ecuadorian and Mexican flags, with about 38% and 24%, respectively, of the total well volume; they were followed by Venezula (9%), Panama (9%), Colombia (6%), European Union (Spain) (4%), Nicaragua (4%), El Salvador (3%), and Guatemala, Peru and United States (1% each). The sum of the percentages may not add up to 100% due to rounding.

The cumulative capacity at sea during 2014 is compared to those of the previous five years in Figure 3.

The monthly average, minimum, and maximum total well volumes at sea (VAS), in thousands of cubic

meters, of purse-seine and pole-and-line vessels that fished for tunas in the EPO during 2004-2013, and the 2014 values, are shown in Table A-12. The monthly values are averages of the VAS estimated at weekly intervals by the IATTC staff. The fishery was regulated during some or all of the last four months of 1999-2014, so the VAS values for September-December 2014 are not comparable to the average VAS values for those months of 1999-2014. The average VAS values for 2004-2013 and 2014 were 135 thousand m^3 (62%) of total capacity) and 135 thousand m³ (59% of total capacity), respectively.

3.2. Other fleets of the EPO

Information on other types of vessels that fish for tunas in the EPO is available in the IATTC's Regional Vessel Register, on the <u>IATTC website</u>. The Register is incomplete for small vessels. In some cases, particularly for large longline vessels, the Register contains information for vessels authorized to fish not only in the EPO, but also in other oceans, and which may not have fished in the EPO during 2014, or ever.

FIGURE A-1a. Average annual distributions of the purse-seine catches of yellowfin, by set type, 2009-2013. The sizes of the circles are proportional to the amounts of yellowfin caught in those 5° by 5° areas. **FIGURA A-1a.** Distribución media anual de las capturas cerqueras de aleta amarilla, por tipo de lance, 2009-2013. El tamaño de cada círculo es proporcional a la cantidad de aleta amarilla capturado en la cuadrícula de 5° x 5° correspondiente.

FIGURE A-1b. Annual distributions of the purse-seine catches of yellowfin, by set type, 2014. The sizes of the circles are proportional to the amounts of yellowfin caught in those 5° by 5° areas. **FIGURA A-1b.** Distribución anual de las capturas cerqueras de aleta amarilla, por tipo de lance, 2014. El tamaño de cada círculo es proporcional a la cantidad de aleta amarilla capturado en la cuadrícula de 5° x 5° correspondiente.

FIGURE A-2a. Average annual distributions of the purse-seine catches of skipjack, by set type, 2009-2013. The sizes of the circles are proportional to the amounts of skipjack caught in those 5° by 5° areas. **FIGURA A-2a.** Distribución media anual de las capturas cerqueras de barrilete, por tipo de lance, 2009-2013. El tamaño de cada círculo es proporcional a la cantidad de barrilete capturado en la cuadrícula de 5° x 5° correspondiente.

FIGURE A-2b. Annual distributions of the purse-seine catches of skipjack, by set type, 2014. The sizes of the circles are proportional to the amounts of skipjack caught in those 5° by 5° areas.

FIGURA A-2b. Distribución anual de las capturas cerqueras de barrilete, por tipo de lance, 2014. El tamaño de cada círculo es proporcional a la cantidad de barrilete capturado en la cuadrícula de $5^{\circ} \times 5^{\circ}$ correspondiente.

FIGURE A-3a. Average annual distributions of the purse-seine catches of bigeye, by set type, 2009-2013. The sizes of the circles are proportional to the amounts of bigeye caught in those 5° by 5° areas. **FIGURA A-3a.** Distribución media anual de las capturas cerqueras de patudo, por tipo de lance, 2009-2013. El tamaño de cada círculo es proporcional a la cantidad de patudo capturado en la cuadrícula de 5° x 5° correspondiente.

FIGURE A-3b. Annual distributions of the purse-seine catches of bigeye, by set type, 2014. The sizes of the circles are proportional to the amounts of bigeye caught in those 5° by 5° areas.

FIGURA A-3b. Distribución anual de las capturas cerqueras de patudo, por tipo de lance, 2014. El tamaño de cada círculo es proporcional a la cantidad de patudo capturado en la cuadrícula de $5^{\circ} \times 5^{\circ}$ correspondiente.

FIGURE A-4. Distributions of the average annual catches of bigeye and yellowfin tunas in the Pacific Ocean, in metric tons, by Chinese, Japanese, Korean and Chinese Taipei longline vessels, 2009-2013. The sizes of the circles are proportional to the amounts of bigeye and yellowfin caught in those 5° by 5° areas.

FIGURA A-4. Distribución de las capturas anuales medias de atunes patudo y aleta amarilla en el Océano Pacifico, en toneladas métricas, por buques palangreros de China, Corea, Japón y Taipei Chino 2009-2013. El tamaño de cada círculo es proporcional a la cantidad de patudo y aleta amarilla capturado en la cuadrícula de 5° x 5° correspondiente.

FIGURE A-5. The fisheries defined by the IATTC staff for stock assessment of yellowfin, skipjack, and bigeye in the EPO. The thin lines indicate the boundaries of the 13 length-frequency sampling areas, and the bold lines the boundaries of the fisheries.

FIGURA A-5. Las pesquerías definidas por el personal de la CIAT para la evaluación de las poblaciones de atún aleta amarilla, barrilete, y patudo en el OPO. Las líneas delgadas indican los límites de las 13 zonas de muestreo de frecuencia de tallas, y las líneas gruesas los límites de las pesquerías.

FIGURE A-6a. Estimated size compositions of the yellowfin caught in the EPO during 2014 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-6a. Composición por tallas estimada del aleta amarilla capturado en el OPO durante 2014 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-6b. Estimated size compositions of the yellowfin caught by purse-seine and pole-and-line vessels in the EPO during 2009-2014. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-6b. Composición por tallas estimada del aleta amarilla capturado por buques cerqueros y cañeros en el OPO durante 2009-2014. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-7a. Estimated size compositions of the skipjack caught in the EPO during 2014 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-7a. Composición por tallas estimada del barrilete capturado en el OPO durante 2014 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-7b. Estimated size compositions of the skipjack caught by purse-seine and pole-and-line vessels in the EPO during 2009-2014. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-7b. Composición por tallas estimada del barrilete capturado por buques cerqueros y cañeros en el OPO durante 2009-2014. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-8a. Estimated size compositions of the bigeye caught in the EPO during 2014 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-8a. Composición por tallas estimada del patudo capturado e en el OPO durante 2014 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-8b. Estimated size compositions of the bigeye caught by purse-seine vessels in the EPO during 2009-2014. The average weights of the fish in the samples are given at the tops of the panels. **FIGURA A-8b.** Composición por tallas estimada del patudo capturado por buques cerqueros en el OPO durante 2009-2014. En cada recuadro se detalla el peso promedio de los peces en las muestras.

FIGURE A-9. Estimated catches of Pacific bluefin by purse-seine and recreational gear in the EPO during 2007-2012. The values at the tops of the panels are the average weights. **FIGURA A-9.** Captura estimada de aleta azul del Pacífico con arte de cerco y deportiva en el OPO durante 2007-2012. El valor en cada recuadro representa el peso promedio.

FIGURE A-10. Preliminary size compositions of the catches of black skipjack by purse-seine vessels in the EPO during 2009-2014. The values at the tops of the panels are the average weights.FIGURA A-10. Composición por tallas preliminar del barrilete negro capturado por buques cerqueros en el OPO durante 2009-2014. El valor en cada recuadro representa el peso promedio.

FIGURE A-11. Estimated size compositions of the catches of yellowfin tuna by the Japanese longline fishery in the EPO, 2009-2013.

FIGURA A-11. Composición por tallas estimada de las capturas de atún aleta amarilla por la pesquería palangrera japonesa en el OPO, 2009-2013.

FIGURE A-12. Estimated size compositions of the catches of bigeye tuna by the Japanese longline fishery in the EPO, 2009-2013.

FIGURA A-12. Composición por tallas estimada de las capturas de atún patudo por la pesquería palangrera japonesa en el OPO, 2009-2013.

TABLE A-1. Annual catches of yellowfin, skipjack, and bigeye tunas, by all types of gear combined, in the Pacific Ocean. The EPO totals for 1993-2014 include discards from purse-seine vessels with carrying capacities greater than 363 t.

TABLA A-1. Capturas anuales de atunes aleta amarilla, barrilete, y patudo, por todas las artes combinadas, en el Océano Pacífico. Los totales del OPO de 1993-2014 incluyen los descartes de buques cerqueros de más de 363 t de capacidad de acarreo.

		YFT			SKJ			BET		Total				
	EPO	WCPO	Total	EPO	WCPO	Total	EPO	WCPO	Total	EPO	WCPO	Total		
1985	225,939	279,124	505,063	52,002	562,265	614,267	72,398	82,215	154,613	350,339	923,604	1,273,943		
1986	286,071	260,770	546,841	67,745	715,528	783,273	105,185	84,082	189,267	459,001	1,060,380	1,519,381		
1987	286,164	308,743	594,907	66,466	656,149	722,615	101,347	100,234	201,581	453,977	1,065,126	1,519,103		
1988	296,428	301,716	598,144	92,127	793,226	885,353	74,313	92,163	166,476	462,868	1,187,105	1,649,973		
1989	299,436	349,531	648,967	98,921	767,763	866,684	72,994	98,789	171,783	471,351	1,216,083	1,687,434		
1990	301,522	390,460	691,982	77,107	835,848	912,955	104,851	115,761	220,612	483,480	1,342,069	1,825,549		
1991	265,970	417,229	683,199	65,890	1,063,265	1,129,155	109,121	99,255	208,376	440,981	1,579,749	2,020,730		
1992	252,514	430,985	683,499	87,294	957,325	1,044,619	92,000	118,121	210,121	431,808	1,506,431	1,938,239		
1993	256,199	373,328	629,527	100,434	919,411	1,019,845	82,843	102,774	185,617	439,476	1,395,513	1,834,989		
1994	248,071	411,101	659,172	84,661	990,802	1,075,463	109,331	117,534	226,865	442,063	1,519,437	1,961,500		
1995	244,639	407,302	651,941	150,661	1,028,566	1,179,227	108,210	106,483	214,693	503,510	1,542,351	2,045,861		
1996	266,928	409,877	676,805	132,335	1,016,890	1,149,225	114,706	110,760	225,466	513,969	1,537,527	2,051,496		
1997	277,575	500,495	778,070	188,285	925,713	1,113,998	122,274	153,726	276,000	588,134	1,579,934	2,168,068		
1998	280,606	603,903	884,509	165,489	1,205,639	1,371,128	93,954	167,338	261,292	540,049	1,976,880	2,516,929		
1999	304,638	524,268	828,906	291,249	1,099,846	1,391,095	93,078	149,317	242,395	688,965	1,773,431	2,462,396		
2000	286,865	561,404	848,269	230,480	1,184,649	1,415,129	148,557	133,374	281,931	665,902	1,879,427	2,545,329		
2001	425,008	526,977	951,985	157,676	1,109,368	1,267,044	130,546	134,949	265,495	713,230	1,771,294	2,484,524		
2002	443,458	485,758	929,216	167,048	1,287,960	1,455,008	132,806	158,107	290,913	743,312	1,931,825	2,675,137		
2003	415,933	542,625	958,558	300,470	1,285,042	1,585,512	115,175	128,318	243,493	831,578	1,955,985	2,787,563		
2004	296,847	580,414	877,261	217,249	1,386,908	1,604,157	110,722	179,810	290,532	624,818	2,147,132	2,771,950		
2005	286,664	538,657	825,321	283,453	1,402,757	1,686,210	111,197	140,538	251,735	681,314	2,081,952	2,763,266		
2006	179,625	467,685	647,310	309,090	1,501,245	1,810,335	119,360	150,365	269,725	608,075	2,119,295	2,727,370		
2007	182,141	497,421	679,562	216,324	1,654,537	1,870,861	94,239	136,404	230,643	492,704	2,288,362	2,781,066		
2008	197,320	590,045	787,365	307,699	1,629,454	1,937,153	103,290	143,815	247,105	608,309	2,363,314	2,971,623		
2009	250,196	526,548	776,744	239,434	1,790,878	2,030,312	109,353	144,457	253,810	598,983	2,461,883	3,060,866		
2010	261,787	540,374	802,161	153,093	1,696,061	1,849,154	95,347	127,722	223,069	510,227	2,364,157	2,874,384		
2011	216,419	499,935	716,354	283,509	1,542,196	1,825,705	89,773	150,196	239,969	589,701	2,192,327	2,782,028		
2012	213,058	584,010	797,068	273,446	1,768,821	2,042,267	102,623	153,203	255,826	589,127	2,506,034	3,095,161		
2013	229,433	517,803	747,236	283,300	1,797,897	2,081,197	83,631	137,502	221,133	596,364	2,453,202	3,049,566		
2014	233,566	*	233,566	264,378	*	264,378	94,932	*	94,932	592,876	*	592,876		

TABLE A-2a. Estimated retained catches (Ret.), by gear type, and estimated discards (Dis.), by purse-seine vessels with carrying capacities greater than 363 t only, of tunas and bonitos, in metric tons, in the EPO. The purse-seine and pole-and-line data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimate and are preliminary. The data for 2013-2014 are preliminary.

TABLA A-2a. Estimaciones de las capturas retenidas (Ret.), por arte de pesca, y de los descartes (Dis.), por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de atunes y bonitos, en toneladas métricas, en el OPO. Los datos de los atunes aleta amarilla, barrilete, y patudo de las pesquerías cerquera y cañera fueron ajustados a la estimación de composición por especie, y son preliminares. Los datos de 2013-2014 son preliminares.

	Yellowfin—Aleta amarilla							Ski	pjack	—Bar	rilete	Bigeye—Patudo						
	P	S			OTR		P	S			OTR		Р	S			OTR	
	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total
1985	211,459	-	1,070	13,198	212	225,939	50,829	-	946	44	183	52,002	6,056	-	2	66,325	15	72,398
1986	260,512	-	2,537	22,808	214	286,071	65,634	-	1,921	58	132	67,745	2,686	-	-	102,425	74	105,185
1987	262,008	-	5,107	18,911	138	286,164	64,019	-	2,233	37	177	66,466	1,177	-	-	100,121	49	101,347
1988	277,293	-	3,723	14,660	752	296,428	87,113	-	4,325	26	663	92,127	1,535	-	5	72,758	15	74,313
1989	277,996	-	4,145	17,032	263	299,436	94,934	-	2,940	28	1,019	98,921	2,030	-	-	70,963	1	72,994
1990	263,253	-	2,676	34,633	960	301,522	74,369	-	823	41	1,874	77,107	5,921	-	-	98,871	59	104,851
1991	231,257	-	2,856	30,899	958	265,970	62,228	-	1,717	36	1,909	65,890	4,870	-	31	104,195	25	109,121
1992	228,121	-	3,789	18,646	1,958	252,514	84,283	-	1,957	24	1,030	87,294	7,179	-	-	84,808	13	92,000
1993	219,492	4,713	4,951	24,009	3,034	256,199	83,830	10,515	3,772	61	2,256	100,434	9,657	653	-	72,498	35	82,843
1994	208,408	4,525	3,625	30,026	1,487	248,071	70,126	10,491	3,240	73	731	84,661	34,899	2,266	-	71,360	806	109,331
1995	215,434	5,275	1,268	20,596	2,066	244,639	127,047	16,373	5,253	77	1,911	150,661	45,321	3,251	-	58,269	1,369	108,210
1996	238,607	6,312	3,762	16,608	1,639	266,928	103,973	24,494	2,555	52	1,261	132,335	61,311	5,689	-	46,958	748	114,706
1997	244,878	5,516	4,418	22,163	600	277,575	153,456	31,338	3,260	135	96	188,285	64,272	5,402	-	52,580	20	122,274
1998	253,959	4,697	5,085	15,336	1,529	280,606	140,631	22,643	1,684	294	237	165,489	44,129	2,822	-	46,375	628	93,954
1999	281,920	6,547	1,783	11,682	2,706	304,638	261,565	26,046	2,044	201	1,393	291,249	51,158	4,932	-	36,450	538	93,078
2000	253,263	6,207	2,431	23,855	1,109	286,865	205,647	24,468	231	68	66	230,480	95,282	5,417	-	47,605	253	148,557
2001	383,936	7,028	3,916	29,608	520	425,008	143,165	12,815	448	1,214	34	157,676	60,518	1,254	-	68,755	19	130,546
2002	412,286	4,140	950	25,531	551	443,458	153,546	12,506	616	261	119	167,048	57,421	949	-	74,424	12	132,806
2003	383,279	5,865	470	25,174	1,145	415,933	273,968	22,453	638	634	2,777	300,470	53,052	2,326	-	59,776	21	115,175
2004	272,557	3,000	1,884	18,779	627	296,847	197,824	17,078	528	713	1,106	217,249	65,471	1,574	-	43,483	194	110,722
2005	268,101	2,771	1,822	12,118	1,852	286,664	263,229	16,915	1,299	231	1,779	283,453	67,895	1,900	-	41,377	25	111,197
2006	166,631	1,534	686	9,316	1,458	179,625	296,268	11,177	435	224	986	309,090	83,838	1,680	-	33,802	40	119,360
2007	170,016	1,725	894	8,067	1,439	182,141	208,295	6,450	276	238	1,065	216,324	63,450	890	-	29,855	44	94,239
2008	185,057	696	814	9,812	941	197,320	296,603	8,249	499	1,185	1,163	307,699	75,028	2,086	-	26,148	28	103,290
2009	236,772	1,262	709	10,459	994	250,196	230,523	6,064	151	1,584	1,112	239,434	76,799	1,019	-	31,520	15	109,353
2010	251,009	1,031	460	8,329	958	261,787	147,192	2,769	47	1,815	1,270	153,093	57,752	564	-	37,029	2	95,347
2011	206,851	415	276	8,071	806	216,419	276,035	5,215	24	1,384	851	283,509	56,512	631	-	32,630	-	89,773
2012	198,017	451	400	12,954	1,236	213,058	266,215	3,511	303	2,377	1,040	273,446	66,020	473	-	36,122	8	102,623
2013	217,258	207	754	10,349	865	229,433	278,091	2,254	167	2,014	774	283,300	49,426	273	-	33,915	17	83,631
2014	232,889	517	*	*	*	233,566	261,665	2,596	*	*	*	264,378	59,600	83	-	35,249	-	94,932

TABLE A-2a.	(continued)
TABLA A-2a.	(continuación)

ĺ	Pacif	ic blue	fin—A	Aleta az	ul del Pa	cífico		Α	lbacor	e—Alba	icora		Black skipjack—Barrilete negro						
	P	S			OTR		Р	S			OTR		Р	S			OTR		
	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	
1985	3.996	-	-	1	77	4.074	42	-	877	7.268	6.654	14.841	288	-	-	-	7	295	
1986	5,040	-	-	1	64	5,105	47	-	86	6,450	4,701	11,284	569	-	-	-	18	587	
1987	980	-	-	3	88	1,071	1	-	320	9,994	2,662	12,977	571	-	-	-	2	573	
1988	1,379	-	-	2	52	1,433	17	-	271	9,934	5,549	15,771	956	-	-	-	311	1,267	
1989	1,103	-	5	4	91	1,203	1	-	21	6,784	2,695	9,501	801	-	-	-	-	801	
1990	1,430	-	61	12	103	1,606	39	-	170	6,536	4,105	10,850	787	-	-	-	4	791	
1991	419	-	-	5	55	479	0	-	834	7,893	2,754	11,481	421	-	-	-	25	446	
1992	1,928	-	-	21	147	2,096	0	-	255	17,080	5,740	23,075	105	-	-	3	-	108	
1993	580	0	-	11	316	907	0	-	1	11,194	4,410	15,605	104	3,925	-	31	-	4,060	
1994	969	0	-	12	116	1,097	0	-	85	10,390	10,154	20,629	188	857	-	40	-	1,085	
1995	659	0	-	25	264	948	0	-	465	6,185	7,427	14,077	203	1,448	-	-	-	1,651	
1996	8,333	0	-	19	83	8,435	11	-	72	7,631	8,398	16,112	704	2,304	-	12	-	3,020	
1997	2,608	3	2	14	235	2,862	1	-	59	9,678	7,540	17,278	100	2,512	-	11	-	2,623	
1998	1,772	0	-	95	516	2,383	42	-	81	12,635	13,158	25,916	489	1,876	39	-	-	2,404	
1999	2,553	54	5	151	514	3,277	47	-	227	11,633	14,510	26,417	171	3,404	-	-	-	3,575	
2000	3,712	0	61	46	349	4,168	71	-	86	9,663	13,453	23,273	293	1,995	-	-	-	2,288	
2001	1,155	3	1	148	378	1,685	3	-	157	19,410	13,727	33,297	2,258	1,019	-	-	-	3,277	
2002	1,758	1	3	71	620	2,453	31	-	381	15,289	14,433	30,134	1,459	2,283	8	-	-	3,750	
2003	3,233	0	3	87	369	3,692	34	-	59	24,901	20,397	45,391	433	1,535	6	13	117	2,104	
2004	8,880	19	-	15	59	8,973	105	-	126	18,444	22,011	40,686	884	387	-	27	862	2,160	
2005	4,743	15	-	0	80	4,838	2	-	66	11,398	15,679	27,145	1,472	2,124	-	-	22	3,618	
2006	9,928	0	-	0	93	10,021	109	-	1	13,728	18,980	32,818	1,999	1,972	-	-	-	3,9/1	
2007	4,189	14	-	0	14	4,203	187	-	21	11,031 8 062	19,261	30,500	2,306	1,625	-	2	54	5,987	
2008	4,392	24	13	0	159	4,404	49	-	1,030	0,903	10,333	20,015	3,024	2,231	-	-	0	5,005	
2009	3,428	24	0	2	138	7 827	25	Z	2,218	12,187	20.125	24 049	4,230	1,020	-	2	-	3,278	
2010	2 820	1	0	1	242	3.076	23	-	-	10,000	20,133	37 022	2 3,423	710	-	6	104	3 042	
2011	6 705	4	-	1	300	7 105	10	-	-	23 458	18 113	<i>31,023</i> <i>A</i> 1,571	4 504	/19	-	5	-	1 9/9	
2012	3 154	0	-	1	808	3 963	-	-	-	22,430	18 537	43 072	3 55/	805		11	_	4,249	
2013	4 862	66	*	*	392	5 320			-	*	*	+3,072	4 083	486	-	*	*	4,570	
2014	4,002	00		•	392	5,520	-	-	-			•	4,003	400	-			4,509	

			Bo	nitos				Unid Atune	lenti es no	fied tur identif	nas— icados		Total						
	PS				OTR		Р	S			OTR		P	S			OTR		
	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	
1985	3,599	-	5	-	7,869	11,473	19	-	-	-	678	697	276,288	-	2,900	86,836	15,695	381,719	
1986	232	-	258	-	1,889	2,379	177	-	4	-	986	1,167	334,897	-	4,806	131,742	8,078	479,523	
1987	3,195	-	121	-	1,782	5,098	481	-	-	-	2,043	2,524	332,432	-	7,781	129,066	6,941	476,220	
1988	8,811	-	739	-	947	10,497	79	-	-	-	2,939	3,018	377,183	-	9,063	97,380	11,228	494,854	
1989	11,278	-	818	-	465	12,561	36	-	-	-	626	662	388,179	-	7,929	94,811	5,160	496,079	
1990	13,641	-	215	-	371	14,227	200	-	-	3	692	895	359,640	-	3,945	140,096	8,168	511,849	
1991	1,207	-	82	-	242	1,531	4	-	-	29	192	225	300,406	-	5,520	143,057	6,160	455,143	
1992	977	-	-	-	318	1,295	24	1	-	27	1,071	1,122	322,617	-	6,001	120,609	10,277	459,504	
1993	599	12	1	-	436	1,048	9	1,975	-	10	4,082	6,076	314,271	21,793	8,725	107,814	14,569	467,172	
1994	8,331	147	362	-	185	9,025	9	498	-	1	464	972	322,930	18,784	7,312	111,902	13,943	474,871	
1995	7,929	55	81	-	54	8,119	11	626	-	-	1,004	1,641	396,604	27,028	7,067	85,152	14,095	529,946	
1996	647	1	7	-	16	671	37	1,028	-	-	1,038	2,103	413,623	39,828	6,396	71,280	13,183	544,310	
1997	1,097	4	8	-	34	1,143	71	3,383	-	7	1,437	4,898	466,483	48,158	7,747	84,588	9,962	616,938	
1998	1,330	4	7	-	588	1,929	13	1,233	-	24	18,158	19,428	442,365	33,275	6,896	74,759	34,814	592,109	
1999	1,719	0	-	24	369	2,112	27	3,092	-	2,113	4,279	9,511	599,160	44,075	4,059	62,254	24,309	733,857	
2000	636	0	-	75	56	767	190	1,410	-	1,992	1,468	5,060	559,094	39,497	2,809	83,304	16,754	701,458	
2001	17	0	0	34	19	70	191	679	-	2,448	55	3,373	591,243	22,798	4,522	121,617	14,752	754,932	
2002	-	0	-	-	1	1	576	1,863	-	482	1,422	4,343	627,077	21,742	1,958	116,058	17,158	783,993	
2003	-	0	1	-	25	26	80	1,238	-	215	750	2,283	714,079	33,417	1,177	110,800	25,601	885,074	
2004	15	35	1	8	3	62	256	973	-	349	258	1,836	545,992	23,066	2,539	81,818	25,120	678,535	
2005	313	18	0	-	11	342	190	1,922	-	363	427	2,902	605,945	25,665	3,187	65,487	19,875	720,159	
2006	3,507	80	12	-	3	3,602	50	1,910	-	21	193	2,174	562,330	18,353	1,134	57,091	21,753	660,661	
2007	15,906	628	107	2	-	16,643	598	1,221	-	2,194	301	4,314	464,947	12,539	1,298	51,389	22,178	552,351	
2008	7,874	37	9	6	26	7,952	136	1,380	1	727	883	3,127	572,763	14,713	2,388	46,841	19,665	656,370	
2009	9,720	15	0	8	165	9,908	162	469	-	1,933	74	2,638	561,710	9,875	3,078	57,693	19,676	652,032	
2010	2,820	19	4	2	0	2,845	136	709	-	1,754	36	2,635	470,105	6,171	511	62,828	22,673	562,288	
2011	7,969	45	18	10	9	8,051	108	784	-	3,173	-	4,065	552,631	7,813	318	65,228	18,968	644,958	
2012	8,191	156	-	1	64	8,412	41	354	-	196	22	613	549,693	5,385	703	75,114	20,882	651,777	
2013	2,063	9	-	13	27	2,112	53	461	-	12	23	549	553,599	4,009	921	70,850	21,051	650,430	
2014	2,821	38	-	*	*	2,859	115	328	-	*	*	443	566,035	4,114	*	*	*	570,426	

TABLE A-2a. (continued)**TABLA A-2a.** (continuación)

TABLE A-2b. Estimated retained catches, by gear type, and estimated discards, by purse-seine vessels with carrying capacities greater than 363 t only, of billfishes, in metric tons, in the EPO. Data for 2013-2014 are preliminary. PS dis. = discards by purse-seine vessels.

	Swordfish—Pez espada						e marli	Black	k marli	n—M	arlín i	negro	Striped marlin— Marlín rayado							
	PS		тт	отр	Total	PS		TT	OTD	Tatal	PS		тт	отр	Total	PS		TT	ОТР	Total
	Ret.	t. Dis.		OIK	Total	Ret.	Dis.	LL	UIK	Total	Ret.	Dis.	LL	UIK	Totai	Ret.	Dis.	LL	OIK	Totai
1985	-	-	1,885	3,768	5,653	-	-	3,589	-	3,589	-	-	180	-	180	-	-	1,599	-	1,599
1986	-	-	3,286	3,294	6,580	-	-	5,278	-	5,278	-	-	297	-	297	-	-	3,540	-	3,540
1987	-	-	4,676	3,740	8,416	-	-	7,282	-	7,282	-	-	358	-	358	-	-	7,647	-	7,647
1988	-	-	4,916	5,642	10,558	-	-	5,663	-	5,663	-	-	288	-	288	-	-	5,283	-	5,283
1989	-	-	5,202	6,072	11,274	-	-	5,392	-	5,392	-	-	193	-	193	-	-	3,473	-	3,473
1990	-	-	5,807	5,066	10,873	-	-	5,540	-	5,540	-	-	223	-	223	-	-	3,260	333	3,593
1991	-	17	10,671	4,307	14,995	-	69	6,719	-	6,788	-	58	246	-	304	-	76	2,993	409	3,478
1992	-	4	9,820	4,267	14,091	-	52	6,626	-	6,678	-	95	228	-	323	-	69	3,054	239	3,362
1993	3	1	6,187	4,414	10,605	84	20	6,571	-	6,675	57	31	218	-	306	47	20	3,575	259	3,901
1994	1	-	4,990	3,822	8,813	69	15	9,027	-	9,111	39	23	256	-	318	20	9	3,396	257	3,682
1995	3	-	4,495	2,974	7,472	70	16	7,288	-	7,374	43	23	158	-	224	18	8	3,249	296	3,571
1996	1	-	7,071	2,486	9,558	62	15	3,596	-	3,673	46	24	100	-	170	20	9	3,218	430	3,677
1997	2	1	10,580	1,781	12,364	126	15	5,915	-	6,056	71	22	154	-	247	28	3	4,473	329	4,833
1998	3	-	9,800	3,246	13,049	130	20	4,856	-	5,006	72	28	168	-	268	20	3	3,558	509	4,090
1999	2	-	7,569	1,965	9,536	181	38	3,691	-	3,910	83	42	94	-	219	26	11	2,621	376	3,034
2000	3	-	8,930	2,383	11,316	120	23	3,634	-	3,777	67	21	105	-	193	17	3	1,889	404	2,313
2001	3	1	16,007	1,964	17,975	119	40	4,196	-	4,355	67	48	123	-	238	13	8	1,961	342	2,324
2002	1	-	17,598	2,119	19,718	188	33	3,480	-	3,701	86	30	78	-	194	69	5	2,158	412	2,644
2003	3	1	18,161	354	18,519	185	21	4,015	-	4,221	121	26	73	-	220	31	4	1,904	417	2,356
2004	2	-	15,372	309	15,683	140	21	3,783	-	3,944	62	5	41	-	108	23	1	1,547	390	1,961
2005	2	-	8,987	4,304	13,293	209	14	3,407	-	3,630	95	9	51	-	155	37	4	1,559	553	2,153
2006	7	-	9,164	3,800	12,971	164	21	2,396	105	2,686	124	21	43	-	188	54	3	1,627	490	2,174
2007	4	-	9,635	4,390	14,029	124	13	3,458	106	3,701	74	8	48	-	130	32	4	1,653	1,024	2,713
2008	6	-	12,223	3,072	15,301	125	8	3,222	114	3,469	76	9	100	-	185	33	2	1,289	1,045	2,369
2009	4	-	15,549	3,809	19,362	159	15	3,887	131	4,192	76	8	99	-	183	23	2	1,334	7	1,366
2010	4	-	18,390	4,497	22,891	176	12	5,410	126	5,724	62	9	159	0	230	21	2	2,123	9	2,155
2011	3	-	20,424	5,191	25,618	150	6	4,365	144	4,665	59	7	187	-	253	28	1	2,709	16	2,754
2012	5	-	23,580	6,383	29,968	178	15	5,816	177	6,186	71	4	441	-	516	28	-	2,697	20	2,745
2013	2	-	22,337	4,964	27,303	172	15	6,311	168	6,666	99	4	134	-	237	21	1	2,161	19	2,202
2014	3	-	*	*	3	208	12	*	*	220	71	4	*	*	75	23	1	*	*	24

TABLA A-2b. Estimaciones de las capturas retenidas, por arte de pesca, y de los descartes, por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de peces picudos, en toneladas métricas, en el OPO. Los datos de 2013-2014 son preliminares. PS dis. = descartes por buques cerqueros.

	S N	hortbil Iarlín (ll spea tromp	rfish– a cort	_ a		Sa P	a		Un istio	identif billfish fóridos	ied ist es—P no id	iopho icudos entific	rid ados	Total billfishes— Total de peces picudos					
	Р	S	тт	OTR	Total	PS		тт	ОТР	Total	PS		тт	отр	Tatal	PS		тт	ОТР	Total
	Ret.	Dis.	LL			Ret.	Dis.	LL	UIK	10141	Ret.	Dis.	LL	UIK	Total	Ret.	Dis.	LL	UIK	10141
1985	-	-	-	-	-	-	-	395	-	395	-	-	1	-	1	-	-	7,649	3,768	11,417
1986	-	-	5	-	5	-	-	583	-	583	-	-	1	-	1	-	-	12,990	3,294	16,284
1987	-	-	15	-	15	-	-	649	-	649	-	-	398	-	398	-	-	21,025	3,740	24,765
1988	-	-	13	-	13	-	-	649	-	649	-	-	368	-	368	-	-	17,180	5,642	22,822
1989	-	-	-	-	-	-	-	192	-	192	-	-	51	-	51	-	-	14,503	6,072	20,575
1990	-	-	-	-	-	-	-	6	-	6	-	-	125	-	125	-	-	14,961	5,399	20,360
1991	-	-	1	-	1	-	-	717	-	717	-	-	112	-	112	-	220	21,459	4,716	26,395
1992	-	1	1	-	2	-	-	1,351	-	1,351	-	-	1,123	-	1,123	-	221	22,203	4,506	26,930
1993	0	0	1	-	1	26	32	2,266	-	2,324	29	68	1,650	-	1,747	246	172	20,468	4,673	25,559
1994	0	0	144	-	144	19	21	1,682	-	1,722	7	16	1,028	-	1,051	155	84	20,523	4,079	24,841
1995	1	0	155	-	156	12	15	1,351	-	1,378	4	9	232	-	245	151	71	16,928	3,270	20,420
1996	1	0	126	-	127	10	12	738	-	760	6	13	308	-	327	146	73	15,157	2,916	18,292
1997	1	0	141	-	142	12	11	1,891	-	1,914	3	5	1,324	-	1,332	243	57	24,478	2,110	26,888
1998	0	0	200	-	200	28	31	1,382	-	1,441	5	7	575	55	642	258	89	20,539	3,810	24,696
1999	1	0	278	-	279	33	8	1,216	-	1,257	6	12	1,136	-	1,154	332	111	16,605	2,341	19,389
2000	1	0	285	-	286	33	17	1,380	-	1,430	3	6	879	136	1,024	244	70	17,102	2,923	20,339
2001	0	0	304	-	304	18	45	1,539	325	1,927	2	5	1,742	204	1,953	222	147	25,872	2,835	29,076
2002	1	0	273	-	274	19	15	1,792	17	1,843	4	5	1,862	14	1,885	368	88	27,241	2,562	30,259
2003	1	4	290	-	295	38	49	1,174	-	1,261	6	5	1,389	-	1,400	385	110	27,006	771	28,272
2004	1	0	207	-	208	19	13	1,400	17	1,449	4	4	1,384	-	1,392	251	44	23,734	716	24,745
2005	1	0	229	-	230	32	11	805	15	863	5	3	901	-	909	381	41	15,939	4,872	21,233
2006	1	0	231	-	232	30	13	1,007	35	1,085	23	4	490	1	518	403	62	14,958	4,431	19,854
2007	1	0	239	-	240	41	8	1,032	64	1,145	13	4	107	15	139	289	37	16,172	5,599	22,097
2008	1	0	257	-	258	28	7	524	72	631	16	5	85	8	114	285	31	17,700	4,311	22,327
2009	1	0	446	-	447	17	6	327	8	358	11	1	27	12	51	291	32	21,669	3,967	25,959
2010	1	0	519	-	520	27	20	655	3	705	8	2	111	-	121	299	45	27,367	4,635	32,346
2011	-	-	462	-	462	18	5	658	28	709	15	1	42	3	61	273	20	28,847	5,382	34,522
2012	1	-	551	-	552	14	2	683	15	714	10	1	87	-	98	307	22	33,855	6,595	40,779
2013	1	-	663	-	664	16	2	473	-	491	16	3	34	-	53	327	25	32,113	5,151	37,616
2014	0	-	*	*	-	15	1	*	*	16	9	2	*	-	11	329	20	*	*	349

TABLE A-2b. (continued)**TABLA A-2b.** (continuación)
TABLE A-2c. Estimated retained catches (Ret.), by gear type, and estimated discards (Dis.), by purse-seine vessels of more than 363 t carrying capacity only, of other species, in metric tons, in the EPO. The data for 2013-2014 are preliminary.

TABLA A-2c. Estimaciones de las capturas retenidas (Ret.), por arte de pesca, y de los descartes (Dis.), por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de otras especies, en toneladas métricas, en el OPO. Los datos de 2013-2014 son preliminares.

	Ca	Carangids—Carángidos					rado ((Coryph	aena sj	pp.)		Elas Elas	mobra: mobra:	nchs— nquios		Oth	er fish	es—()tros p	oeces
	Р	S	тт	ОТР	Total	Р	S	тт	ОТР	Total	Р	S	тт	ОТР	Total	Р	S	тт	ОТР	Total
	Ret.	Dis.	LL	UIK	Total	Ret.	Dis.	LL	UIK	Total	Ret.	Dis.	LL	UIK	Total	Ret.	Dis.	LL	UIK	Total
1985	317	-	-	4	321	93	-	-	108	201	27	-	13	481	521	76	-	7	-	83
1986	188	-	-	19	207	633	-	-	1,828	2,461	29	-	1	1,979	2,009	93	-	-	-	93
1987	566	-	-	5	571	271	-	-	4,272	4,543	95	-	87	1,020	1,202	210	-	535	-	745
1988	825	-	-	1	826	69	-	-	1,560	1,629	1	-	23	1,041	1,065	321	-	361	-	682
1989	60	-	-	2	62	211	-	-	1,680	1,891	29	-	66	1,025	1,120	670	-	152	-	822
1990	234	-	-	1	235	63	-	-	1,491	1,554	-	-	280	1,095	1,375	433	-	260	14	707
1991	116	-	-	0	116	57	-	7	613	677	1	-	1,112	1,352	2,465	463	-	458	1	922
1992	116	-	-	0	116	69	-	37	708	814	-	-	2,294	1,190	3,484	555	-	183	-	738
1993	31	43	-	2	76	266	476	17	724	1,483	253	1,154	1,028	916	3,351	142	554	184	2	882
1994	19	28	-	16	63	687	826	46	3,459	5,018	372	1,029	1,234	1,314	3,949	243	567	251	-	1,061
1995	27	32	-	9	68	465	729	39	2,127	3,360	278	1,093	922	1,075	3,368	174	760	211	-	1,145
1996	137	135	-	57	329	548	885	43	183	1,659	239	1,001	1,120	2,151	4,511	152	467	457	-	1,076
1997	38	111	-	39	188	569	703	6,866	3,109	11,247	413	1,232	956	2,328	4,929	261	654	848	-	1,763
1998	83	149	-	4	236	424	426	2,528	9,167	12,545	279	1,404	2,099	4,393	8,175	300	1,133	1,340	-	2,773
1999	108	136	-	1	245	568	751	6,284	1,160	8,763	260	843	5,997	2,088	9,188	242	748	976	-	1,966
2000	97	66	4	4	171	813	785	3,537	1,041	6,176	263	772	8,418	405	9,858	146	408	1,490	-	2,044
2001	15	145	18	26	204	1,028	1,275	15,942	2,825	21,070	183	641	12,540	107	13,471	391	1,130	1,727	-	3,248
2002	19	111	15	20	165	932	938	9,464	4,137	15,471	137	758	12,398	99	13,392	355	722	1,913	-	2,990
2003	12	141	54	0	207	583	346	5,301	288	6,518	118	833	14,498	372	15,821	279	406	4,682	-	5,367
2004	39	103	1	0	143	811	317	3,986	4,645	9,759	157	622	11,273	173	12,225	339	1,031	670	-	2,040
2005	80	79	-	0	159	863	295	3,854	8,667	13,679	199	496	12,127	224	13,046	439	276	676	-	1,391
2006	247	146	-	0	393	1,002	385	3,404	13,127	17,918	235	674	14,950	14,710	15,859	496	381	525	100	1,502
2007	174	183	6	17	380	1,266	350	6,905	7,827	16,348	343	395	16,902	16,655	17,640	828	675	2,169	120	3,792
2008	85	55	5	17	162	933	327	15,845	5,458	22,563	540	357	15,371	15,159	16,268	522	429	1,326	83	2,360
2009	63	42	10	16	131	1,923	476	17,136	51,328	70,863	279	339	16,682	16,578	17,300	1,034	374	1,877	202	3,487
2010	80	15	8	23	126	1,242	253	9,484	47,881	58,860	335	463	14,430	14,341	15,228	881	192	1,672	125	2,870
2011	71	24	8	0	103	1,291	386	12,438	20,935	35,050	280	316	16,549	16,486	17,145	507	219	1,486	319	2,531
2012	53	23	1	0	77	1,805	401	17,253	876	20,335	230	278	15,871	15,485	16,379	873	230	1,607	252	2,962
2013	17	17	1	-	35	1,448	489	10,559	718	13,214	216	323	14,622	190	15,161	1,389	370	1,612	248	3,619
2014	20	11	*	*	31	1,761	370	*	*	2,131	247	475	*	*	722	1,450	438	*	*	1,888

TABLE A-3a. Catches of yellowfin tuna by purse-seine vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3a. Capturas de atún aleta amarilla por buques de cerco en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquéllos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	COL	CRI	ECU	EU(ESP)	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	$C + OTR^1$	Total
1985	-	2,785	8,794	С	80,422	-	10,887	С	-	84,364	20,696	С	3,511	211,459
1986	-	С	16,561	С	103,644	-	9,073	С	C	88,617	28,462	С	14,155	260,512
1987	-	-	15,046	С	96,182	-	C	C	C	95,506	34,237	С	21,037	262,008
1988	-	-	23,947	С	104,565	-	7,364	1,430	C	82,231	38,257	С	19,499	277,293
1989	-	С	17,588	С	116,928	-	10,557	1,724	C	73,688	42,944	С	14,567	277,996
1990	С	С	16,279	С	115,898	-	6,391	С	-	50,790	47,490	22,208	4,197	263,253
1991	С	-	15,011	С	115,107	-	1,731	C	-	18,751	45,345	29,687	5,625	231,257
1992	С	-	12,119	С	118,455	-	3,380	45	-	16,961	44,336	27,406	5,419	228,121
1993	3,863	-	18,094	С	101,792	-	5,671	-	-	14,055	43,522	24,936	7,559	219,492
1994	7,533	-	18,365	С	99,618	-	3,259	-	-	8,080	41,500	25,729	4,324	208,408
1995	8,829	С	17,044	С	108,749	-	1,714	-	-	5,069	47,804	22,220	4,005	215,434
1996	9,855	С	17,125	С	119,878	-	3,084	-	-	6,948	62,846	10,549	8,322	238,607
1997	9,402	-	18,697	С	120,761	-	4,807	-	-	5,826	57,881	20,701	6,803	244,878
1998	15,592	-	36,201	5,449	106,840	-	3,330	-	C	2,776	61,425	17,342	5,004	253,959
1999	13,267	-	53,683	8,322	114,545	C	5,782	-	C	3,400	55,443	16,476	11,002	281,920
2000	6,138	-	35,492	10,318	101,662	С	5,796	-	-	4,374	67,672	8,247	13,563	253,263
2001	12,950	-	55,347	18,448	130,087	C	9,552	-	C	5,670	108,974	10,729	32,180	383,936
2002	17,574	-	32,512	16,990	152,864	C	15,719	C	7,412	7,382	123,264	7,502	31,068	412,286
2003	9,770	-	34,271	12,281	172,807	-	16,591	C	C	3,601	96,914	9,334	27,710	383,279
2004	С	-	40,886	13,622	91,442	C	33,563	-	C	C	39,094	7,371	46,577	272,557
2005	С	-	40,596	11,947	110,898	4,838	33,393	-	6,470	С	28,684	С	31,276	268,101
2006	С	-	26,049	8,409	69,449	4,236	22,521	-	C	C	13,286	С	22,679	166,631
2007	С	-	19,749	2,631	65,091	3,917	26,024	-	C	С	20,097	С	32,507	170,016
2008	С	-	18,463	3,023	84,462	4,374	26,993	C	C	C	17,692	С	30,050	185,057
2009	С	-	18,167	7,864	99,785	6,686	35,228	С	C	С	25,298	С	43,744	236,772
2010	20,493	-	34,764	2,820	104,969	9,422	34,538	C	C	-	21,244	С	22,758	251,009
2011	18,643	-	32,946	1,072	99,812	7,781	18,607	-	C	C	18,712	C	9,278	206,851
2012	20,924	-	29,485	1,065	93,323	7,541	15,932	-	C	C	23,408	С	6,339	198,017
2013	16,570	-	27,725	516	113,619	8,280	18,428	С	C	-	24,962	С	7,158	217,258
2014	17,220	-	37,675	768	120,996	8,151	19,446	С	C	C	22,900	-	5,733	232,889

¹ Includes—Incluye: BLZ, BOL, CHN, CYM, CYP, GTM, HND, KOR, LBR, NZL, RUS, VCT, UNK

TABLE A-3b. Annual catches of yellowfin tuna by longline vessels, and totals for all gears, in the EPO, by vessel flag. The data for 2013-2014 are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3b. Capturas anuales de atún aleta amarilla por buques de palangre en el OPO, y totales de todas las artes, por bandera del buque. Los datos de 2013-2014 son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquéllos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	CHN	CRI	FRA- PYF	JPN	KOR	MEX	PAN	TWN	USA	VUT	C + OTR ¹	Total LL	Total PS+LL	OTR ²
1985	-	-	-	10,633	2,505	2	-	58	-	-	*	13,198	224,657	1,282
1986	-	-	-	17,770	4,850	68	-	120	-	-	*	22,808	283,320	2,751
1987	-	-	-	13,484	5,048	272	-	107	-	-	*	18,911	280,919	5,245
1988	-	-	-	12,481	1,893	232	-	54	-	-	*	14,660	291,953	4,475
1989	-	-	-	15,335	1,162	9	-	526	-	-	*	17,032	295,028	4,408
1990	-	-	-	29,255	4,844	-	-	534	-	-	*	34,633	297,886	3,636
1991	-	169	-	23,721	5,688	-	-	1,319	2	-	*	30,899	262,156	3,814
1992	-	119	57	15,296	2,865	-	-	306	3	-	*	18,646	246,767	5,747
1993	-	200	39	20,339	3,257	C	-	155	17	-	2	24,009	243,501	7,985
1994	-	481	214	25,983	3,069	41	-	236	2	-	*	30,026	238,434	5,112
1995	-	542	198	17,042	2,748	7	-	28	31	-	*	20,596	236,030	3,334
1996	-	183	253	12,631	3,491	0	-	37	13	-	*	16,608	255,215	5,401
1997	-	715	307	16,218	4,753	-	-	131	11	-	28	22,163	267,041	5,018
1998	-	1,124	388	10,048	3,624	16	-	113	15	-	8	15,336	269,295	6,614
1999	-	1,031	206	7,186	3,030	10	-	186	7	-	26	11,682	293,602	4,489
2000	-	1,084	1,052	15,265	5,134	153	359	742	10	5	51	23,855	277,118	3,540
2001	942	1,133	846	14,808	5,230	29	732	3,928	29	13	1,918	29,608	413,544	4,436
2002	1,457	1,563	278	8,513	3,626	4	907	7,360	5	290	1,528	25,531	437,817	1,501
2003	2,739	1,418	462	9,125	4,911	365	С	3,477	5	699	1,973	25,174	408,453	1,615
2004	798	1,701	767	7,338	2,997	32	2,802	1,824	6	171	343	18,779	291,336	2,511
2005	682	1,791	530	3,966	532	1	1,782	2,422	7	223	182	12,118	280,219	3,674
2006	246	1,402	537	2,968	-	0	2,164	1,671	21	199	108	9,316	175,947	2,144
2007	224	1,204	408	4,582	353	8	-	745	11	154	378	8,067	178,083	2,333
2008	469	1,248	335	5,383	83	5	-	247	33	167	1,842	9,812	194,869	1,755
2009	629	1,003	590	4,268	780	10	-	636	84	259	2,200	10,459	247,231	1,703
2010	459	3	301	3,639	737	6	-	872	54	259	1,999	8,329	259,338	1,418
2011	1,807	-	349	2,373	754	6	-	647	55	173	1,907	8,071	214,922	1,082
2012	2,591	1,482	538	3,600	631	7	519	749	39	155	2,643	12,954	210,971	1,636
2013	1,874	769	410	3,110	928	2	959	572	44	78	1,603	10,349	227,607	1,619
2014	*	*	*	*	*	*	*	*	*	*	*	*	232,889	*

¹ Includes—Incluye: BLZ, CHL, ECU, EU(ESP), GTM, HND, NIC, SLV

² Includes gillnets, pole-and-line, recreational, troll and unknown gears—Incluye red de transmalle, caña, artes deportivas, y desconocidas

TABLE A-3c. Catches of skipjack tuna by purse-seine and longline vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3c. Capturas de atún barrilete por buques de cerco y de palangre en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquéllos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

							P	S							LL+
	COL	CRI	ECU	EU(ESP)	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	C+OTR ¹	Total	OTR ²
1985	-	87	22,806	C	5,334	-	1,197	-	-	9,907	8,184	С	3,314	50,829	1,173
1986	-	С	23,836	C	6,061	-	1,134	C	C	12,978	11,797	С	9,828	65,634	2,111
1987	-	-	20,473	C	4,786	-	С	C	C	13,578	11,761	C	13,421	64,019	2,447
1988	-	-	11,743	C	15,195	-	1,863	714	C	36,792	12,312	С	8,494	87,113	5,014
1989	-	С	22,922	C	14,960	-	4,361	276	-	21,115	16,847	C	14,453	94,934	3,987
1990	С	С	24,071	C	6,696	-	3,425	C	-	13,188	11,362	11,920	3,707	74,369	2,738
1991	С	-	18,438	C	10,916	-	1,720	C	-	13,162	5,217	9,051	3,724	62,228	3,662
1992	С	-	25,408	C	9,188	-	3,724	352	-	14,108	10,226	13,315	7,962	84,283	3,011
1993	3,292	-	21,227	C	13,037	-	1,062	-	-	17,853	7,270	10,908	9,181	83,830	6,089
1994	7,348	-	15,083	C	11,783	-	2,197	-	-	8,947	6,356	9,541	8,871	70,126	4,044
1995	13,081	С	31,934	C	29,406	-	4,084	-	-	14,032	5,508	13,910	15,092	127,047	7,241
1996	13,230	С	32,433	C	14,501	-	3,619	-	-	12,012	4,104	10,873	13,201	103,973	3,868
1997	12,332	-	51,826	C	23,416	-	4,277	-	-	13,687	8,617	14,246	25,055	153,456	3,491
1998	4,698	-	67,074	20,012	15,969	-	1,136	-	C	6,898	6,795	11,284	6,765	140,631	2,215
1999	11,210	-	124,393	34,923	16,767	С	5,286	-	C	13,491	16,344	21,287	17,864	261,565	3,638
2000	10,138	-	104,849	17,041	14,080	С	9,573	-	-	7,224	6,720	13,620	22,399	205,647	365
2001	9,445	-	66,144	13,454	8,169	С	6,967	-	C	4,135	3,215	7,824	23,813	143,165	1,696
2002	10,908	-	80,378	10,546	6,612	С	9,757	С	4,601	4,582	2,222	4,657	19,283	153,546	996
2003	14,771	-	139,804	18,567	8,147	-	25,084	С	C	5,445	6,143	14,112	41,895	273,968	4,049
2004	С	-	89,621	8,138	24,429	C	20,051	1	C	С	23,356	4,404	27,825	197,824	2,349
2005	С	-	140,927	9,224	32,271	3,735	25,782	1	4,995	C	22,146	С	24,149	263,229	3,309
2006	С	-	138,490	16,668	16,790	8,396	44,639	1	C	С	26,334	С	44,952	296,268	1,645
2007	С	-	93,553	2,879	21,542	4,286	28,475	1	C	C	21,990	С	35,571	208,295	1,579
2008	С	-	143,431	4,841	21,638	7,005	43,230	C	C	C	28,333	C	48,125	296,603	2,847
2009	С	-	132,712	6,021	6,847	5,119	26,973	С	C	C	19,370	С	33,481	230,523	2,847
2010	11,400	-	82,280	1,569	3,010	5,242	19,213	С	C	-	11,818	С	12,660	147,192	3,132
2011	23,269	-	149,637	5,238	11,899	3,889	29,837	-	C	C	27,026	C	25,240	276,035	2,259
2012	15,760	-	151,280	15,773	18,058	3,931	25,786	-	C	C	20,829	C	14,798	266,215	3,720
2013	22,089	-	172,080	2,904	17,185	4,329	30,951	C	C	-	17,410	C	11,143	278,091	2,955
2014	22,806	-	173,048	5,570	8,789	6,353	22,002	С	С	С	13,861	-	9,236	261,665	*

¹ Includes—Incluye: BLZ, BOL, CHN, CYM, CYP, GTM, HND, KOR, LBR, NZL, RUS, VCT, UNK

² Includes gillnets, pole-and-line, recreational, and unknown gears—Incluye red de transmalle, caña, artes deportivas y desconocidas

TABLE A-3d. Catches of bigeye tuna by purse-seine vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3d. Capturas de atún patudo por buques de cerco en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquéllos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	COL	CRI	ECU	EU(ESP)	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	$C + OTR^1$	Total
1985	-	17	2,970	C	19	-	-	-	-	1,806	939	С	305	6,056
1986	-	-	653	C	1	-	-	-	-	266	1,466	С	300	2,686
1987	-	-	319	C	2	-	*	-	C	224	453	С	179	1,177
1988	-	-	385	C	-	-	431	*	C	256	202	С	261	1,535
1989	-	-	854	C	-	-	-	*	-	172	294	С	710	2,030
1990	-	-	1,619	C	29	-	196	-	-	209	1,405	2,082	381	5,921
1991	-	-	2,224	C	5	-	-	-	-	50	591	1,839	161	4,870
1992	-	-	1,647	C	61	-	38	*	-	3,002	184	1,397	850	7,179
1993	686	-	2,166	C	120	-	10	*	-	3,324	253	1,848	1,250	9,657
1994	5,636	-	5,112	C	171	-	-	*	-	7,042	637	8,829	7,472	34,899
1995	5,815	C	8,304	C	91	-	839	*	-	11,042	706	12,072	6,452	45,321
1996	7,692	C	20,279	C	82	-	1,445	*	-	8,380	619	12,374	10,440	61,311
1997	3,506	-	30,092	C	38	-	1,811	*	-	8,312	348	6,818	13,347	64,272
1998	596	-	25,113	5,747	12	-	12	*	C	5,309	348	4,746	2,246	44,129
1999	1,511	-	24,355	11,703	33	С	1,220	*	C	2,997	10	5,318	4,011	51,158
2000	7,443	-	36,094	12,511	0	С	7,028	*	-	5,304	457	10,000	16,446	95,282
2001	5,230	-	24,424	7,450	0	С	3,858	*	C	2,290	0	4,333	12,933	60,518
2002	5,283	-	26,262	5,108	0	С	4,726	С	2,228	2,219	0	2,256	9,340	57,421
2003	3,664	-	22,896	4,605	0	-	6,222	С	C	1,350	424	3,500	10,390	53,052
2004	C	-	30,817	3,366	0	С	8,294	*	C	C	9,661	1,822	11,511	65,471
2005	C	-	30,507	3,831	0	1,551	10,707	*	2,074	C	9,197	С	10,028	67,895
2006	C	-	39,302	5,264	6	2,652	14,099	*	C	C	8,317	С	14,197	83,838
2007	C	-	40,445	711	0	1,058	7,029	*	C	C	5,428	С	8,780	63,450
2008	C	-	41,177	1,234	327	1,785	11,018	С	C	С	7,221	С	12,266	75,028
2009	C	-	35,646	2,636	1,334	2,241	11,807	С	C	С	8,479	С	14,657	76,799
2010	4,206	-	34,902	579	11	1,934	7,089	С	C	-	4,360	С	4,672	57,752
2011	3,210	-	31,282	4,111	133	2,256	7,953	*	C	C	301	C	7,266	56,512
2012	1,873	-	45,633	3,866	225	1,250	7,238	*	C	C	848	С	5,087	66,020
2013	1,390	-	32,217	1,662	122	2,720	6,062	-	C	-	952	С	4,301	49,426
2014	2,370	-	37,958	2,753	38	2,935	8,118	-	C	C	1,191	-	4,237	59,600

¹ Includes—Incluye: BLZ, BOL, CHN, CYM, CYP, GTM, HND, LBR, NZL, VCT, UNK

TABLE A-3e. Annual catches of bigeye tuna by longline vessels, and totals for all gears, in the EPO, by vessel flag. The data for 2013-2014 are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3e. Capturas anuales de atún patudo por buques de palangre en el OPO, y totales de todas las artes, por bandera del buque. Los datos de 2013-2014 son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquéllos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	CHN	CRI	FRA- PYF	JPN	KOR	MEX	PAN	TWN	USA	VUT	C + OTR ¹	Total LL	Total PS + LL	OTR ²
1985	-	-	-	61,627	4,510	0	-	188	-	-	*	66,325	72,381	17
1986	-	-	-	91,981	10,187	0	-	257	-	-	*	102,425	105,111	74
1987	-	-	-	87,913	11,681	1	-	526	-	-	*	100,121	101,298	49
1988	-	-	-	66,015	6,151	1	-	591	-	-	*	72,758	74,293	20
1989	-	-	-	67,514	3,138	-	-	311	-	-	*	70,963	72,993	1
1990	-	-	-	86,148	12,127	-	-	596	-	-	*	98,871	104,792	59
1991	-	1	-	85,011	17,883	-	-	1,291	9	-	*	104,195	109,065	56
1992	-	9	7	74,466	9,202	-	-	1,032	92	-	*	84,808	91,987	13
1993	-	25	7	63,190	8,924	*	-	297	55	-	*	72,498	82,155	35
1994	-	1	102	61,471	9,522	-	-	255	9	-	*	71,360	106,259	806
1995	-	13	97	49,016	8,992	-	-	77	74	-	*	58,269	103,590	1,369
1996	-	1	113	36,685	9,983	-	-	95	81	-	*	46,958	108,269	748
1997	-	9	250	40,571	11,376	-	-	256	118	-	*	52,580	116,852	20
1998	-	28	359	35,752	9,731	-	-	314	191	-	*	46,375	90,504	628
1999	-	25	3,652	22,224	9,431	-	-	890	228	-	*	36,450	87,608	538
2000	-	27	653	28,746	13,280	42	14	1,916	162	2,754	11	47,605	142,887	253
2001	2,639	28	684	38,048	12,576	1	80	9,285	147	3,277	1,990	68,755	129,273	19
2002	7,614	19	388	34,193	10,358	-	6	17,253	132	2,995	1,466	74,424	131,845	12
2003	10,066	18	346	24,888	10,272	-	С	12,016	232	1,258	680	59,776	112,828	21
2004	2,645	21	405	21,236	10,729	-	48	7,384	149	407	459	43,483	108,954	194
2005	2,104	23	398	19,113	11,580	-	30	6,441	536	1,001	151	41,377	109,272	25
2006	709	18	388	16,235	8,694	-	37	6,412	85	1,029	195	33,802	117,640	40
2007	2,324	15	361	13,977	5,611	-	-	6,057	417	992	101	29,855	93,305	44
2008	2,379	16	367	14,908	4,150	-	-	1,852	1,277	731	468	26,148	101,176	28
2009	2,481	13	484	15,490	6,758	-	-	3,396	730	1,130	1,038	31,520	108,319	15
2010	2,490	4	314	15,847	9,244	-	-	5,276	1,356	1,439	1,057	37,029	94,781	2
2011	5,450	-	445	13,399	6,617	-	-	3,957	1,050	1,006	706	32,630	89,142	-
2012	4,386	3	464	16,323	7,450	-	-	4,999	875	1,019	603	36,122	102,142	8
2013	5,199	224	527	11,908	8,822	-	-	4,162	2,056	439	578	33,915	83,341	17
2014	7,465	*	*	14,405	7,584	*	*	4,749	476	570	*	35,249	94,849	*

¹ Includes—Incluye: BLZ, CHL, ECU, EU(ESP), HND, SLV

² Includes gillnets, pole-and-line, recreational, and unknown gears—Incluye red de transmalle, caña, artes deportivas, y desconocidas

TABLE A-4. Preliminary estimates of the retained catches in metric tons, of tunas and bonitos caught by purseseine vessels in the EPO in 2013 and 2014, by species and vessel flag. The data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimates, and are preliminary.

TABLA A-4. Estimaciones preliminares de las capturas retenidas, en toneladas métricas, de atunes y bonitos por buques cerqueros en el OPO en 2013 y 2014, por especie y bandera del buque. Los datos de los atunes aleta amarilla, barrilete, y patudo fueron ajustados a las estimaciones de composición por especie, y son preliminares.

	YFT	SKJ	BET	PBF	ALB	BKJ	BZX	TUN	Total	%
2013		•		Retaine	d catches-Ca	apturas rete	nidas			
COL	16,570	22,089	1,390	-	-	14	-	-	40,063	7.2
ECU	27,725	172,080	32,217	-	-	629	802	18	233,471	42.2
EU(ESP)	516	2,904	1,662	-	-	-	-	-	5,082	0.9
MEX	113,619	17,185	122	3,154	-	2,858	1,260	16	138,214	25.0
NIC	8,280	4,329	2,720	-	-	-	-	-	15,329	2.8
PAN	18,428	30,951	6,062	-	-	40	-	-	55,481	10.0
VEN	24,962	17,410	952	-	-	13	-	6	43,343	7.8
OTR ¹	7,158	11,143	4,301	-	-	-	1	13	22,616	4.1
Total	217,258	278,091	49,426	3,154	-	3,554	2,063	53	553,599	
2014				Retaine	d catches-Ca	apturas rete	nidas			
COL	17,220	22,806	2,370	-	-	10	-	-	42,406	7.5
ECU	37,675	173,048	37,958	-	-	674	1,855	67	251,277	44.5
EU(ESP)	768	5,570	2,753	-	-	-	-	-	9,091	1.6
MEX	120,996	8,789	38	4,862	-	3,391	964	48	139,088	24.4
NIC	8,151	6,353	2,935	-	-	1	-	-	17,440	3.1
PAN	19,446	22,002	8,118	-	-	5	2	-	49,573	8.8
VEN	22,900	13,861	1,191	-	-	2	-	-	37,954	6.7
OTR ²	5,733	9,236	4,237	-	-	-	-	-	19,206	3.4
Total	232,889	261,665	59,600	4,862	-	4,083	2,821	115	566,035	

¹ Includes El Salvador, Guatemala, Peru and Vanuatu This category is used to avoid revealing the operations of individual vessels or companies.

¹ Incluye El Salvador, Guatemala, Perú y Vanuatú Se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

² Includes El Salvador, Guatemala, Peru and United States This category is used to avoid revealing the operations of individual vessels or companies.

² Incluye El Salvador, Estados Unidos, Guatemala y Perú Se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales. **TABLE A-5a.** Annual retained catches of Pacific bluefin tuna, by gear type and flag, in metric tons. The data for 2013 and 2014 are preliminary.

TABLA A-5a. C	apturas retenidas	anuales de	atún aleta	azul del	Pacífico,	por a	arte de	pesca y	band	era,	en
toneladas métricas	s. Los datos de 20	13 y 2014 sc	on prelimin	ares.							

DDE	W	estern	Pacifi	c flags_	-Band	eras de	el Pací	ífico oc	cidenta	l1	East	ern Pa F	cific fla Pacífico	gs—Ba oriental	nderas d	lel	Total
r dr		JP	N		KO	R ¹		TWN		Sub-	ME	X	US	A	Sub-	OTR	Total
1005	PS			OTR	PS	OTR	PS		OTR	total	PS	OTR	PS	OTR	total	0111	16.020
1985	4,154	1,81/	105	5,587	1	-	80	210	11	11,965	6/6	-	3,320	//	4,073	-	16,038
1986	7,412	1,086	102	5,100	344	-	16	/0	13	14,143	189	-	4,851	64	5,104	-	19,247
1987	8,653	1,565	211	3,523	89	13	21	365	14	14,454	119	-	861	8/	1,067	-	15,521
1988	3,605	907	157	2,465	32	-	197	108	62	7,533	447	1	923	51	1,422	9	8,964
1989	6,190	/54	209	1,934	/1	-	259	205	215	9,676	5/	-	1,046	96	1,199	-	10,875
1990	2,989	536	309	2,421	132	-	149	189	315	7,040	50	-	1,380	164	1,594	-	8,634
1991	9,808	280	218 512	4,204	205	-	-	342	119	15,242	9	-	410	149	2.076	-	13,/10
1992	7,102	100	912	3,204	200	-	/3	404	0	0.815	-	-	1,928	216	2,070	-	10,934
1995	0,000	149	1 206	5,667	40	-	1	550	3	9,015	-	-	006	115	1 096	-	16.961
1994	8,131	270	1,200	3,007	901 801	-	-	225	-	13,773	11	2	900 640	275	1,080	-	20 172
1995	7.644	270	0/8	5 250	102	-	-	056	2	26,236	2 700	-	4 6 2 2	273	955	-	29,175
1990	13 152	34	1 300	1 354	1 054	-	-	1 814	0	21 708	3,700	-	2 240	245	2 852	-	23,479
1997	5 391	85	1,500	4,554	1,054	-	-	1,014	0	13 279	1	-	1 771	597	2,852	-	15 648
1990	16 173	35	1,255	5 246	256			3 089	0	25 956	2 369	35	1,771	617	3 205		29 161
2000	16 486	102	953	7 031	2 401			2 780	2	29,755	3 019	99	693	353	4 164		33 919
2000	7 620	180	791	5 614	1 176	-	_	1 839	4	17 224	863	-	292	384	1 539	131	18 894
2001	8.903	99	841	4.338	932	_	_	1.523	4	16.640	1.708	2	50	622	2.382	67	19,089
2003	5,768	44	1,237	3,345	2,601	-	-	1,863	21	14,879	3,211	43	22	372	3,648	42	18,569
2004	8.257	132	1.847	3.855	773	-	-	1.714	3	16.581	8.880	14	-	59	8.953	-	25.534
2005	12,817	549	1,925	6,363	1,318	-	-	1,368	2	24,342	4,542	-	201	80	4,823	-	29,165
2006	8,880	108	1,121	4,058	1,012	-	-	1,149	1	16,329	9,927	-	-	93	10,020	-	26,349
2007	6,840	236	2,087	5,535	1,281	-	-	1,401	10	17,390	4,147	-	42	14	4,203	-	21,593
2008	10,221	64	1,495	5,927	1,866	-	-	979	2	20,554	4,392	15	-	63	4,470	-	25,024
2009	8,077	50	1,312	5,152	936	-	-	877	11	16,415	3,019	-	410	158	3,587	-	20,002
2010	3,742	83	908	4,104	1,196	-	-	373	36	10,442	7,746	-	-	88	7,834	-	18,276
2011	8,340	63	942	4,125	670	-	-	292	24	14,456	2,730	1	99	242	3,072	-	17,528
2012	2,462	113	798	3,281	1,421	-	-	210	4	8,289	6,667	1	38	399	7,105	-	15,394
2013	2,771	8	740	3,495	604	-	-	331	3	7,952	3,154	-	-	808	3,962	-	11,914
2014	*	*	*	*	*	*	*	*	*	*	4,862	*	*	392	5,254	-	10,508

¹ Source: International Scientific Committee, 14th Plenary Meeting, PBFWG workshop report on Pacific Bluefin Tuna, July 2014—Fuente: Comité Científico Internacional, 14^a Reunión Plenaria, Taller PBFWG sobre Atún Aleta Azul del Pacífico, julio de 2014 **TABLE A-5b.** Reported catches of Pacific bluefin tuna in the EPO by recreational gear, in number of fish. **TABLA A-5b.** Capturas reportadas de atún aleta azul del Pacifico en el OPO por artes deportivas, en número de peces.

PBF	Number of fish Número de peces	PBF	Number of fish Número de peces
1985	5,148	2000	20,669
1986	693	2001	21,913
1987	1,951	2002	33,399
1988	330	2003	22,291
1989	6,519	2004	3,391
1990	3,755	2005	5,757
1991	5,330	2006	7,473
1992	8,586	2007	1,028
1993	10,535	2008	10,187
1994	2,243	2009	12,138
1995	16,025	2010	8,453
1996	2,739	2011	31,494
1997	8,338	2012	40,012
1998	20,466	2013	63,158
1999	36,797	2014	26,105

TABLE A-6a. Annual retained catches of North Pacific albacore by region and gear, in metric tons, compiled from IATTC data (EPO) and SPC data (WCPO). The data for 2012 and 2013 are preliminary. **TABLA A-6a.** Capturas retenidas anuales de atún albacora del Pacífico Norte por región, en toneladas métricas, compiladas de datos de la CIAT (OPO) y la SPC (WCPO). Los datos de 2012 y 2013 son preliminares.

		Easter	n Pacific	Ocean		We	stern and	central I	Pacific Oc	ean	
		Océano	Pacífico o	oriental		Océa	ano Pacíf	ico occide	ntal y cer	ntral	Total
(14)	LL	LP	LTL	OTR	Subtotal	LL	LP	LTL	OTR	Subtotal	
1985	1,313	877	5,308	1,218	8,716	13,468	21,335	1,163	13,729	49,695	58,411
1986	698	86	4,282	243	5,309	12,442	16,442	456	10,695	40,035	45,344
1987	1,114	320	2,300	172	3,906	14,297	18,920	570	11,337	45,124	49,030
1988	899	271	4,202	81	5,453	14,702	6,543	165	18,887	40,297	45,750
1989	952	21	1,852	161	2,986	13,584	8,662	148	19,825	42,219	45,205
1990	1,143	170	2,440	63	3,816	15,465	8,477	465	26,096	50,503	54,319
1991	1,514	834	1,783	6	4,137	16,535	6,269	201	10,792	33,797	37,934
1992	1,635	255	4,515	2	6,407	18,356	13,633	419	16,578	48,986	55,393
1993	1,772	1	4,331	25	6,129	29,371	12,796	2,417	4,087	48,671	54,800
1994	2,356	85	9,581	106	12,128	28,469	26,304	3,553	3,380	61,706	73,834
1995	1,380	465	7,308	102	9,255	31,568	20,596	3,450	1,623	57,237	66,492
1996	1,675	72	8,195	99	10,041	37,708	20,224	13,654	971	72,557	82,598
1997	1,365	59	6,056	1,019	8,499	47,000	32,252	12,618	1,717	93,587	102,086
1998	1,730	81	11,938	1,250	14,999	46,320	22,924	8,136	1,987	79,367	94,366
1999	2,701	227	10,801	3,668	17,397	44,066	50,202	3,052	7,487	104,807	122,204
2000	1,880	86	10,874	1,869	14,709	39,735	21,533	4,371	3,116	68,755	83,464
2001	1,822	157	11,570	1,638	15,187	35,922	29,412	5,168	1,364	71,866	87,053
2002	1,227	381	11,905	2,388	15,901	32,684	48,451	4,418	3,831	89,384	105,285
2003	1,129	59	17,749	2,260	21,197	32,164	36,114	4,137	924	73,339	94,536
2004	854	126	20,162	1,623	22,765	29,321	32,254	2,093	7,354	71,022	93,787
2005	643	66	13,752	1,741	16,202	32,385	16,133	315	1,442	50,275	66,477
2006	3,482	1	18,514	408	22,405	30,788	15,422	417	729	47,356	69,761
2007	2,520	21	17,927	1,415	21,883	29,251	37,768	719	5,023	72,761	94,644
2008	1,085	1,050	16,135	308	18,578	27,284	18,010	1,766	2,617	49,677	68,255
2009	1,063	2,218	16,268	728	20,277	27,739	31,172	2,899	2,027	64,837	84,114
2010	1,482	-	19,161	753	21,396	26,893	19,561	588	135	47,177	68,573
2011	1,984	-	16,382	466	18,832	33,414	26,704	513	611	61,242	80,074
2012	6,817	-	16,681	1,222	24,720	29,151	33,742	575	3,620	67,088	91,808
2013	7,733	-	17,421	844	25,998	26,218	33,742	2,423	4,489	66,872	92,870

TABLE A-6b. Annual retained catches of South Pacific albacore by region, in metric tons, compiled from IATTC data (EPO) and SPC data (WCPO). The data for 2012 and 2013 are preliminary.

TABLA A-6b. Capturas retenidas anuales de atún albacora del Pacífico Sur por región, en toneladas métricas, compiladas de datos de la CIAT (OPO) y la SPC (WCPO). Los datos de 2012 y 2013 son preliminares.

	Ea	astern Pac	ific Ocea	n	We	stern and	central Pa	cific Ocea	an	
ALB	Oc	éano Pacíf	ico orient	al	Océ	ano Pacífi	co occiden	tal y cent	ral	Total
(3)	LL	LTL	OTR	Subtotal	LL	LP	LTL	OTR	Subtotal	
1985	5,955	0	170	6,125	21,183	0	3,253	1,767	26,203	32,328
1986	5,752	74	149	5,975	26,889	0	1,929	1,797	30,615	36,590
1987	8,880	188	3	9,071	13,099	9	1,946	927	15,981	25,052
1988	9,035	1,282	0	10,317	19,253	0	3,014	5,283	27,550	37,867
1989	5,832	593	90	6,515	12,906	0	7,777	21,878	42,561	49,076
1990	5,393	1,336	306	7,035	15,911	245	5,639	7,232	29,027	36,062
1991	6,379	795	170	7,344	19,913	14	7,010	1,319	28,256	35,600
1992	15,445	1,205	18	16,668	16,569	11	5,373	47	22,000	38,668
1993	9,422	35	19	9,476	21,576	74	4,261	51	25,962	35,438
1994	8,034	446	22	8,502	26,964	67	6,718	67	33,816	42,318
1995	4,805	2	15	4,822	25,703	139	7,714	89	33,645	38,467
1996	5,956	94	21	6,071	20,807	30	7,316	135	28,288	34,359
1997	8,313	466	0	8,779	26,344	21	4,213	133	30,711	39,490
1998	10,905	12	0	10,917	33,065	36	6,268	85	39,454	50,371
1999	8,932	81	7	9,020	27,023	138	3,366	67	30,594	39,614
2000	7,783	778	3	8,564	32,859	102	5,677	136	38,774	47,338
2001	17,588	516	5	18,109	35,267	37	4,737	194	40,235	58,344
2002	14,062	131	40	14,233	54,349	18	4,530	110	59,007	73,240
2003	23,772	419	3	24,194	32,579	12	5,565	127	38,283	62,477
2004	17,590	331	0	17,921	39,434	110	4,283	123	43,950	61,871
2005	10,754	181	7	10,942	49,143	29	3,322	130	52,624	63,566
2006	10,246	48	119	10,413	49,097	29	2,836	69	52,031	62,444
2007	8,511	19	87	8,617	47,989	17	1,995	0	50,001	58,618
2008	7,878	0	159	8,037	51,188	12	3,502	1	54,703	62,740
2009	11,124	0	213	11,337	69,514	21	2,031	0	71,566	82,903
2010	12,406	0	246	12,652	74,193	14	2,139	0	76,346	88,998
2011	17,969	0	222	18,191	45,055	30	3,189	11	48,285	66,476
2012	16,641	0	210	16,851	68,003	41	2,962	38	71,044	87,895
2013	16,802	0	271	17,073	64,533	26	3,226	0	67,785	84,858

TABLE A-7. Estimated numbers of sets, by set type and vessel capacity category, and estimated retained catches, in metric tons, of yellowfin, skipjack, and bigeye tuna by purse-seine vessels in the EPO. The data for 2014 are preliminary. The data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimate and are preliminary.

TABLA A-7. Números estimados de lances, por tipo de lance y categoría de capacidad de buque, y capturas retenidas estimadas, en toneladas métricas, de atunes aleta amarilla, barrilete, y patudo por buques cerqueros en el OPO. Los datos de 2014 son preliminares. Los datos de los atunes aleta amarilla, barrilete, y patudo fueron ajustados a la estimación de composición por especie, y son preliminares.

	Number o	of sets—Número	de lances	Retained	catch—Captura	retenida
	Vessel capacity-	-Capacidad del				
	buc	lue	Total	YFT	SKJ	BET
	≤363 t	>363 t				
DEL		Se Lai	ets on fish association in the source of the second s	ated with dolphin asociados a delfin	s Ies	
1999	0	8,648	8,648	143,128	1,705	5
2000	0	9,235	9,235	146,533	540	15
2001	0	9,876	9,876	238,629	1,802	6
2002	0	12,290	12,290	301,099	3,180	2
2003	0	13,760	13,760	265,512	13,332	1
2004	0	11,783	11,783	177,460	10,730	3
2005	0	12,173	12,173	166,211	12,127	2
2006	0	8,923	8,923	91,978	4,787	0
2007	0	8,871	8,871	97,032	3,277	7
2008	0	9,246	9,246	122,105	8,382	5
2009	0	10,910	10,910	178,436	2,719	1
2010	0	11,645	11,645	168,984	1,627	4
2011	0	9,604	9,604	134,839	4,372	2
2012	0	9,220	9,220	133,716	2,120	0
2013	0	10,736	10,736	156,731	4,249	0
2014	0	11,382	11,382	167,429	4,211	3
OBJ		Sets o	on fish associated	l with floating ob	jects	
1000	620		sobre peces asoc	1ados a objetos flo	191 626	40.220
2000	508	4,403	5,115 4 221	43,341	101,030	49,330
2000	827	5,715	4,221	42,322	121,723	59 748
2001	867	5,074	6,501	38.057	116 793	55,901
2002	706	5,771	6,058	30,307	181 214	51 296
2003	615	4 986	5 601	28 340	117 212	64 005
2004	639	4,992	5.631	26,126	133.509	66.257
2005	1.158	6.862	8.020	34.313	191.093	82,136
2000	1.384	5.857	7.241	29.619	122.286	62,189
2008	1,819	6,655	8,474	34,819	157,274	73,855
2009	1,821	7,077	8,898	36,136	157,067	75,888
2010	1,788	6,399	8,187	38,113	113,716	57,167
2011	2,538	6,921	9,459	42,189	170,986	55,589
2012	3,067	7,610	10,677	37,527	177,239	65,040
2013	3,075	8,038	11,113	34,943	194,151	48,279
2014	3,768	8,777	12,545	45,309	199,445	58,951

TABLE A-7. (continued)**TABLA A-7** (continuación)

	Number of	f sets—Número	de lances	Retained catch—Captura retenida				
	Vessel capacity-	-Capacidad del						
	buq	ue	Total	YFT	SKJ	BET		
	≤363 t	>363 t	<u> </u>					
NOA		Lar	Sets on unasso ices sobre cardú	ciated schools menes no asociad	08			
1999	5,632	6,139	11,771	95,451	78,224	1,823		
2000	5,497	5,472	10,969	64,208	83,384	2,301		
2001	4,022	3,024	7,046	78,107	19,000	764		
2002	4,938	3,442	8,380	73,130	33,573	1,518		
2003	7,274	5,131	12,405	87,460	79,422	1,755		
2004	4,969	5,696	10,665	66,757	69,882	1,463		
2005	6,109	7,816	13,925	75,764	117,593	1,636		
2006	6,189	8,443	14,632	40,340	100,388	1,702		
2007	4,845	7,211	12,056	43,365	82,732	1,254		
2008	4,771	6,210	10,981	28,133	130,947	1,168		
2009	3,308	4,109	7,417	22,200	70,737	910		
2010	2,252	3,886	6,138	43,912	31,849	581		
2011	2,840	5,182	8,022	29,823	100,677	921		
2012	2,996	5,369	8,365	26,774	86,856	980		
2013	3,058	4,156	7,214	25,584	79,691	1,147		
2014	2,402	3,369	5,771	20,151	58,009	646		
ALT.			Sets on all typ	pes of schools				
		La	nces sobre todos	tipos de cardume	en			
1999	6,262	19,270	25,532	281,920	261,565	51,158		
2000	6,005	18,420	24,425	253,263	205,647	95,282		
2001	4,849	18,574	23,423	383,936	143,165	60,518		
2002	5,805	21,503	27,308	412,286	153,546	57,421		
2003	7,980	24,348	32,328	383,279	2/3,968	53,052		
2004	5,584	22,465	28,049	272,557	197,824	65,471		
2005	6,748	24,981	31,729	268,101	263,229	67,895		
2006	/,34/	24,228	31,575	166,631	296,268	83,838		
2007	6,229	21,939	28,168	1/0,016	208,295	63,450		
2008	6,590	22,111	28,701	185,057	296,603	75,028		
2009	5,129	22,096	27,225	230,772	230,523	/0,/99 57 750		
2010	4,040	21,930	23,970	231,009	147,192	57,752		
2011	3,3/8	21,707	27,085	200,851	2/0,035	56,512		
2012	0,003 6 122	22,199	28,262	198,017	200,213	00,020		
2013	0,133	22,930	29,063	217,208	2/8,091	49,420		
2014	6,170	23,528	29,698	232,889	261,665	59,600		

TABLE A-8. Types of floating objects involved in sets by vessels of >363 t carrying capacity. The 2014 data are preliminary. **TABLA A-8** Tipos de objetos flotantes sobre los que realizaron lances buques de >363 t de capacidad

TABLA A-	• 8. Tipos	de objetos	flotantes	sobre	los que	realizaron	lances	buques	de >363	t de	capacidad
de acarreo.	Los datos	de 2014 so	on prelimi	inares.							

OBJ	Flotsam Naturales		FAD Planta)s dos	Unkno Descono	Total	
	No.	%	No.	%	No.	%	
1999	831	18.5	3,632	81.0	20	0.4	4,483
2000	488	13.1	3,187	85.8	38	1.0	3,713
2001	592	10.4	5,058	89.1	24	0.4	5,674
2002	778	13.5	4,966	86.1	27	0.5	5,771
2003	715	13.1	4,722	86.5	20	0.4	5,457
2004	586	11.8	4,370	87.6	30	0.6	4,986
2005	603	12.1	4,281	85.8	108	2.2	4,992
2006	697	10.2	6,123	89.2	42	0.6	6,862
2007	597	10.2	5,188	88.6	72	1.2	5,857
2008	560	8.4	6,070	91.2	25	0.4	6,655
2009	322	4.5	6,728	95.1	27	0.4	7,077
2010	337	5.3	6,038	94.3	24	0.4	6,399
2011	563	8.1	6,342	91.6	16	0.2	6,921
2012	286	3.8	7,321	96.2	3	< 0.1	7,610
2013	274	3.4	7,759	96.5	5	0.1	8,038
2014	270	3.1	8,503	96.9	4	< 0.1	8,777

TABLE A-9. Reported nominal longline fishing effort (E; 1000 hooks), and catch (C; metric tons) of yellowfin, skipjack, bigeye, Pacific bluefin, and albacore tunas only, by flag, in the EPO.

TABLA A-9. Esfuerzo de pesca palangrero nominal reportado (E; 1000 anzuelos), y captura (C; toneladas métricas) de atunes aleta amarilla, barrilete, patudo, aleta azul del Pacífico, y albacora solamente, por bandera, en el OPO.

тт	CH	IN	JP	N	KC	DR	PY	F	TW	/N	USA	4	OTR ¹
LL	Е	С	Ε	С	Ε	С	Ε	С	Ε	С	Ε	С	С
1985	-	-	106,761	74,348	19,799	10,508	-	-	3,126	1,979	-	-	2
1986	-	-	160,572	111,672	30,778	17,432	-	-	4,874	2,569	-	-	68
1987	-	-	188,386	104,053	36,436	19,405	-	-	12,267	5,335	-	-	273
1988	-	-	182,709	82,383	43,056	10,172	-	-	9,567	4,590	-	-	234
1989	-	-	170,370	84,961	43,365	4,879	-	-	16,360	4,962	-	-	9
1990	-	-	178,414	117,923	47,167	17,415	-	-	12,543	4,755	-	-	-
1991	-	-	200,374	112,337	65,024	24,644	-	-	17,969	5,862	42	12	173
1992	-	-	191,300	93,011	45,634	13,104	199	89	33,025	14,142	325	106	128
1993	-	-	159,956	87,977	46,375	12,843	153	79	18,064	6,566	415	81	227
1994	-	-	163,999	92,606	44,788	13,250	1,373	574	12,588	4,883	303	25	523
1995	-	-	129,599	69,435	54,979	12,778	1,776	559	2,910	1,639	828	180	562
1996	-	-	103,649	52,298	40,290	14,121	2,087	931	5,830	3,553	510	182	185
1997	-	-	96,385	59,325	30,493	16,663	3,464	1,941	8,720	5,673	464	215	752
1998	-	-	106,568	50,167	51,817	15,089	4,724	2,858	10,586	5,039	1,008	406	1,176
1999	-	-	80,950	32,886	54,269	13,294	5,512	4,446	23,247	7,865	1,756	469	1,157
2000	-	-	79,311	45,216	33,585	18,759	8,090	4,382	18,152	7,809	737	204	4,868
2001	13,056	5,162	102,219	54,775	72,261	18,201	7,445	5,086	41,920	20,060	1,438	238	15,614
2002	34,889	10,398	103,919	45,401	96,273	14,370	943	3,238	78,018	31,773	613	138	10,258
2003	43,289	14,548	101,227	36,187	71,006	15,551	11,098	4,101	74,460	28,328	1,314	262	11,595
2004	15,889	4,033	76,824	30,936	55,861	14,540	13,757	3,030	49,979	19,535	1,049	166	9,193
2005	16,896	3,681	65,081	25,712	15,798	12,284	13,356	2,515	38,536	12,229	2,397	557	8,146
2006	588	969	56,525	21,432	*	8,752	11,786	3,220	38,134	12,375	234	121	10,201
2007	12,226	2,624	45,972	20,514	10,548	6,037	9,672	3,753	22,244	9,498	2,689	436	6,328
2008	11,518	2,984	44,547	21,375	3,442	4,256	10,255	3,017	12,544	4,198	6,322	1,369	8,909
2009	10,536	3,435	41,517	21,492	18,364	7,615	10,686	4,032	13,904	6,366	5,141	852	11,958
2010	11,905	3,590	47,807	21,017	25,816	10,477	8,976	3,139	24,976	10,396	8,879	1,480	10,964
2011	37,384	9,983	52,194	18,682	25,323	7,814	9,514	3,192	21,065	9,422	7,359	1,233	11,713
2012	55,508	14,462	55,587	22,214	20,338	8,286	8,806	3,589	20,519	11,924	5,822	986	13,451
2013	70,411	18,128	49,501	16,318	31,702	10,248	11,189	3,303	18,353	11,722	10,765	2,129	8,685

¹ Includes the catches of—Incluye las capturas de: BLZ, CHL, COK, CRI, ECU, EU(ESP), GTM, HND, MEX, NIC, PAN, EU(PRT), SLV, VUT

TABLA A-10.	Número y volu	umen de bodeg	a, en metros	cúbicos,	de buques	cerqueros y	cañeros	de la
flota atunera del	OPO. Los date	os de 2014 son	oreliminares					

	PS		L	Р	Total		
	No.	Vol. (m ³)	No.	Vol. (m ³)	No.	Vol. (m ³)	
1985	176	136,845	26	2,595	202	139,440	
1986	165	130,530	17	2,066	182	132,596	
1987	173	148,713	29	2,383	202	151,096	
1988	185	154,845	39	3,352	224	158,197	
1989	176	141,956	32	3,181	208	145,137	
1990	172	143,877	23	1,975	195	145,852	
1991	152	124,062	22	1,997	174	126,059	
1992	158	116,619	20	1,807	178	118,426	
1993	151	117,593	15	1,550	166	119,143	
1994	166	120,726	20	1,726	186	122,452	
1995	175	123,798	20	1,784	195	125,582	
1996	180	130,774	17	1,646	197	132,420	
1997	194	147,926	23	2,127	217	150,053	
1998	202	164,956	22	2,216	224	167,172	
1999	208	178,724	14	1,642	222	180,366	
2000	205	180,679	12	1,220	217	181,899	
2001	204	189,088	10	1,259	214	190,347	
2002	218	199,870	6	921	224	200,791	
2003	214	202,381	3	338	217	202,719	
2004	218	206,473	3	338	221	206,811	
2005	220	212,419	4	498	224	212,917	
2006	225	225,166	4	498	229	225,664	
2007	227	225,359	4	380	231	225,739	
2008	219	223,804	4	380	223	224,184	
2009	221	224,632	4	380	225	225,012	
2010	202	210,025	3	255	205	210,280	
2011	208	213,237	3	339	211	213,576	
2012	209	217,687	4	464	213	218,151	
2013	203	212,087	3	268	206	212,355	
2014	217	229,127	2	226	219	229,353	

TABLE A-11a. Estimates of the numbers and well volume (cubic meters) of purse-seine (PS) and poleand-line (LP) vessels that fished in the EPO in 2013, by flag and gear. Each vessel is included in the total for each flag under which it fished during the year, but is included only once in the "Grand total"; therefore the grand total may not equal the sums of the individual flags.

TABLA A-11a. Estimaciones del número y volumen de bodega (metros cúbicos) de buques cerqueros (PS) y cañeros (LP) que pescaron en el OPO en 2013, por bandera y arte de pesca. Se incluye cada buque en los totales de cada bandera bajo la cual pescó durante el año, pero solamente una vez en el "Total general"; por consiguiente, los totales generales no equivalen necesariamente a las sumas de las banderas individuales.

Flag	Carr	W	/ell volume –	–Volumen o	de bodega (m	1 ³)	T	otal
Flag	Gear	<401	401-800	801-1300	1301-1800	>1800	No	\mathbf{V}_{al} (m ³)
Danuera	Arte		Nu	INO.	vol. (m)			
COL	PS	2	2	7	3	-	14	14,860
ECU	PS	34	30	21	6	11	102	80,611
EU(ESP)	PS	-	-	-	-	4	4	10,116
GTM	PS	-	-	-	1	-	1	1,475
MEX	PS	3	4	18	15	-	40	46,062
	LP	3	-	-	-	-	3	268
NIC	PS	-	-	3	4	-	7	9,966
PAN	PS	-	2	5	4	3	14	19,251
PER	PS	2	-	-	-	-	2	599
SLV	PS	-	-	-	1	3	4	7,892
VEN	PS	-	-	7	7	1	15	20,890
VUT	PS	-	-	-	1	-	1	1,360
Crand total	PS	41	38	60	42	22	203	
Grand total	LP	3	-	-	-	-	3	
Total general	PS + LP	44	38	60	42	22	206	
		V	Vell volume-	–Volumen d	le bodega (m	3)		
Grand total	PS	11,546	22,748	67,036	62,543	48,214		212,087
Total general	LP	268	-	-	-	-		268
l otal general	PS + LP	11,814	22,748	67,036	62,543	48,214		212,355

- : none-ninguno

TABLE A-11b. Estimates of the numbers and well volumes (cubic meters) of purse-seine (PS) and poleand-line (LP) vessels that fished in the EPO in 2014 by flag and gear. Each vessel is included in the total for each flag under which it fished during the year, but is included only once in the "Grand total"; therefore the grand total may not equal the sums of the individual flags.

TABLA A-11b. Estimaciones del número y volumen de bodega (metros cúbicos) de buques cerqueros (PS) y cañeros (LP) que pescaron en el OPO en 2014, por bandera y arte de pesca. Se incluye cada buque en los totales de cada bandera bajo la cual pescó durante el año, pero solamente una vez en el "Total general"; por consiguiente, los totales generales no equivalen necesariamente a las sumas de las banderas individuales.

Flag	Caar	Well volume — Volumen de bodega (m ³)					Total	
Flag	Gear	<401	401-800	801-1300	1301-1800	>1800	No	V_{0} (m ³)
Danuera	Arte		Nu	mber—Nún	nero		INO.	vol. (m)
COL	PS	2	2	7	3	-	14	14,860
ECU	PS	36	33	22	7	12	110	87,469
EU(ESP)	PS	-	-	-	-	4	4	10,116
GTM	PS	-	-	-	1	-	1	1,475
MEX	PS	3	4	18	20	-	45	54,206
	LP	2	-	-	-	-	2	226
NIC	PS	-	-	3	4	-	7	9,966
PAN	PS	-	2	4	4	4	14	19,865
PER	PS	-	2	-	-	-	2	1,137
SLV	PS	-	-	-	1	3	4	7,892
USA	PS	-	-	1	-	-	1	1,251
VEN	PS	-	-	7	7	1	15	20,890
Grand total	PS	41	43	62	47	24	217	
Total general	LP	2	-	-	-	-	2	
Total general	PS + LP	43	43	62	47	24	219	
		V	Vell volume-	–Volumen o	le bodega (m	1 ³)		
Grand total	PS	11,505	25,997	69,465	70,687	51,473		229,127
Total general	LP	226	-	-	-	-		226
i otai general	PS + LP	11,731	25,997	69,465	70,687	51,473		229,353

- : none—ninguno

TABLE A-12. Minimum, maximum, and average capacity, in thousands of cubic meters, of purse-seine and pole-and-line vessels at sea in the EPO during 2004-2013 and in 2014, by month.

Month		2014		
Mes	Min	Max	AveProm.	2014
1	88.6	157.7	118.7	86.9
2	144.3	175.3	155.8	168.9
3	135.4	159.9	147.5	147.9
4	142.0	165.0	152.6	152.7
5	134.9	164.4	151.5	150.6
6	149.0	175.0	159.7	156.3
7	152.2	170.4	161.5	165.2
8	62.2	120.3	103.7	123.6
9	105.5	137.7	117.8	117.6
10	147.0	172.2	162.2	168.2
11	101.9	150.8	126.4	123.8
12	45.9	105.8	63.8	57.6
AveProm.	117.4	154.5	135.1	134.9

TABLA A-12. Capacidad mínima, máxima, y media, en miles de metros cúbicos, de los buques cerqueros y cañeros en el mar en el OPO durante 2004-2013 y en 2014 por mes.

LOS ATUNES, PECES PICUDOS, Y OTROS PECES PELÁGICOS EN EL OCÉANO PACÍFICO ORIENTAL EN 2014

A.	La pesquería de atunes y peces picudos en el Océano Pacífico oriental	56
B.	Atún aleta amarilla	80
C.	atún barrilete	
D.	atún patudo	100
E.	Atún aleta azul del PacÍfico	109
F.	Atún albacora	
G.	Pez espada	123
H.	Marlín azul	126
I.	Marlín rayado	129
J.	Pez vela	
K.	Indicadores actualizados de la condición del tiburón sedoso en el OPO, 1994-2014	139
L.	Consideraciones ecosistémicas	

INTRODUCCIÓN

El presente informe contiene un resumen de la pesquería atunera en el Océano Pacífico oriental (OPO), evaluaciones sumarias de las poblaciones más importantes de los atunes y peces picudos explotados en la pesquería, y una evaluación del ecosistema pelágico en el OPO, en 2014.

Se basa en datos disponibles al personal de la CIAT en marzo de 2015. Como resultado, algunas de las tablas de datos de 2014 son incompletas, y todos los datos de 2013 y 2014 deben ser considerados preliminares.

Se expresa el peso de capturas y descartes en toneladas métricas (t). En las tablas, 0 en una casilla significa ningún esfuerzo o una captura de menos de 0,5 t; - significa que no se tomaron datos, y * significa datos faltantes o no disponibles. Se usan las siglas siguientes:

Especies:

- Atún albacora (*Thunnus alalunga*) ALB BET Atún patudo (Thunnus obesus) BIL Peces picudos istiofóridos no identificados BKJ Atún barrilete negro (Euthynnus lineatus) BLM Marlín negro (*Makaira indica*) BUM Marlín azul (*Makaira nigricans*) BZX Bonito (Sarda spp.) CAR Chondrichthyes, peces cartilaginosos nep¹ CGX Carángidos (Carangidae) DOX Dorados (Coryphaena spp.) MLS Marlín rayado (*Kajakia audax*) MZZ Osteichthyes, peces marinos nep PBF Atún aleta azul del Pacífico (Thunnus orientalis)
- SFA Pez vela del Indo-Pacífico (Istiophorus platypterus)
- SKJ Atún barrilete (Katsuwonus pelamis)
- SKX Elasmobranquios no identificados

SSP	Marlín trompa corta (Tetrapturus
	angustirostris)
SWO	Pez espada (Xiphias gladius)
TUN	Atunes no identificados

YFT Atún aleta amarilla (*Thunnus albacares*)

Artes de pesca:				
FPN	Almadraba			
GN	Red de trasmallo			
HAR	Arpón			
LL	Palangre			
LP	Caña			
LTL	Curricán			
LX	Sedal y anzuelo			
OTR	Otras ²			
NK	Desconocido			
PS	Red de cerco			
RG	Deportivo			
ΤX	Red de arrastre			

² Usado para agrupar artes conocidas

¹ no especificado en otra partida

Áreas oceánicas:		
OPO	Océano Pacífico oriental	
WCPO	Océano Pacífico occidental y central	
Tipos de lance:		
DEL	Delfín	
NOA	Peces no asociados	
OBJ	Objeto flotante	
	LOG: Natural	
	FAD: Plantado	

В	Biomasa
С	Captura
CPUE	Captura por unidad de esfuerzo
F	Tasa de mortalidad por pesca
RMS	Rendimiento máximo sostenible
S	Índice de biomasa reproductora
SBR	Cociente de biomasa reproductora
SSB	Biomasa de la población reproductora

Banderas:
Miembros y no

Miembros y no Miembros Cooperantes de la				
CIAT				
BLZ	Belice			
BOL	Bolivia			
CAN	Canadá			
CHN	China			
COL	Colombia			
CRI	Costa Rica			
ECU	Ecuador			
EU	Unión Europea			
FRA	Francia			
GTM	Guatemala			
HND	Honduras			
IDN	Indonesia			
JPN	Japón			
KIR	Kiribati			
KOR	República de Corea			
LBR	Liberia			
MEX	México			
NIC	Nicaragua			
PAN	Panamá			
PER	Perú			
SLV	El Salvador			
TWN	Taipéi Chino			
USA	Estados Unidos de América			
VEN	Venezuela			
VUT	Vanuatu			
Otras ban	deras			
CHL	Chile			
COK	Islas Cook			
CYM	Islas Caimán			
CYP	Chipre			
FSM	Estados Federados de Micronesia			
NZL	Nueva Zelanda			
RUS	Rusia			
VCT	St. Vicente y Granadinas			
UNK	Desconocido			

Evaluación de poblaciones:

A. LA PESQUERÍA DE ATUNES Y PECES PICUDOS EN EL OCÉANO PACÍFICO ORIENTAL

1.	Capturas y descargas de atunes, peces picudos, y especies asociadas	
1.1.	Capturas por especie	
1.2.	Distribución de las capturas de atunes	60
1.3.	Composición por tamaño de las capturas de atunes	61
1.4.	Capturas de atunes y bonitos, por bandera y arte	
2.	Esfuerzo de pesca	
2.1.	Pesca de cerco	
2.2.	Pesca palangrera	
3.	Las flotas	
3.1.	Las flotas de cerco y de caña	64
3.2.	Otras flotas del OPO	66

En este documento se presenta un resumen de las pesquerías de las especies amparadas por la Convención de la CIAT (los atunes y otros peces capturados por buques atuneros) en el Océano Pacífico oriental (OPO). Las más importantes de éstas son los escómbridos (familia Scombridae), que incluyen los atunes, bonitos, carites y caballas. Las especies principales de atunes capturadas son el aleta amarilla, barrilete, patudo y albacora, con capturas menores de los atunes aleta azul del Pacífico y barrilete negro y de melvas; se capturan también otros escómbridos, como el bonito y el peto.

El presente documento abarca también otras especies capturadas por buques atuneros en el OPO: peces picudos (pez espada, marlines y pez vela), carángidos (jureles y salmón), dorado, elasmobranquios (tiburones y rayas) y otros peces.

La mayor parte de las capturas es realizada por las flotas de cerco y palangrera; la flota cañera y varias pesquerías artesanales y recreacionales toman un pequeño porcentaje de las capturas totales.

Se dispone de datos detallados de las pesquerías cerquera y cañera; los datos de las pesquerías palangreras, artesanales y recreacionales son incompletos.

El <u>Registro Regional de Buques</u> de la CIAT contiene detalles de los buques autorizados para pescar atunes en el OPO. La CIAT cuenta con registros detallados de la mayoría de los buques cerqueros y cañeros que pescan atunes aleta amarilla, barrilete, patudo y/o aleta azul del Pacífico en el OPO. El Registro es incompleto para buques pequeños. Incluye la mayoría de los buques palangreros grandes (eslora total >24 m) que pescan en el OPO y en otros océanos.

Los datos en el presente informe provienen de varias fuentes, entre ellas los cuadernos de bitácora de los buques, datos de observadores, registros de descargas provistos por empresas enlatadoras y otros procesadores, registros de importaciones y exportaciones, informes de los gobiernos y otras entidades, y estimaciones derivadas del programa de muestreo de especies y composición por talla.

2. CAPTURAS Y DESCARGAS DE ATUNES, PECES PICUDOS, Y ESPECIES ASOCIADAS

Estimar la captura total de una especie de pez es difícil, por varios motivos. Pescado es descartado en el mar, y los datos de algunas artes de pesca son incompletos. Desde 1993 los observadores han tomado datos sobre pescado descartado en el mar por buques cerqueros de más de 363 toneladas métricas (t) de capacidad de acarreo, lo cual permite una estimación más precisa de las cantidades totales de pescado capturadas por la flota de cerco. Las estimaciones de la cantidad total de la captura que se descarga (en lo sucesivo la "captura retenida") se basan principalmente en datos de descarga. A partir del Informe de la Situación de la Pesquería 3, que describe la pesquería en 2004, los datos de descargas de buques cerqueros y cañeros son ajustados con base en las estimaciones de composición por especies para los atunes aleta amarilla, barrilete, y patudo. El programa actual de muestreo de composición por especies, descrito en la <u>Sección 1.3.1</u>, comenzó en 2000, y por lo tanto los datos de captura de 2000-2014 son

ajustados con base en las estimaciones obtenidas para cada año, por bandera. Para ajustar los datos de captura de los años previos, se aplicó la proporción media de especies de las estimaciones de 2000-2004, por bandera, y se sumó para todas las banderas. En general, esto ha incrementado las capturas estimadas de patudo, y reducido aquéllas de aleta amarilla y barrilete. Todos estos ajustes son preliminares, y podrían ser mejorados en el futuro. Todos los datos de 2013 y 2014 de las pesquerías cerquera y cañera son provisionales.

Se obtienen los datos de las capturas retenidas de la mayoría de los buques palangreros grandes de los gobiernos de las naciones que pescan atunes en el OPO. Los buques palangreros, particularmente los más grandes, dirigen su esfuerzo principalmente hacia los atunes patudo, aleta amarilla, y albacora, o el pez espada. Los datos de los buques palangreros pequeños, artesanales y otros que pescan atunes, peces picudos, dorado, y tiburones en el OPO fueron obtenidos directamente de los gobiernos, de los cuadernos de bitácora, o de informes publicados por los gobiernos. Los datos del Pacífico occidental y central (WCPO) fueron provistos por el Programa de Pesquerías Oceánicas de la Secretaría de la Comunidad del Pacífico (SPC). Todos los datos de captura en el OPO con palangre y otras artes en 2013 y 2014 son preliminares.

Los datos de todas estas fuentes fueron compilados en una base de datos por el personal de la CIAT y resumidos en el presente informe. En los últimos años, el personal de la CIAT ha incrementado sus esfuerzos por compilar datos sobre las capturas de atunes, peces picudos, y otras especies capturadas con otras artes, como curricán, arpón, y red de transmalle, y artes recreacionales. En la <u>Tabla A-1</u> se presentan las capturas totales de aleta amarilla, barrilete, y patudo en el Océano Pacífico entero, estimadas de todas las fuentes mencionadas; son tratadas en mayor detalle en las secciones siguientes.

En las <u>Tablas A-2a-c</u> se presentan estimaciones de las capturas anuales retenidas y descartadas de atunes y otras especies capturadas por buques atuneros en el OPO durante 1985-2014. En las <u>Tablas A-3a-e</u> se presentan las capturas de atunes aleta amarilla, patudo, y barrilete, por arte y bandera, durante 1985-2014, y en la <u>Tabla A-4</u> se resumen por bandera las capturas cerqueras y cañeras de atunes y bonitos durante 2013-2014. No se restringió la pesca del atún en el OPO durante 1988-1997, pero las capturas de la mayoría de las especies fueron afectadas por las restricciones de la pesca durante partes, o la totalidad, del segundo semestre del año durante 1998-2014. Además, la reglamentación de aquellos cerqueros que dirigen su esfuerzo hacia atunes asociados con delfines afectó el modo de operación de esos buques, especialmente desde fines de los años 1980 (ver <u>Sección 3</u>).

Las capturas fueron afectadas también por perturbaciones climáticas, tales como los importantes eventos de El Niño que ocurrieron durante 1982-1983 y 1997-1998. Estos redujeron la vulnerabilidad de los peces a la captura con red de cerco debido a la mayor profundidad de la termoclina, pero aparentemente no tuvieron ningún efecto sobre las capturas palangreras. El reclutamiento de aleta amarilla suele ser mayor después de un evento de El Niño.

2.1. Capturas por especie

2.1.1. Atún aleta amarilla

En la Tabla A-1 se presentan las capturas anuales de aleta amarilla durante 1985-2014. Los totales del OPO de 1993-2014 incluyen los descartes de los buques cerqueros de capacidad de acarreo de más de 363 t. El evento de El Niño de 1982-1983 causó una reducción de las capturas en esos años, mientras que las capturas en el resto del Pacífico aparentemente no fueron afectadas. Aunque el alcance del Niño de 1997-1998 fue mayor, no tuvo el mismo efecto sobre las capturas de aleta amarilla en el OPO. En el OPO, las capturas aumentaron constantemente a un pico de 443 mil t en 2002. Disminuyeron sustancialmente en 2004, al nivel más bajo del periodo de 2006-2008, 40% de las capturas más altas del período de 2001-2003. La captura de 2014 de 234 mil t es igual al promedio del quinquenio actual. En el Pacífico occidental y central, las capturas de aleta amarilla aumentaron constantemente, a un pico de 604,000 t en 1998, y luego permanecieron entre 468 y 590 mil t durante 1999-2013.

En la <u>Tabla A-2a</u> se presentan las capturas retenidas anuales de aleta amarilla en el OPO por buques cerqueros y cañeros durante 1985-2014. La captura retenida anual media durante 1999-2013 fue 260 mil t (amplitud: 167 a 413 mil t); la estimación preliminar de la captura retenida en 2014, 233 mil t, fue 7% mayor que aquella de 2013, pero 10% menor que el promedio de 1999-2013. Los descartes medios de aleta amarilla en el mar durante 1999-2013 se cifraron en un 1% (amplitud: 0,1 a 2,4%) de la captura total cerquera (capturas retenidas más descartes) de la especie (Tabla A-2a).

En la Tabla A-2a se presentan las capturas retenidas anuales de aleta amarilla en el OPO por buques palangreros durante 1985-2014. Durante 1990-2003 la capturo promedio fue unas 23 mil t (amplitud: 12 a 50 mil t), o un 8% de las capturas retenidas totales de la especie. Las capturas palangreras disminuyeron bruscamente a partir de 2005, con un promedio anual de 10 mil t (amplitud: 8 a 13 mil t), o un 4% de las capturas totales retenidas hasta 2013. La baja captura palangrera total en 2014 se debe a datos incompletos para el año. El aleta amarilla es capturado también por buques de pesca recreacional, incidentalmente en redes de transmalle, y en pesquerías artesanales. En la columna de 'Otras artes' (OTR) de la Tabla A-2a se presentan estimaciones de estas capturas; durante 1999-2013 fueron en promedio unas mil t.

2.1.2. Atún barrilete

En la <u>Tabla A-1</u> se presentan las capturas anuales de barrilete durante 1985-2014. La mayoría de la captura de barrilete en el Océano Pacífico proviene del Pacífico occidental y central. Antes de 1999, la captura anual media en el Pacífico occidental y central fue aproximadamente 900 mil; a partir de 1999, las capturas aumentaron constantemente de 1,1 millones de toneladas a un récord de 1,8 millones en 2013. En el OPO, las capturas anuales máximas ocurrieron entre 2003 y 2014, variando de 153 a 309 mil t, el récord logrado en 2006.

En la Tabla A-2a se presentan las capturas retenidas anuales de barrilete en el OPO por buques cerqueros y cañeros durante 1985-2014. La captura retenida anual media durante 1999-2013 fue 234 mil t (amplitud: 144 a 297 mil t). La estimación preliminar de la captura retenida de barrilete en 2014, 262 mil t, es 12% mayor que el promedio de 1999-2013, y 12% menor que la captura retenida récord de 2008. Los descartes de barrilete en el mar disminuyeron cada año durante el período, de 11% en 2000 a menos de 1% en 2013. Durante el período un 5% de la captura total de la especie fue descartado en el mar (Tabla A-2a).

En el OPO se capturan pequeñas cantidades de barrilete con palangre y otros tipos de arte (Tabla A-2a).

2.1.3. Atún patudo

En la Tabla A-1 se presentan las capturas anuales de patudo durante 1985-2014. En general, las capturas en el OPO y en el Pacífico occidental y central han aumentado, pero con fluctuaciones considerables. En el OPO, la captura media durante el periodo fue 103 mil t, con una minima de 72 mil t en 1985 y una máxima de 149 mil t en 2000. En el Pacífico occidental y central, las capturas de patudo aumentaron a más de 77 mil t a fines de los años 1970, disminuyeron a principios de los años 1980, y luego aumentaron constantemente a 111 mil t en 1996. En 1997 se disparó a 154 mil t, y alcanzó un pico de 180 mil t en 2004. Desde entonces ha fluctuado entre 128 y 153 mil t.

En la Tabla A-2a se presentan las capturas retenidas anuales de patudo en el OPO por buques cerqueros y cañeros durante 1985-2014. Durante 1993-1994 el uso de dispositivos agregadores de peces (DAP, o plantados), colocados en el agua por los pescadores para atraer a los atunes, casi se duplicó, y siguió aumentando en los años siguientes. Esto resultó en mayores capturas de patudo por buques cerqueros. Antes de este aumento, la captura retenida media anual de patudo por buques cerqueros en el OPO fue alrededor de 5 mil t (<u>Tabla A-2a</u>). Como consecuencia del desarrollo de la pesquería sobre plantados, aumentaron de 35 mil t en 1994 a entre 44 y 95 mil t durante 1995-2013. La estimación preliminar de la captura retenida en el OPO en 2013 es de 60 mil t.

Durante 1999-2013 disminuyó consistentemente el porcentaje de la captura cerquera de la especie

descartado en el mar, de 9% on 1999 a menos de 1% en 2013, para una tasa media de descarte de aproximadamente 2,5%. No se han reportado capturas de patudo por buques cañeros en los últimos años.

Entre 1985 y 1994, antes del aumento del uso de plantados, los buques palangreros capturaban en promedio el 95% del patudo en el OPO, (promedio 86 mil t; amplitud 66 a 104 mil t). Durante 1999-2013, este promedio disminuyó a 39%, con un mínimo de 25% en 2006 (promedio: 42 mil t; amplitud: 26 a 74 mil t; Tabla A-2a). La estimación preliminar de la captura palangrera en el OPO en 2014 es de 35 mil t (Tabla A-2a).

En el OPO se capturan pequeñas cantidades de patudo con otros tipos de arte (Tabla A-2a).

2.1.4. Atún aleta azul

En la Tabla A-2a se presentan las capturas de atún aleta azul del Pacífico en el OPO durante 1985-2014, por arte de pesca. Los buques cerqueros y cañeros tomaron más del 94% de la captura total retenida en el OPO durante 1999-2013. Durante este período la captura anual retenida de la especie en el OPO por buques cerqueros fue en promedio 4,6 mil t (amplitud: 1,2 a 9,9 mil t). La estimación preliminar de la captura cerquera retenida de aleta azul en 2014, 4,9 mil t, es ligeramente mayor que el promedio de 1999-2013 (Tabla A-2a).

En la <u>Tabla A-5a</u> se presentan las capturas de aleta azul del Pacífico en el Océano Pacífico entero, por bandera y arte. Los datos, obtenidos del Comité Científico Internacional sobre los Atunes y Especies Afines en el Océano Pacífico Norte (ISC), son desglosados por nación o entidad pesquera, sin tener en cuenta la región del Pacífico donde fue capturado el pescado.

Las capturas de atún aleta azul del Pacífico con artes recreativas en el OPO son reportadas en número de peces individuales capturados, mientras todas las otras artes reportan sus capturas en peso (toneladas). Se convierten estos datos en número a toneladas para inclusión en las capturas totales por todas las artes en el OPO. En la <u>Table A-5b</u> se presentan los datos originales de 1985-2014, en número de peces.

2.1.5. Atún albacora

En las <u>Tablas A-6a</u> y <u>A-6b</u> se presentan las capturas de albacora en el Océano Pacífico entero, por arte y zona (al norte y al sur de la línea ecuatorial). En la Tabla A-2a se presentan las capturas de albacora en el OPO, por arte. Una porción importante de la captura de la especie es tomada con curricán, incluido en otras artes (OTR) en la Tabla A-2a. Los datos de capturas fuero obtenidos de datos de la CIAT en el caso del OPO, y de datos compilados por la SPC en el caso del Pacífico occidental y central.

2.1.6. Otros atunes y especies afines

Los atunes aleta amarilla, barrilete, y patudo forman el componente más importante de las capturas retenidas de la flota cerquera y cañera en el OPO, pero otros atunes y especies afines, como el barrilete negro, bonito, peto, y las melvas, contribuyen a la captura general de la región. En la <u>Tabla A-2a</u> se presentan estimaciones de las capturas anuales retenidas y descartadas de estas especies durante 1985-2014. Las capturas incluidas en la categoría de "atunes no identificados" (TUN) en la Tabla A-2a contienen algunas capturas reportadas por especie (melvas o petos) junto con los atunes no identificados. La captura retenida total de estas otras especies en estas pesquerías fue 7,0 mil toneladas en 2014, más que el promedio de 1999-2013 de 6,4 mil t (amplitud: 500 t a 19 mil t).

El barrilete negro es también capturado con otras artes en el OPO, principalmente en la pesca artesanal costera. El bonito es asimismo capturado en las pesquerías artesanales, y ha sido reportado como captura por buques palangreros en algunos años.

2.1.7. Peces picudos

En la <u>Tabla A-2b</u> se presentan datos de captura de los peces picudos (pez espada, marlín azul, negro, rayado y trompa corta, y pez vela).

En general, los delfines, tortugas marinas, ballenas tiburón, y peces pequeños son los únicos animales capturados en la pesquería de cerco que son liberados vivos. En versiones previas del presente informe, todos los peces picudos capturados en esas pesquerías son clasificados como descartados muertos. Si la gran mayoría de los individuos o especies capturados incidentalmente es descartada, la diferencia entre las capturas y los descartes no son significativas para esas especies, pero a medida que aumenta la tasa de retención de especies antes descartadas, parte de la captura incidental cambia a ser captura, y la distinción se vuelve importante. Como resultado de una revisión en 2010, esto ha sido aclarado en la <u>Tabla A-2b</u> con una columna adicional de captura retenida al lado de la columna de descartes.

El pez espada es capturado en el OPO con palangres a gran escala y artesanales, red de transmalle, arpón y, de vez en cuando, por buques recreacionales. Durante 1999-2008 la captura anual media palangrera de pez espada fue 12 mil t, pero durante 2011-2013 casi se duplicó, a más de 22 ml t. No queda claro si esto se debe a una mayor abundancia de la especie o a un aumento del esfuerzo dirigido hacia la misma.

Los demás peces picudos son capturados con palangres a gran escala y artesanales y por artes recreacionales. Las capturas palangreras anuales medias de marlín azul y marlín rayado durante 1999-2013 fueron unas 4,1 mil y 1,9 mil t, respectivamente. Se capturan cantidades menores de otros peces picudos con palangre.

Desgraciadamente, se cuenta con muy poca información sobre las capturas recreacionales de peces picudos, pero se cree que son sustancialmente menores que las capturas comerciales de todas estas especies.

Se capturan pequeñas cantidades de peces picudos con red de cerco; algunos son retenidos, y otros son considerados descartados, aunque es posible que parte de esta captura sea descargada sin ser reportada. Se incluyen estos datos en la <u>Tabla A-2b</u>. Durante 1999-2013 los buques cerqueros capturaron aproximadamente el 1% de la captura total de peces picudos en el OPO.

2.1.8. Otras especies

En la <u>Tabla A-2c</u> se presentan datos de las capturas y descartes de carángidos (jureles y salmón), dorado, elasmobranquios (tiburones y rayas) y otros peces capturados en el OPO.

En la Tabla A-2c se clasifican en retenidas o descartadas las capturas incidentales en la pesquería de cerco. Como resultado de una revisión en 2010, se modificó la asignación de las capturas en estas categorías.

Las capturas de dorado son descargadas principalmente en puertos de América Central y del Sur. Aunque las capturas reportadas han alcanzado hasta 71 mil toneladas en los últimos años, a menudo no se reporta el tipo de arte usado.

2.2. Distribución de las capturas de atunes

2.2.1. Capturas cerqueras

En las <u>Figuras A-1a</u>, <u>A-2a</u>, <u>y A-3a</u> ilustran las distribuciones anuales medias de las capturas cerqueras de aleta amarilla, barrilete y patudo, por tipo de lance, en el OPO durante 2009-2013, y en las <u>Figuras A-1b</u>, <u>A-2b</u>, y <u>A3b</u> estimaciones preliminares para 2014.

La mayor parte de las capturas de aleta amarilla en 2014 provino de lances asociados a delfines en tres áreas generales entre 5°N y 15°N al oeste de 115°O, al norte de 15°N y este de 115°O, y entre 5°N y 15°N al este de 105°. Las capturas de aleta amarilla sobre delfines fueron máximas en las áreas costeras frente al litoral de Centroamérica. Las capturas en alta mar de aleta amarilla asociado a delfines ocurrieron más al sur que en el año previo.

Las capturas de aleta amarilla no asociado en 2014 disminuyeron un 27% con respecto al año previo, debido principalmente a una disminución sustancial de la captura en las zonas costeras frente al sur de México. Las capturas costeras alrededor de la línea ecuatorial fueron inferiores al promedio de 2009-2013. Se capturaron cantidades menores de aleta amarilla al sur de la línea ecuatorial en el OPO entero. Principalmente en asociación con objetos flotantes.

Las capturas de barrilete en la zona costera en 2014 fueron similares a aquellas de años previos, aunque el porcentaje capturado en asociación con objetos flotantes aumentó. Las capturas de barrilete en alta mar fueron casi exclusivamente en asociación con objetos flotantes, y las capturas de alta mar totales en 2014 disminuyeron con respecto al año previo.

No se captura a menudo patudo al norte de aproximadamente 7°N, y las capturas de la especie han disminuido en las zonas costeras de América del Sur desde hace varios años. Con el desarrollo de la pesquería sobre plantados, la importancia relativa de las zonas costeras ha disminuido, mientras que la de las zonas de altura ha aumentado. La mayoría de las capturas de patudo provienen de lances sobre plantados entre 5°N y 5°S.

2.2.2. Capturas palangreras

Las bases de datos de la CIAT contienen datos sobre las distribuciones espacial y temporal de las capturas en el OPO de las flotas palangreras de aguas lejanas de China, la República de Corea, España, Estados Unidos, Japón, Polinesia Francesa, Taipéi Chino, y Vanuatu. Los atunes patudo y aleta amarilla forman la mayor parte de las capturas de la mayoría de estos buques. En la <u>Figura A-4</u> se ilustra la distribución de las capturas de atunes de estas dos especies por buques de palangre de China, Corea, Japón, y Taipéi Chino en el Océano Pacífico durante 2009-2013. Se presentan datos de la pesquería palangrera japonesa en el OPO durante 1956-2007 en los Boletines de la CIAT que describen esa pesquería.

2.3. Composición por tamaño de las capturas de atunes

2.3.1. Pesquerías de cerco, de caña, y recreacional

Las muestras de frecuencia de talla son la fuente básica de los datos usados para estimar la composición por talla y edad de las distintas especies de peces en las descargas. Esta información es necesaria para obtener estimaciones de la composición de las poblaciones por edad, usadas para varios propósitos, entre ellos el modelado integrado que el personal ha usado en los últimos años. Los resultados de estudios de este tipo han sido descritos en diversos Boletines de la CIAT, en sus Informes Anuales de 1954 a 2002, y en sus Informes de Evaluación de Poblaciones.

Las muestras de frecuencia de talla de aleta amarilla, barrilete, patudo, aleta azul del Pacífico y, ocasionalmente, barrilete negro de las capturas de buques cerqueros, cañeros, y recreacionales en el OPO son tomadas por el personal de la CIAT en puertos de descarga en Ecuador, Estados Unidos, México, Panamá, y Venezuela. El muestreo de las capturas de aleta amarilla y barrilete fue iniciado en 1954, el de aleta azul en 1973, y el de patudo en 1975, y continúa actualmente.

En el <u>Informe Anual de la CIAT de 2000</u> y los Informes de Evaluación de Stocks $\frac{2}{2}$ y $\frac{4}{2}$ se describen los métodos de muestreo de las capturas de atún. En breve, se selecciona para el muestreo pescado en las bodegas de buques cerqueros y cañeros solamente si todo el pescado en la bodega fue capturado durante un solo mes, en un solo tipo de lance (delfín, objeto flotante, o no asociado), y en la misma zona de muestreo. Se clasifican estos datos por pesquería (<u>Figura A-5</u>), con base en las evaluaciones más recientes de las poblaciones realizadas por el personal.

En este informe se presentan datos de pescado capturado durante 2009-2014. Para cada especie, excepto el aleta azul y el barrilete negro, se presentan dos histogramas de frecuencia de talla: el primero presenta los datos por estrato (arte de pesca, tipo de lance, y zona) para 2014, y el segundo ilustra los datos combinados para cada año del período de 2009-2014. En el caso del aleta azul, se ilustran las capturas comerciales y recreacionales de 2007-2012 combinadas. En el caso del barrilete negro, los histogramas ilustran as capturas por artes comerciales durante 2009-2014. Hubo muy poca captura por buques cañeros en 2013 y 2014, y no se obtuvo ninguna muestra de los mismos.

Para la evaluación de las poblaciones de aleta amarilla se definen nueve pesquerías de cerco (cuatro asociadas con objetos flotantes, tres asociadas con delfines, dos de atunes no asociados) y una de caña (Figura A-5). La última abarca todas las 13 zonas de muestreo. De las 815 bodegas muestreadas durante

2014, 625 contenían aleta amarilla. En la Figura A-6a se ilustran las composiciones por talla estimadas del pescado capturado durante 2012. La mayoría de la captura de aleta amarilla provino de lances asociados con delfines en las pesquerías sobre delfines del norte y costera durante todo el año. La mayoría del aleta amarilla grande (>100 cm) fue capturado en la pesquería sobre delfines del norte durante todo el año, y en la pesquería sobre delfines costera en los trimestres primero y segundo. Fueron capturados aletas amarillas más pequeños (<100 cm) principalmente en la pesquería sobre objetos flotantes costera durante el primer trimestre.

En la <u>Figura A-6b</u> se ilustra la composición por talla estimada del aleta amarilla capturado por todas las pesquerías combinadas durante 2009-2014. El peso medio del aleta amarilla capturado en 2014 (9,8 kg) fue aproximadamente igual que en el año previo, pero mucho menos que la máxima del periodo de seis años de 14,4 kg en 2009.

Para la evaluación de las poblaciones de barrilete se definen siete pesquerías de cerco (cuatro asociadas con objetos flotantes, dos de atunes no asociados, una asociada con delfines) y una de caña (Figura A-5). Las dos últimas abarcan todas las 13 zonas de muestreo. De las 815 bodegas muestreadas, 479 contenían barrilete. En la Figura A-7a se ilustran las composiciones por talla estimadas del pescado capturado durante 2014. Fueron capturadas grandes cantidades de barrilete de entre 40 y 60 cm de talla en la pesquería sobre objetos flotantes ecuatorial en los trimestres tercero y cuarto, en la pesquería sobre objetos flotantes del sur durante todo el año, y en la pesquería no asociada del Sur durante el primer trimestre. Fueron capturados barriletes más grandes, de entre 60 y 70 cm de talla, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres tercero y cuarto, en la pesquería no asociada del sur en la pesquería sobre objetos flotantes ecuatorial durante el primer trimestre. Fueron capturados barriletes más grandes, de entre 60 y 70 cm de talla, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres tercero y cuarto, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres tercero y cuarto, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres tercero y cuarto, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres tercero y cuarto, en la pesquería sobre objetos flotantes del sur durante el cuarto trimestre, y en la pesquería no asociada del sur en los trimestres segundo y cuarto.

En la <u>Figura A-7b</u> se ilustra la composición por talla estimada del barrilete capturado por todas las pesquerías combinadas durante 2009-2014. El peso medio del barrilete en 2014 (2,2 kg) es igual al promedio del quinquenio previo (amplitud: 2,0 a 2,5 kg).

Para la evaluación de las poblaciones de patudo se definen seis pesquerías de cerco (cuatro asociadas con objetos flotantes, una de atunes no asociados, una asociada con delfines) y una de caña (Figura A-5). Las tres últimas abarcan todas las 13 zonas de muestreo. De las 815 bodegas muestreadas, 159 contenían patudo. Se capturó patudo de entre 40 y 100 cm de talla principalmente en la pesquería sobre objetos flotantes del norte durante los trimestres segundo y cuarto, y en la pesquería sobre objetos flotantes del sur durante los trimestres tercero y cuarto. Fueron capturados patudos más grandes (>100 cm) principalmente en la pesquería sobre objetos flotantes del sobre objetos flotantes del sobre objetos flotantes del sobre objetos flotantes del sur en los trimestres tercero y cuarto, y en la pesquería sobre objetos y en la pesquería sobre objetos flotantes del sobre objetos flotantes d

En la <u>Figura A-8b</u> se ilustra la composición por talla estimada del patudo capturado por todas las pesquerías combinadas durante 2009-2014. El peso medio del patudo en 2014 (5,7 kg) fue ligeramente mayor que en el año previo, pero permaneció por debajo de los 8,0 y 6,7 kg registrados en 2011 y 2012, respectivamente.

El aleta azul del Pacífico es capturado con red de cerco y con artes recreacionales frente a California y Baja California, entre 28°N y 35°N, aproximadamente, principalmente entre mayo y diciembre. Durante 2012 fue capturado entre 26°N y 32°N desde junio hasta agosto. La mayor parte de las capturas comerciales y recreacionales fue lograda en julio y agosto. Antes de 2004 se reportaban las tallas del pescado en las capturas comercial y recreacional por separado, pero durante 2004-2012 el pequeño tamaño de las muestras imposibilitó la estimación de la composición por talla por separado. Se combinaron por tanto las tallas del pescado en las capturas comercial y recreacional de aleta azul para cada año del período de 2004-2012. El peso medio del pescado capturado durante 2012 (14,2 kg) fue menor que aquél de 2011 (15,4 kg), pero muy parecido al peso promedio de 2009 y 2010. En la Figura A-9 se presentan las composiciones por talla estimadas. Antes de 2013, el personal de la CIAT obtenía muestras de frecuencia de talla de buques de pesca recreacional que descargaban en San Diego y de

buques cerqueros. A partir de 2013, un muestreo de los buques recreacionales fue realizado por el Servicio Nacional de Pesquerías Marinas (NMFS) de EE.UU.. Se tomaron muy pocas muestras de buques cerqueros comerciales en 2013 y 2014. Las estimaciones de composición por talla del aleta azul serán actualizadas una vez se desarrollo una metodología que incorpore los cambios en el muestreo.

El barrilete negro es capturado incidentalmente por pescadores que dirigen su esfuerzo hacia los atunes aleta amarilla, barrilete, y patudo. La demanda de la especie es baja, y la mayoría de las capturas es desechada en el mar, pero a veces se retienen pequeñas cantidades, mezcladas con las especies más deseadas. En la Figura A-10 se ilustra la composición estimada por talla de la especie en cada año del período de 2009-2014.

2.3.2. Pesquería de palangre

En las <u>Figuras A-11</u> y <u>A-12</u> se ilustra la composición estimada por talla de las capturas de aleta amarilla y patudo por la pesquería palangrera japonesa en el OPO durante 2009-2013. El peso promedio del aleta amarilla en 2013 (61,3 kg) fue considerablemente mayor que aquellos de los cuatro años previos (44,7 a 56,3 kg). El peso promedio del patudo en 2013 fue

consistente con los cuatro años previos en 46,3 kg. En los Boletines de la CIAT que describen esta pesquería se presenta información sobre la composición por talla del pescado capturado en el OPO durante 1958-2008.

2.4. Capturas de atunes y bonitos, por bandera y arte

En las <u>Tablas A-3a-e</u> se detallan las capturas retenidas anuales de atunes y bonitos en el OPO durante 1985-2014, clasificadas por bandera y arte. Las tablas incluyen todas las capturas conocidas de atunes, compiladas de varias fuentes, entre ellas los cuadernos de bitácora de los buques, datos de observadores, registros de descargas provistos por empresas enlatadoras y otros procesadores, registros de importaciones y exportaciones, informes de los gobiernos y otras entidades, y estimaciones derivadas del programa de muestreo de especies y composición por talla. En <u>el portal de internet de la CIAT</u> se presenta información similar de años anteriores a 2001 sobre los atunes y bonitos, y datos históricos de atunes, peces picudos, tiburones, carángidos, dorado, y peces misceláneos. En la <u>Tabla A-4</u> se resumen las capturas cerqueras de atunes y bonitos en 2013 y 2014, por bandera. De las 566 mil t de atunes y bonitos capturadas en 2014, 45 % fue capturado por buques ecuatorianos, y 24 % por buques mexicanos. Otros países con capturas importantes de atunes y bonitos en el OPO incluyen Panamá (9%), Venezuela (7%), y Colombia (8%).

3. ESFUERZO DE PESCA

3.1. Pesca de cerco

En la <u>Tabla A-7</u> se presentan estimaciones del número de lances cerqueros de cada tipo (asociados con delfines, asociados con objetos flotantes (naturales y plantados), y no asociados) en el OPO durante 1999-2014 y de las capturas retenidas de esos lances (Figura 1). Se calcularon las estimaciones para los buques de \leq 363 t de capacidad de acarreo con datos de bitácora en la base de datos estadística de la CIAT, y aquéllos para los buques de \geq 363 t de capacidad de acarreo a partir de las bases de datos de observadores

de la CIAT y de los programas de observadores de la CIAT, Colombia, Ecuador, Estados Unidos, México, Nicaragua, Panamá, la Unión Europea y Venezuela. El número de lances sobre atunes asociados con objetos flotantes y no asociados fue máximo entre mediados de los años 1970 y principios de los 1980. A pesar de la oposición a la pesca de atunes asociados con delfines, y de la decisión de las enlatadoras de EE.UU. de no comprar atún capturado en viajes en los cuales se realizaron lances sobre delfines, el número de lances sobre delfines disminuyó tan sólo moderadamente a mediados de los años 1990, y en 2003 fue el mayor jamás registrado.

Hay dos tipos de objetos flotantes, los "naturales" (que también incluyen desperdicios y otros objetos artificiales), que se encuentran en el mar por casualidad, del punto de vista de los pescadores, y los que son construidos por pescadores con el propósito específico de atraer peces. Se conocen estos últimos como plantados, dispositivos agregadores de peces (DAP), o FAD (del inglés *fish-aggregating device*). El uso de los plantados aumentó bruscamente en 1994, con un porcentaje de plantados casi el doble del año anterior, en casi el 60% de todos los lances sobre objetos flotantes. Su importancia relativa ha seguido aumentando desde entonces, alcanzando el 97% de todos los lances sobre objetos flotantes por buques de más de 363 t de capacidad de acarreo en los últimos años, tal como se indica en la <u>Tabla A-8</u>.

3.2. Pesca palangrera

En la <u>Tabla A-9</u> se presentan el esfuerzo nominal de los buques palangreros en el OPO, en miles de anzuelos, y sus capturas reportadas de las especies principales de atunes.

4. LAS FLOTAS

4.1. Las flotas de cerco y de caña

El personal de la CIAT mantiene registros detallados del arte de pesca, bandera, y capacidad de acarreo de la mayoría de los buques que pescan atunes aleta amarilla, barrilete, patudo, y/o aleta azul del Pacífico con red de cerco o caña en el OPO. La flota aquí descrita incluye buques cerqueros y cañeros que pescaron alguna de estas cuatro especies en el OPO durante el año entero o parte del mismo.

Históricamente, se usaron las estimaciones de la capacidad de acarreo de buques individuales provistas por el armador o astillero, en toneladas de pescado, hasta que los registros de descarga indicasen que era preciso modificarlas.

Desde 2000, el personal de la CIAT usa el volumen de bodegas, en metros cúbicos (m³), en lugar de peso, en toneladas (t), para medir la capacidad de acarreo de los buques. Ya que la densidad de carga

de pescado en una bodega puede variar, medir la capacidad de acarreo en peso es subjetivo, ya que un cargamento de pescado metido en una bodega a densidad alta pesa más que uno cargado a densidad menor. El uso de volumen como medida de capacidad elimina este problema.

El personal de la CIAT comenzó a reunir datos sobre la capacidad en volumen en 1999, pero todavía no ha obtenido esta información para todos los buques. En el caso de buques para los cuales no se dispone de información fidedigna sobre el volumen de bodega, se convirtió la capacidad estimada en toneladas en metros cúbicos. Hasta aproximadamente 1960 predominaron en la pesca atunera en el OPO los buques cañeros, que faenaban en zonas costeras y cerca de islas y bancos de alta mar. Hacia fines de los años 1950 y a principios de los 1960, la mayoría de los buques cañeros grandes fue convertida a arte de cerco, y para 1961 este arte predominaba en la pesquería del OPO. Entre 1961 y 2014, el número de buques cañeros se redujo de 93 a 2, y su volumen de bodega total disminuyó de unos 11.000 m³ a unos 226 m³. Durante el mismo período el número de cerqueros aumentó de 125 a 217, y su volumen total de bodega de unos 32.000 m³ a 229.000 m³, un promedio de unos 1.055 m³ por buque. Previamente ocurrió un pico en el número y volumen total de bodega de la flota cerquera entre mediados de los años 1970 y principios de los 1980, cuando llegó a haber 282 buques, y el volumen total de bodega alcanzó unos 195.000 m³, un promedio de unos 700 m³ por buque (Tabla A-10 y Figura 2).

Las tasas de captura en el OPO fueron bajas durante 1978-1981, debido a la concentración del esfuerzo de pesca sobre peces pequeños, y la situación se vio agravada por un evento importante de El Niño que comenzó a mediados de 1982 y persistió hasta fines de 1983, y que causó que los peces fueran menos vulnerables a la captura. Luego disminuyó el volumen total de bodegas de los buques de cerco y caña, debido al retiro de buques o a su traslado a otras zonas de pesca, principalmente el Pacífico occidental, y en 1984 alcanzó el nivel más bajo desde 1971, unos 119.000 m³. A principios de 1990 la industria enlatadora de Estados Unidos decidió no comprar más atún capturado en viajes en los que se pescaran atunes asociados con delfines. Esto llevó a que muchas embarcaciones de Estados Unidos abandonasen el OPO, y a una disminución consecuente en la flota a 117.000 m³ en 1992. Con la mayor participación de buques de otras naciones en la pesquería, el volumen total de bodega ha aumentado progresivamente desde 1992, y en 2014 fue de unos 229 mil m³.

En las <u>Tablas A-11a</u> y <u>A-11b</u> se presentan los datos de 2013 y preliminares de 2014 del número y volumen total de bodega de los buques cerqueros y cañeros que pescaron atunes en el OPO. En 2014 predominaron las flotas de Ecuador y México, con 38% y 24%, respectivamente, del volumen de bodega total, seguidos por Venezuela (9%), Panamá (9%), Colombia (6%), la Unión Europea (España) (4%),

Nicaragua (4%), El Salvador (3%), y Guatemala, Perú, y Estados Unidos (1% cada uno). Los porcentajes pueden no sumar a 100% debido al redondeo.

En la Figura 3 se compara la capacidad acumulativa en el mar durante 2014 con los cinco años anteriores.

En la <u>Tabla A-12</u> se presentan los valores mensuales medios, mínimos, y máximos del volumen total de bodega en el mar (VEM), en miles de metros cúbicos, de los buques cerqueros y cañeros que pescaron atunes en el OPO durante 2004-2013, junto con los valores de

2014. Los valores mensuales son los promedios de las estimaciones de la VEM calculadas semanalmente por el personal de la CIAT. La pesca fue reglamentada durante parte, o la totalidad, de los últimos cuatro meses del año durante 1999-2014, por lo que los valores de la VEM de septiembre-diciembre de 2014 no son comparables con los valores medios del período correspondiente durante 1999-2014. Durante 2004-2013 y 2014 el valor medio del VEM fue 135 mil m³ (62% de la capacidad total) y 135 mil m³ (59% de la capacidad total), respectivamente.

4.2. Otras flotas del OPO

El Registro Regional de Buques de la CIAT, disponible en el <u>sitio web de la Comisión</u>, contiene información sobre otros tipos de buques que pescan atunes en el OPO. El Registro es incompleto para buques pequeños. En algunos casos, particularmente con respecto a los buques palangreros grandes, el Registro Regional contiene información de buques que están autorizados para pescar no sólo en el OPO, sino también en otros océanos, y que posiblemente no hayan pescado en el OPO en 2014, o jamás.

B. YELLOWFIN TUNA

This report presents the most current stock assessment of yellowfin tuna (*Thunnus albacares*) in the eastern Pacific Ocean (EPO). An integrated statistical age-structured stock assessment model (Stock Synthesis Version 3.23b) was used in the assessment, which is based on the assumption that there is a single stock of yellowfin in the EPO. This model is the same as that used in the previous assessment in 2014 (IATTC Stock Assessment Report 15)

Yellowfin are distributed across the Pacific Ocean, but the bulk of the catch is made in the eastern and western regions. Purse-seine catches of yellowfin are relatively low in the vicinity of the western boundary of the EPO at 150°W (Figure A-1a and A-1b). The majority of the catch in the EPO is taken in purse-seine sets on yellowfin associated with dolphins and in unassociated schools (Figure B-1). Tagging studies of yellowfin throughout the Pacific indicate that the fish tend to stay within 1800 km of their release positions. This regional fidelity, along with the geographic variation in phenotypic and genotypic characteristics of yellowfin shown in some studies, suggests that there might be multiple stocks of yellowfin in the EPO and throughout the Pacific Ocean. This is consistent with the fact that longline catch-per-unit-of-effort (CPUE) trends differ among areas in the EPO. However, movement rates between these putative stocks, as well as across the 150°W meridian, cannot be estimated with currently-available tagging data.

The stock assessment requires substantial amounts of information, including data on retained catches, discards, indices of abundance, and the size compositions of the catches of the various fisheries. Assumptions have been made about processes such as growth, recruitment, movement, natural mortality, fishing mortality (F), and stock structure. The assessment for 2014 is nearly identical¹ to that of 2013, and includes new and updated data. The staff performed substantial investigative analyses in preparation for the external review of its assessment of yellowfin tuna, held in October 2012. The review resulted in a series of recommendations (Document <u>SAC-04-INF A</u>), which are being explored to be incorporated in the upcoming full stock assessment.

The catch data for the surface fisheries have been updated and new data added for 2014. New or updated longline catch data are available for China (2013), Japan (2008-2013), Korea (2013), Chinese Taipei (2011-2013), the United States (2012-2013), French Polynesia (2013), Vanuatu (2013-2014), and other nations (2013). Japanese longline catch data for 2014 are available from the monthly report statistics. For longline fisheries with no new catch data for 2014, catches were assumed to be the same as in 2013. Surface fishery CPUE data were updated, and new CPUE data added for 2014. New or updated CPUE data are available for the Japanese longline fleet (2008-2013). New surface-fishery size-composition data for 2014 were added and data for 2013 were updated. New or updated length-frequency data are available for the Japanese longline fleet (2008-2013).

In general, the recruitment of yellowfin to the fisheries in the EPO is variable, with a seasonal component. This analysis and previous analyses indicate that the yellowfin population has experienced two, or possibly three, different recruitment productivity regimes (1975-1982, 1983-2002, and 2003-2012) (Figure B-2). The recruitments for 2011 and 2012 were estimated to be below average. The most recent recruitments (2013 and 2014) were estimated to be above average, but these estimates are highly uncertain. The productivity regimes correspond to regimes in biomass, with higher-productivity regimes producing greater biomass levels. A stock-recruitment relationship is also supported by the data from these regimes, but the evidence is weak, and this is probably an artifact of the apparent regime shifts.

The average weights of yellowfin taken from the fishery have been fairly consistent over time, but vary substantially among the different fisheries. In general, the floating-object, northern unassociated, and pole-and-line fisheries capture younger, smaller yellowfin than do the southern unassociated, dolphin-associated, and longline fisheries. The longline fisheries and the dolphin-associated fishery in the

¹ The CV for the LL-S index was assumed to be 0.2. See Appendix A of <u>IATTC Stock Assessment Report 14</u>

southern region capture older, larger yellowfin than the northern and coastal dolphin-associated fisheries.

Substantial levels of fishing mortality have been estimated for the yellowfin fishery in the EPO (Figure B-<u>3</u>). These levels are highest for middle-aged yellowfin. Historically, the dolphin-associated and unassociated purse-seine fisheries have the greatest impact on the spawning biomass of yellowfin, followed by the floating-object fisheries. In more recent years, the impact of the floating-object fisheries has been greater than that of the unassociated fisheries. The impacts of the longline and purse-seine discard fisheries are much less, and have decreased in recent years (Figure B-4).

The spawning biomass ratio (the ratio of the spawning biomass to that of the unfished population; SBR) of yellowfin in the EPO was below the level corresponding to the maximum sustainable yield (MSY) during 1977-1983, coinciding with the low productivity regime, but above that level during most of the following years, except for the recent period (2005-2007 and 2010-2014) (Figure B-5). The 1984 increase in the SBR is attributed to the regime change, and the recent decrease may be a reversion to an intermediate productivity regime. The different productivity regimes may support different MSY levels and associated SBRs. The SBR at the start of 2015 was estimated to be 0.26, slightly below the MSY level (0.27). The recent (2011-2014) SBRs estimated by the current assessment are less optimistic than those produced by the previous assessment, which indicated a sharp decline in spawning biomass after 2009, followed by an increase in 2012 to above the level corresponding to the MSY (IATTC Stock Assessment Report 15). In the current assessment, the SBRs for 2012, and for 2013 and 2014 as well, are slightly below the MSY level. This result is probably due to the higher fishing mortality of middle-aged vellowfin since 2009 estimated by the current assessment (Figure B-3). The effort is estimated to be below the level that would support the MSY (based on the current distribution of effort among the different fisheries (Figure B-6), and recent catches are below that level (Table B-1). It is important to note that the curve relating the average sustainable yield to the long-term fishing mortality is flat around the MSY level (Figure B-7). Therefore, moderate changes in the long-term levels of effort will change the long-term catches only marginally, while changing the biomass considerably. Maintaining the fishing mortality below the MSY level would result in only a marginal decrease in the long-term average yield, with the benefit of a relatively large increase in the spawning biomass. In addition, if management is based on the base case assessment (which assumes that there is no stock-recruitment relationship), when in fact there is such a relationship, there would be a greater loss in yield than if management is based on assuming a stock-recruitment relationship when in fact there is no relationship (Figure B-9).

The MSY calculations indicate that, theoretically at least, catches could be increased if the fishing effort were directed toward longlining and purse-seine sets on yellowfin associated with dolphins. This would also increase the SBRs.

The MSY has been stable during the assessment period (1975-2014) (Figure B-8), which suggests that the overall pattern of selectivity has not varied a great deal through time. However, the overall level of fishing effort has varied with respect to the MSY level.

If a stock-recruitment relationship is assumed, the outlook is more pessimistic, and current effort is estimated to be above the MSY level (<u>Table B-1</u>). Previous assessments have indicated that the status of the stock is also sensitive to the value assumed for the average size of the oldest fish, and more pessimistic results are obtained when higher values are assumed for this parameter. At current (2012-2014) levels of fishing mortality and average levels of recruitment, the spawning biomass is predicted to increase above the MSY level (Figure B-5). However, the confidence intervals are wide, and there is a moderate probability that the SBR will be substantially above or below this level. In addition, the spawning biomass is predicted to remain below the MSY level if a stock-recruitment relationship is assumed (Figure B-5). If fishing effort continues at recent levels, both the spawning biomass (Figure B-5) and the catches of surface fisheries (Figure B-9) are predicted to increase, assuming average recruitment and no stock-recruitment relationship (base case). Slightly higher catches are predicted if in fact such a relationship exists (Figure B-9).

Key Results

- 1. There is uncertainty about recent and future levels of recruitment and biomass. There have been two, and possibly three, different productivity regimes, and the MSY levels and the biomasses corresponding to the MSY may differ among the regimes. The population may have switched in the last ten years from a high to an intermediate productivity regime.
- 2. The recent fishing mortality rates are below the MSY level, and the recent levels of spawning biomass are estimated to be at that level. As noted in IATTC <u>Stock Assessment Report 15</u> and previous assessments, these interpretations are uncertain, and highly sensitive to the assumptions made about the steepness parameter of the stock-recruitment relationship, the average size of the older fish, and the assumed levels of natural mortality. The results are more pessimistic if a stock-recruitment relationship is assumed, if a higher value is assumed for the average size of the older fish, and if lower rates of natural mortality are assumed for adult yellowfin.
- 3. The recent levels of spawning biomass predicted by the current assessment are more optimistic than those from the previous assessment (<u>IATTC Stock Assessment Report 15</u>). This result is due to moderate fishing mortality levels for middle-age yellowfin tuna since 2008, which are estimated by the current assessment.
- 4. Increasing the average weight of the yellowfin caught could increase the MSY.

FIGURE B-1. Total catches (retained catches plus discards) for the purse-seine fisheries, and retained catches for the pole-and-line and longline fisheries, of yellowfin tuna in the eastern Pacific Ocean, 1975-2014. The purse-seine catches are adjusted to the species composition estimate obtained from sampling the catches. The 2014 catch data are preliminary.

FIGURA B-1. Capturas totales (capturas retenidas más descartes) en las pesquerías de cerco, y capturas retenidas de las pesquerías de caña y de palangre, de atún aleta amarilla en el Océano Pacífico oriental, 1975-2014. Se ajustan las capturas de cerco a la estimación de la composición por especie obtenida del muestreo de las capturas. Los datos de captura de 2014 son preliminares.

FIGURE B-2. Estimated annual recruitment at age zero of yellowfin tuna to the fisheries of the EPO. The estimates are scaled so that the average recruitment is equal to 1.0 (dashed horizontal line). The solid line illustrates the maximum likelihood estimates of recruitment, and the shaded area indicates the approximate 95% confidence intervals around those estimates.

FIGURA B-2. Reclutamiento anual estimado a edad cero del atún aleta amarilla a las pesquerías del OPO. Se escalan las estimaciones para que el reclutamiento medio equivalga a 1.0 (línea de trazos horizontal). La línea sólida ilustra las estimaciones de verosimilitud máxima del reclutamiento, y la zona sombreada los límites de confianza de 95% aproximados de las estimaciones.

FIGURE B-3. Average annual fishing mortality (F) by age groups, by all gears, of yellowfin tuna recruited to the fisheries of the EPO. The age groups are defined by age in quarters. **FIGURA B-3.** Mortalidad por pesca (F) anual media, por grupo de edad, por todas las artes, de atún aleta amarilla reclutado a las pesquerías del OPO. Se definen los grupos de edad por edad en trimestres.

FIGURE B-4. Biomass trajectory of a simulated population of yellowfin tuna that was never exploited (dashed line) and that predicted by the stock assessment model (solid line). The shaded areas between the two lines show the portions of the fishery impact attributed to each fishing method.

FIGURA B-4. Trayectoria de la biomasa de una población simulada de atún aleta amarilla que nunca fue explotada (línea de trazos) y aquella predicha por el modelo de evaluación de la población (línea sólida). Las áreas sombreadas entre las dos líneas representan la porción del impacto de la pesca atribuida a cada método de pesca.

FIGURE B-5. Spawning biomass ratios (SBRs) for yellowfin tuna in the EPO, including projections for 2015-2025 based on average fishing mortality rates during 2012-2014, from the base case (top) and the sensitivity analysis that assumes a stock-recruitment relationship (h = 0.75, bottom). The dashed horizontal line (at 0.27 and 0.35, respectively) identifies the SBR at MSY. The solid curve illustrates the maximum likelihood estimates, and the estimates after 2015 (the large dot) indicate the SBR predicted to occur if fishing mortality rates continue at the average of that observed during 2012-2014, and average environmental conditions occur during the next 10 years. The shaded area indicates the approximate 95% confidence intervals around those estimates.

FIGURA B-5. Cocientes de biomasa reproductora (SBR) de atún aleta amarilla en el OPO, con proyecciones para 2015-2025 basadas en las tasas de mortalidad por pesca medias durante 2012-2014, del caso base (arriba) y el análisis de sensibilidad que supone una relación población-reclutamiento (h = 0.75, abajo). La línea de trazos horizontal (en 0.27 y 0.35, respectivamente) identifica el SBR correspondiente al RMS. La curva sólida ilustra las estimaciones de verosimilitud máxima, y las estimaciones a partir de 2015 (punto grande) indican el SBR que se predice ocurrirá con tasas de mortalidad por pesca en el promedio de aquellas observadas durante 2012-2014, y con condiciones ambientales medias durante los 10 años próximos. El área sombreada indica los intervalos de confianza de 95% aproximados alrededor de esas estimaciones.

FIGURE B-6. Kobe (phase) plot of the time series of estimates of stock size (top: spawning biomass; bottom: total biomass of fish aged 3 quarters and older) and fishing mortality relative to their MSY reference points. The panels represent interim target reference points (S_{MSY} and F_{MSY}). The dashed lines represent the interim limit reference points of 0.28 $*S_{MSY}$ and 2.42 $*F_{MSY}$, which correspond to a 50% reduction in recruitment from its average unexploited level based on a conservative steepness value (h =(0.75) for the Beverton-Holt stock-recruitment relationship. Each dot is based on the average exploitation rate over three years; the large red dot indicates the most recent estimate. The squares around the most recent estimate represent its approximate 95% confidence interval. The triangle is the first estimate (1975). FIGURA B-6. Gráfica de Kobe (fase) de la serie de tiempo de las estimaciones del tamaño de la población (arriba: biomasa reproductora; abajo: biomasa total de peces de 3 o más trimestres de edad) y la mortalidad por pesca en relación con sus puntos de referencia de RMS. Las líneas de trazos representan los puntos de referencia límite provisionales de $0.28*S_{RMS}$ y $2.42*F_{RMS}$, que corresponden a una reducción de 50% del reclutamiento de su nivel medio no explotado basada en un valor cauteloso de la inclinación de la relación población-reclutamiento de Beverton-Holt (h = 0.75). Cada punto se basa en la tasa de explotación media de tres años; el punto rojo grande indica la estimación más reciente. Los cuadrados alrededor de la estimación más reciente representan su intervalo de confianza de 95% aproximado. El triángulo es la primera estimación (1975).

FIGURE B-7. Yield and spawning biomass ratio (SBR) as a function of fishing mortality relative to the current fishing mortality. The vertical lines represent the fishing mortality corresponding to MSY for the base case and the sensitivity analysis that assumes a stock-recruitment relationship (h = 0.75). The vertical lines A and B represent the fishing mortality corresponding to MSY for the base case and h = 0.75, respectively.

FIGURA B-7. Rendimiento y cociente de biomasa reproductora (SBR) como función de la mortalidad por pesca relativa a la mortalidad por pesca actual. Las líneas verticales representan la mortalidad por pesca correspondiente al RMS del caso base y del análisis de sensibilidad que supone una relación población-reclutamiento (h = 0.75). Las líneas verticales A y B representan la mortalidad por pesca correspondiente al RMS del caso base y de h = 0.75, respectivamente.

FIGURE B-8. Estimates of MSY-related quantities calculated using the average age-specific fishing mortality for each year (S_i is the index of spawning biomass at the end of the last year in the assessment). **FIGURA B-8**. Estimaciones de cantidades relacionadas con el RMS calculadas a partir de la mortalidad por pesca media por edad para cada año. (S_i es el índice de la biomasa reproductora al fin del último año en la evaluación).

FIGURE B-9. Historic and projected annual catches of yellowfin tuna by surface (top panel) and longline (bottom panel) fisheries from the base case while fishing with the current effort, the base case while fishing at the fishing mortality corresponding to MSY (F_{MSY}), and the analysis of sensitivity to steepness (labeled h = 0.75) of the stock-recruitment relationship while fishing with the current effort. The large dot indicates the most recent catch (2014).

FIGURA B-9. Capturas históricas y proyectadas de atún aleta amarilla por las pesquerías de superficie (panel superior) y palangre (panel inferior) del caso base con la pesca en el nivel actual de esfuerzo, del caso base con la pesca en la mortalidad por pesca correspondiente al RMS (F_{RMS}), y el análisis de sensibilidad a la inclinación (identificado como h = 0.75) de la relación población-reclutamiento al pescar con el esfuerzo actual. El punto grande indica la captura más reciente (2014).

TABLE B-1. MSY and related quantities for the base case and the stock-recruitment relationship sensitivity analysis, based on average fishing mortality (*F*) for 2012-2014. B_{recent} and B_{MSY} are defined as the biomass, in metric tons, of fish 3+ quarters old at the start of the first quarter of 2015 and at MSY, respectively, and S_{recent} and S_{MSY} are defined as indices of spawning biomass (therefore, they are not in metric tons). C_{recent} is the estimated total catch for 2014.

TABLA B-1. RMS y cantidades relacionadas para el caso base y el análisis de sensibilidad a la relación población-reclutamiento, basados en la mortalidad por pesca (*F*) media de 2012-2014. Se definen B_{recent} y B_{RMS} como la biomasa, en toneladas, de peces de 3+ trimestres de edad al principio del primer trimestre de 2015 y en RMS, respectivamente, y S_{recent} y S_{RMS} como índices de biomasa reproductora (por lo tanto, no se expresan en toneladas). C_{recent} es la captura total estimada de 2014.

	Base case	h = 0.75
YFT	Caso base	n = 0.75
MSY-RMS	275,258	297,677
$B_{\rm MSY}$ - $B_{\rm RMS}$	368,336	556,279
$S_{\rm MSY}$ - $S_{\rm RMS}$	3,469	5,990
$B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$	0.32	0.37
$S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$	0.27	0.35
$C_{\text{recent}}/\text{MSY-}C_{\text{recent}}/\text{RMS}$	0.86	0.80
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	1.12	0.73
$S_{\text{recent}}/S_{\text{MSY}}$ - $S_{\text{recent}}/S_{\text{RMS}}$	0.99	0.57
F multiplier-Multiplicador de F	1.11	0.71

B. ATÚN ALETA AMARILLA

Este informe presenta la evaluación más reciente de la población del atún aleta amarilla (*Thunnus albacares*) en el Océano Pacífico oriental (OPO). Se usó un modelo de evaluación de poblaciones estadístico integrado con estructura por edad (*Stock Synthesis* Versión 3.23b) en la evaluación, que se basa en el supuesto que existe una sola población de aleta amarilla en el OPO. Este modelo es el mismo que aquél usado en la evaluación previa en 2014 (Informe de la condición de los stocks 15).

El aleta amarilla se encuentra distribuido por todo el Océano Pacífico, pero la mayor parte de la captura proviene de las zonas oriental y occidental del mismo. Las capturas cerqueras de aleta amarilla son relativamente bajas cerca del límite occidental del OPO en 150°O. La mayor parte de la captura en el OPO proviene de lances cerqueros sobre atunes aleta amarilla asociados a delfines y en cardúmenes no asociados. Los estudios de marcado de aleta amarilla en el Pacífico entero señalan que los peces suelen permanecer a menos de 1.800 km de su punto de liberación. Esta fidelidad regional, junto con la variación geográfica de las características fenotípicas y genotípicas de la especie demostrada en algunos estudios, sugiere que podrían existir múltiples poblaciones de aleta amarilla en el OPO y por todo el Océano Pacífico. Esto es consistente con el hecho que las tendencias de la captura por unidad de esfuerzo (CPUE) de la pesquería de palangre suelen variar entre zonas en el OPO. No obstante, con los datos de marcado actualmente disponibles no es posible estimar las tasas de desplazamiento entre estas poblaciones putativas ni a través del meridiano de 150°O.

La evaluación de poblaciones requiere cantidades sustanciales de información, incluyendo datos de capturas retenidas, descartes, índices de abundancia, y la composición por tamaño de las capturas de las distintas pesquerías. Se hicieron supuestos sobre procesos tales como crecimiento, reclutamiento, desplazamiento, mortalidad natural, mortalidad por pesca (*F*), y la estructura de las poblaciones. La evaluación de 2014 es casi idéntica¹ a aquélla de 2013, e incluye datos nuevos y actualizados. El personal realizó análisis investigativos sustanciales durante los preparativos para la revisión externa de su evaluación del atún aleta amarilla, que tuvo lugar en octubre de 2012. La revisión resultó en una serie de recomendaciones (Documento <u>SAC-04-INF A</u>), que están siendo exploradas, con miras a incorporarlas en la próxima evaluación completa de la población.

Se actualizaron los datos de captura de las pesquerías de superficie, y se añadieron datos nuevos de 2014. Se dispone de datos de captura palangrera nuevos o actualizados de China (2013), Taipei Chino (2011-2013), Japón (2008-2013), Corea (2013), Estados Unidos (2012-2013), Polinesia Francesa (2013), Vanuatu (2013-2014), y otras naciones (2013). Se dispone de datos de captura palangrera japonesa en 2013 a partir de las estadísticas de los informes mensuales. En el caso de las pesquerías palangreras sin datos nuevos para 2014, se supuso que las capturas fueron iguales que en 2013. Se actualizaron los datos de CPUE de las pesquerías de superficie, y se añadieron datos de CPUE nuevos de 2014. Se dispone de datos de CPUE nuevos o actualizados de la flota palangrera japonesa (2008-2013). Se añadieron datos nuevos de 2014 de composición por tamaño de las pesquerías de superficie, y se añadieron los datos de las nuevos de 2013. Se dispone de datos de frecuencia de talla nuevos o actualizados de la flota palangrera japonesa (2008-2013).

En general, el reclutamiento de aleta amarilla a las pesquerías en el OPO es variable, con un componente estacional. El presente análisis y los análisis previos indican que la población de aleta amarilla ha pasado por dos, o posiblemente tres, regímenes distintos de productividad de reclutamiento (1975-1982, 1983-2002, y 2003-2012) (Figura B-2). Se estimó que los reclutamientos de 2011 y 2012 fueron inferiores al promedio. Se estimó que los reclutamientes (2013 y 2014) fueron superiores al promedio, pero estas estimaciones son altamente inciertas. Los regímenes de productividad corresponden a regímenes de biomasa: un régimen de productividad alta produce niveles mayores de biomasa. Una relación población-reclutamiento es también apoyada por los datos de estos regímenes, pero las pruebas

¹ Se supuso que el CV del índice LL-S es 0.2. Ver el Anexo A del <u>Informe de Evaluación de Stocks de la CIAT 14</u>

son tenues, y esto es probablemente un artefacto de los cambios de régimen aparentes.

El peso medio de los aletas amarillas capturados en la pesquería ha sido bastante consistente en el transcurso de los años, pero varía sustancialmente entre las distintas pesquerías. En general, las pesquerías sobre objetos flotantes, no asociada del norte, y cañera capturan aletas amarillas más jóvenes y pequeños que las pesquerías no asociada del sur, asociadas con delfines, y palangreras. En las pesquerías palangreras y en la pesquería asociada con delfines del sur se capturan aletas amarillas de mayor edad y tamaño que en las pesquerías sobre delfines costera y del norte.

Se han estimado niveles sustanciales de mortalidad por pesca en la pesquería de aleta amarilla en el OPO (Figura B-3). Estos niveles son máximos para los aletas amarillas de edad intermedia. Históricamente, las pesquerías cerqueras asociadas con delfines y no asociadas ejercen el mayor impacto sobre la biomasa reproductora del aleta amarilla, seguidos por las pesquerías sobre objetos flotantes. En los años más recientes, el impacto de las pesquerías sobre objetos flotantes ha sido mayor que aquel de las pesquerías no asociadas. Los impactos de las pesquerías palangreras y de descarte cerqueras son mucho menores, y han disminuido en los últimos años (Figura B-4)

El cociente de biomasa reproductora (el cociente de la biomasa reproductora a la de la población no explotada; SBR) del aleta amarilla en el OPO estuvo por debajo del nivel correspondiente al rendimiento máximo sostenible (RMS) durante 1977-1983, correspondiendo al régimen de productividad baja, pero por encima de ese nivel durante la mayoría de los años subsiguientes, excepto el período reciente (2005-2007 y 2010-2014) (Figura B-5). Se atribuye el incremento del SBR en 1984 a un cambio de régimen, y la disminución reciente podría ser una reversión a un régimen de productividad intermedio. Los dos distintos regímenes de productividad podrían sostener dos niveles distintos de RMS y de los SBR asociados. Se estima que el SBR al principio de 2014 fue 0,26, ligeramente inferior al nivel correspondiente al RMS (0.26). Los SBR recientes (2011-2014) estimados por la evaluación actual son menos optimistas que aquellos producidos por la evaluación previa, que indicaba una reducción brusca de la biomasa reproductora a partir de 2009, seguida por un aumento en 2012 a un nivel por encima de aquel correspondiente al RMS (Informe de la condición de los stocks 15). En la evaluación actual, el SBR está ligeramente por debajo del nivel de RMS en 2012 y en 2013-2014 también. Este resultado se debe probablemente a la mortalidad por pesca más alta de los atunes aleta amarilla de edad mediana desde 2009 estimada por la evaluación actual (Figura B-3). Se estima que el esfuerzo está por debajo del nivel que sostendría el RMS (con base en la distribución actual del esfuerzo entre las distintas pesquerías) (Figura B-6), y las capturas recientes están por debajo de ese nivel (Tabla B-1). Es importante señalar que la curva que relaciona al rendimiento máximo promedio a la mortalidad por pesca a largo plazo es plana alrededor del nivel de RMS (Figura B-7). Por lo tanto, cambios moderados en los niveles de esfuerzo a largo plazo cambiarán las capturas a largo plazo de forma marginal solamente, pero cambiaron la biomasa considerablemente. Mantener la mortalidad por pesca por debajo del nivel de RMS resultaría en una disminución tan sólo marginal en el rendimiento promedio a largo plazo, con el beneficio de un aumento relativamente grande de la biomasa reproductora. Además, si se basa la ordenación en la evaluación de caso base (que supone que no existe una relación población-reclutamiento), cuando en realidad sí existe dicha relación, ocurre una mayor pérdida de rendimiento que si se basa la ordenación en el supuesto que sí existe una relación población-reclutamiento cuando en realidad no existe (Figura B-7).

Los cálculos de RMS indican que, al menos en teoría, se podría incrementar las capturas si se dirigiera el esfuerzo de pesca hacia la pesca con palangre y a los lances sobre aleta amarilla asociado con delfines. Esto incrementaría también los niveles de SBR.

El RMS ha sido estable durante el período de la evaluación (1975-2014) (<u>Figura B-8</u>), lo cual sugiere que el patrón general de selectividad no ha variado mucho a lo largo del tiempo. No obstante, el nivel general del esfuerzo de pesca ha variado con respecto al nivel correspondiente al RMS.

Si se supone una relación población-reclutamiento, el pronóstico es más pesimista, y se estima que el esfuerzo actual se encuentra por encima del nivel de RMS (<u>Tabla B-1</u>). Las evaluaciones previas han

indicado que la condición de la población es también sensible al valor supuesto para el tamaño medio de los peces más viejos, y se obtienen resultados más pesimistas si se suponen valores mayores para este parámetro. Con los niveles actuales de mortalidad por pesca (2012-2014), se predice que la biomasa reproductora aumentará por encima del nivel de RMS (Figura B-5). No obstante, los intervalos de confianza son anchos, y existe una probabilidad moderada que el SBR estará sustancialmente por encima o por debajo de este nivel. Además, se predice que la biomasa reproductora permanecerá por debajo del nivel de RMS si se supone una relación población-reclutamiento (Figura b-6). Si el esfuerzo de pesca continúa en los niveles recientes, se predice que se incrementarán tanto la biomasa reproductora (Figura B-5) como las capturas de las pesquerías de superficie (Figura B-9), suponiendo reclutamiento promedio y que no existe una relación población-reclutamiento (caso base). Se predicen capturas ligeramente más altas si en realidad sí existe dicha relación (Figura B-9).

Resultados clave

- 1. Existe incertidumbre acerca de los niveles recientes y futuros de reclutamiento y biomasa. Hubo dos, y posiblemente tres, regímenes distintos de productividad, y los niveles de RMS y la biomasa correspondiente al RMS podrían ser diferentes entre los regímenes. Es posible que la población haya cambiado en los diez últimos años de un régimen de productividad alto a uno intermedio.
- 2. Las tasas recientes de mortalidad por pesca están por debajo del nivel de RMS, y se estima que los niveles recientes de biomasa reproductora se encuentran en ese nivel. Tal como se señala en el <u>Informe de la condición de los stocks 15</u> y en evaluaciones previas, estas interpretaciones son inciertas, y altamente sensibles a los supuestos relativos al parámetro de inclinación de la relación población-reclutamiento, el tamaño medio de los peces más viejos, y los niveles supuesto de mortalidad natural. Los resultados son más pesimistas si se supone una relación población-reclutamiento si se supone un valor más alto para el tamaño medio de los peces más viejos, y si se suponen tasas de mortalidad natural más bajas para el aleta amarilla adulto.
- 3. Los niveles recientes de biomasa reproductora predichos por la evaluación actual son más optimistas que aquellos de la evaluación previa (<u>Informe de la condición de los stocks 15</u>). Este resultado se debe a los niveles moderados de mortalidad por pesca del aleta amarilla de edad mediana desde 2008 estimado por la evaluación actual.

C. SKIPJACK TUNA

A major management objective for tunas in the eastern Pacific Ocean (EPO) is to keep stocks at levels capable of producing maximum sustainable yields (MSYs). Management objectives based on MSY or related reference points (*e.g.* fishing mortality that produces MSY (F_{MSY}); spawner-per-recruit proxies) are in use for many species and stocks worldwide. However, these objectives require that reference points and quantities to which they are compared be available. The various reference points require different amounts and types of information, ranging from biological information (*e.g.* natural mortality, growth, and stock-recruitment relationship) and fisheries characteristics (*e.g.* age-specific selectivity), to absolute estimates of biomass and exploitation rates. These absolute estimates generally require a formal stock assessment model. For many species, the information required to estimate these quantities is not available, and alternative approaches are needed. Even more data are required if catch quotas are to be used as the management tool.

Skipjack tuna is a notoriously difficult species to assess. Due to its high and variable productivity (i.e. annual recruitment is a large proportion of total biomass), it is difficult to detect the effect of fishing on the population with standard fisheries data and stock assessment methods. This is particularly true for the stock of the EPO, due to the lack of age-composition data and the limited tagging data. The continuous recruitment and rapid growth of skipjack mean that the temporal stratification needed to observe modes in length-frequency data make the current sample sizes inadequate. Previous assessments have had difficulty in estimating the absolute levels of biomass and exploitation rates, due to the possibility of a dome-shaped selectivity curve (Maunder 2002; Maunder and Harley 2005), which would mean that there is a cryptic biomass of large skipjack that cannot be estimated. The most recent assessment of skipjack in the EPO (Maunder and Harley 2005) is considered preliminary because it is not known whether the catch per day fished for purse-seine fisheries is proportional to abundance. The results from that assessment are more consistent among sensitivity analyses than the earlier assessments, which suggests that they may be more reliable. Analysis of currently available tagging data is unlikely to improve the skipjack stock assessment (Maunder 2012a) and a fully length-structured model produced unrealistic estimates (Maunder 2012b). In addition to the problems listed above, the levels of age-specific natural mortality are uncertain, if not unknown, and current yield-per-recruit (YPR) calculations indicate that the YPR would be maximized by catching the youngest skipjack in the model (Maunder and Harley 2005). Therefore, neither the biomass- nor fishing mortality-based reference points, nor the indicators to which they are compared, are available for skipjack in the EPO.

One of the major problems mentioned above is the uncertainty as to whether the catch per unit of effort (CPUE) of the purse-seine fisheries is an appropriate index of abundance for skipjack, particularly when the fish are associated with fish-aggregating devices (FADs). Purse-seine CPUE data are particularly problematic, because it is difficult to identify the appropriate unit of effort. In the current assessment, effort is defined as the amount of searching time required to find a school of fish on which to set the purse seine, and this is approximated by number of days fished. Few skipjack are caught in the longline fisheries or dolphin-associated purse-seine fisheries, so these fisheries cannot be used to develop reliable indices of abundance for skipjack. Within a single trip, purse-seine sets on unassociated schools are generally intermingled with floating-object or dolphin-associated sets, complicating the CPUE calculations. Maunder and Hoyle (2007) developed a novel method to generate an index of abundance, using data from the floating-object fisheries. This method used the ratio of skipjack to bigeye in the catch and the "known" abundance of bigeye based on stock assessment results. Unfortunately, the method was of limited usefulness, and more research is needed to improve it. Currently, there is no reliable index of relative abundance for skipjack in the EPO. Therefore, other indicators of stock status, such as the average weight of the fish in the catch, should be investigated.

Since the stock assessments and reference points for skipjack in the EPO are so uncertain, developing alternative methods to assess and manage the species that are robust to these uncertainties would be beneficial. Full management strategy evaluation (MSE) for skipjack would be the most comprehensive

method to develop and test alternative assessment methods and management strategies (Maunder 2007); however, developing MSE is time-consuming, and has not yet been conducted for skipjack. In addition, higher priority for MSE is given to yellowfin and bigeye tuna, as available data indicate that these species are more susceptible to overfishing than skipjack. Therefore, Maunder and Deriso (2007) investigated some simple indicators of stock status based on relative quantities. Rather than using reference points based on MSY, they compared current values of indicators to the distribution of indicators observed historically. They also developed a simple stock assessment model to generate indicators for biomass, recruitment, and exploitation rate. We update their results to include data up to 2013. To evaluate the current values of the indicators in comparison to historical values, we use reference levels based on the 5th and 95th percentiles, as the distributions of the indicators are somewhat asymmetric.

Eight data- and model-based indicators are shown in Figure C-1. The standardized effort, which is a measure of exploitation rate, is calculated as the sum of the effort, in days fished, for the floating-object (OBJ) and unassociated (NOA) fisheries. The floating-object effort is standardized to be equivalent to the unassociated effort by multiplying by the ratio of the average floating-object CPUE to the average unassociated CPUE. The purse-seine catch has been increasing since 1985, and has fluctuated around the upper reference level since 2003. The floating-object CPUE has generally fluctuated above the average level since 1990 and was at the upper reference level in 2011. The unassociated CPUE has been higher than average since about 2003, and was at its highest level in 2008; it declined in 2010, then increased to above the upper reference level in 2013. The standardized effort indicator of exploitation rate increased starting in about 1991, but decreased in 2009 and 2010. The average weight of skipjack has been declining since 2000, and in 2009 was below the lower reference level, but has increased slightly since then. The biomass, recruitment, and exploitation rate have been increasing over the past 20 years, and have fluctuated at high levels since 2003. The biomass and recruitment were close to the upper reference level in 2013.

The main concern with the skipjack stock was the constantly increasing exploitation rate. However, this appears to have leveled off in recent years. The data- and model-based indicators have yet to detect any adverse consequence of this increase. The average weight was below its lower reference level in 2009, which can be a consequence of overexploitation, but can also be caused by recent recruitments being greater than past recruitments or expansion of the fishery into areas occupied by smaller skipjack. Any continued decline in average length is a concern and, combined with leveling off of catch and CPUE, may indicate that the exploitation rate is approaching, or above, the level associated with MSY.

FIGURE C-1. Indicators of stock status for skipjack tuna in the eastern Pacific Ocean. OBJ: floatingobject fishery; NOA: unassociated fishery; CPDF: catch per day fished. All indicators are scaled so that their average equals one.

FIGURA C-1. Indicadores del estatus de la población de atún barrilete en el Océano Pacífico oriental. OBJ: pesquería sobre objetos flotantes; NOA: pesquería no asociada; CPDP: captura por día de pesca. Se escalan todos los indicadores para que su promedio equivalga a uno.

C. ATÚN BARRILETE

Un objetivo principal de la ordenación de los atunes en el Océano Pacífico oriental (OPO) es mantener las poblaciones en niveles capaces de producir los rendimientos máximos sostenibles (RMS). Se usan objetivos de ordenación basados en RMS o puntos de referencia relacionados (por ejemplo, una mortalidad por pesca que produce el RMS (F_{RMS}); sustitutos de reproductor por recluta) para muchas especies y poblaciones en todo el mundo. Sin embargo, estos objetivos requieren que se disponga de puntos de referencia y cantidades con los que compararlos. Los distintos puntos de referencia requieren diferentes cantidades y tipos de información, desde información biológica (mortalidad natural, crecimiento, relación población-reclutamiento, etcétera) y características de las pesquerías (selectividad por edad, por ejemplo) hasta estimaciones absolutas de biomasa y tasas de explotación. Estas estimaciones absolutas requieren generalmente un modelo formal de evaluación de la población. Para muchas especies, no se dispone de la información necesaria para estimar estas cantidades, y son necesarios métodos alternativos. Son necesarios todavía más datos si se pretende usar cuotas de captura como instrumento de ordenación.

El atún barrilete es una especie notoriamente difícil de evaluar. Debido a la alta y variable productividad de la especie (es decir, el reclutamiento anual forma una gran proporción de la biomasa total), es difícil detectar el efecto de la pesca sobre la población con los datos de pesca y métodos de evaluación de poblaciones regulares. Esto vale particularmente en el caso de la población del OPO, debido a la falta de datos de composición por edad y los pocos datos de marcado. El reclutamiento continuo y crecimiento rápido del barrilete significan que la estratificación temporal necesaria para observar modas en los datos de frecuencia de talla rinden insuficientes los tamaños de muestra actuales. Las evaluaciones previas tuvieron dificultades para estimar los niveles absolutos de biomasa y tasas de explotación, debido a la posibilidad de una curva de selectividad en forma de domo (Maunder 2002; Maunder y Harley 2005), la que significaría que existe una biomasa críptica de barrilete grande que no puede ser estimada. La evaluación más reciente del barrilete en el OPO (Maunder y Harley 2005) es también considerada preliminar porque se ignora si la captura por día de pesca de las pesquerías de cerco es proporcional a la abundancia. Los resultados de dicha evaluación son más consistentes entre los análisis de sensibilidad que las evaluaciones anteriores, lo cual sugiere que podrían ser más confiables. Es poco probable que un análisis de los datos de marcado actualmente disponibles mejore la evaluación de la población de barrilete (Maunder 2012a) y un modelo estructurado enteramente por talla produjo estimaciones no realistas (Maunder 2012b). Además de los problemas mencionados, los niveles de mortalidad natural por edad son inciertos, o hasta desconocidos, y los cálculos actuales de rendimiento por recluta (RPR) indican que el RPR sería maximizado si se capturara el barrilete más joven en el modelo (Maunder y Harley 2005). Por lo tanto, en el caso del barrilete en el OPO, no se dispone de puntos de referencia basados en biomasa ni en mortalidad por pesca, ni de los indicadores con los cuales se comparan.

Uno de los problemas principales antes mencionadas es la incertidumbre acerca de si la captura por unidad de esfuerzo (CPUE) de las pesquerías de cerco constituye un índice de abundancia apropiado para el barrilete, particularmente si los peces están asociados con dispositivos agregadores de peces (plantados). Los datos de CPUE de cerco son particularmente problemáticos, ya que es difícil identificar la unidad de esfuerzo apropiada. En la evaluación actual, se define el esfuerzo como la cantidad de tiempo de búsqueda necesaria para encontrar un cardumen de peces sobre el cual calar la red, y se aproxima esto con el número de días de pesca. Se captura poco barrilete en las pesquerías de palangre o de cerco asociada con delfines, por lo que no se pueden usar estas pesquerías para elaborar índices confiable de abundancia para el barrilete. En un solo viaje los lances cerqueros sobre atunes no asociados de CPUE. Maunder y Hoyle (2007) elaboraron un método novedoso para generar un índice de abundancia, que usa datos de las pesquerías sobre objetos flotantes. Este método usa las proporciones de barrilete y patudo en la captura y la abundancia 'conocida' de patudo basada en los resultados de la evaluación de la población. Desgraciadamente, el método es de utilidad limitada, y es necesaria más

investigación para mejorarlo. No existe actualmente ningún índice de abundancia relativa confiable para el barrilete en el OPO. Por lo tanto, otros indicadores de la condición de la población, tales como el peso medio del pescado en la captura, deberían ser investigados.

Ya que las evaluaciones de la población y los puntos de referencia son tan inciertos para el barrilete en el OPO, sería ventajoso elaborar métodos alternativos de evaluación y ordenación de la especie que fuesen robustos a estas incertidumbres. Una evaluación de estrategia de ordenación (MSE) para el barrilete sería el método más completo para elaborar y probar métodos de evaluación y estrategias de ordenación alternativos (Maunder 2007), pero elaborar una MSE implica mucho tiempo y todavía no ha sido llevado a cabo para el barrilete. Además, se asigna una prioridad a mayor a las MSE de los atunes aleta amarilla y patudo, ya que los datos disponibles indican que estas especies son más susceptibles a la sobrepesca que el barrilete. Por lo tanto, Maunder y Deriso (2007) investigaron unos indicadores sencillos de la condición de la población basados en cantidades relativas. En lugar de usar puntos de referencia basados en RMS, compararon los valores actuales de los indicadores con la distribución de los indicadores de biomasa, reclutamiento, y tasa de explotación. Actualizamos sus resultados para incluir datos de hasta 2013. Para evaluar los valores actuales de los indicadores en comparación con los valores históricos, usamos niveles de referencia basados en los percentiles 5 y 95, ya que las distribuciones de los indicadores son algo asimétricas.

En la Figura C-1 se ilustran ocho indicadores basados en datos y en el modelo.

Se calcula el esfuerzo estandarizado, que es una medida de las tasas de explotación, como la suma del esfuerzo, en días de pesca, de las pesquerías sobre objetos flotantes (OBJ) y no asociada (NOA). Se estandariza el esfuerzo sobre objetos flotantes para que equivalga al esfuerzo no asociado multiplicando por la razón de la CPUE media sobre objetos flotantes a la CPUE media no asociada. La captura cerquera viene aumentando desde 1985, y ha fluctuado alrededor del nivel de referencia superior desde 2003. La CPUE sobre objetos flotantes ha fluctuado generalmente por encima del nivel medio desde 1990, y estuvo en el nivel de referencia superior en 2011. La CPUE no asociada ha estado por encima del promedio desde aproximadamente 2003, y estuvo en su nivel máximo en 2008; disminuyó en 2010, luego aumentó a por encima del nivel de referencia superior en 2013. El indicador de esfuerzo estandarizado de tasa de explotación aumentó a partir de aproximadamente 1991, pero disminuyó en 2009 y 2010. El peso medio del barrilete viene disminuyendo desde 2000, y en 2009 estuvo por debajo del nivel de referencia inferior, pero ha aumentando durante los últimos 20 años, y han fluctuado en niveles altos desde 2003. La biomasa y el reclutamiento estuvieron cerca del nivel de referencia superior en 2013.

La preocupación principal con la población de barrilete fue la tasa de explotación, que iba constantemente en aumento, pero parece que en los últimos años se ha estabilizado. Los indicadores basados en datos y en un modelo todavía no han detectado ninguna consecuencia adversa de este aumento. El peso promedio estuvo por debajo de su nivel de referencia inferior en 2009, lo cual podría ser consecuencia de sobreexplotación, pero también podría resultar de que los reclutamientos recientes fueron mayores que en el pasado o de una expansión de la pesquería a zonas ocupadas por barriletes más pequeños. Cualquier disminución continuada de la talla media es motivo de preocupación y, combinada con una estabilización de la captura y a CPUE, podría indicar que la tasa de explotación está alcanzando, o ya alcanzó, el nivel asociado con el RMS. 88

D. BIGEYE TUNA

This report presents the most current stock assessment of bigeye tuna (*Thunnus obesus*) in the eastern Pacific Ocean (EPO). An integrated statistical age-structured stock assessment model (Stock Synthesis 3.23b) was used in the assessment.

There have been substantial changes in the bigeye tuna fishery in the EPO over recent decades (Figure D-1). Initially, the majority of the bigeye catch was taken by longline vessels. With the expansion of the fishery on fish-aggregating devices (FADs) since 1993, the purse-seine fishery has taken an increasing component of the bigeye catch. In recent years, purse-seine catches of bigeye were taken primarily between 5°N and 5°S across the equatorial Pacific as far west as the western boundary (150°W) of the EPO (Figure A-3). The longline catches of bigeye in the EPO are predominantly taken below 5°S, but a substantial portion is also taken north of 10°N (Figure A-4). The assessment is conducted as if there were a single stock of bigeye in the EPO, with minimal net movement of fish between the EPO and the western and central Pacific Ocean (WCPO). Its results are consistent with the results of other analyses of bigeye tuna on a Pacific-wide basis. However, the distribution of the bigeye catches extends across the equatorial Pacific Ocean. In addition, a large amount of conventional and electronic tagging data has recently accumulated from the Pacific Tuna Tagging Programme, which has focused its bigeye tagging efforts between 180° and 140°W since 2008. The tag recoveries clearly show that there is extensive longitudinal movement of bigeye across the IATTC's management boundary at 150°W, in particular from west to east. The IATTC staff is collaborating with Secretariat of the Pacific Community (SPC) on an updated Pacificwide bigeye stock assessment. This research will incorporate the new tagging data in a spatiallystructured population dynamics model, which will help to evaluate potential biases resulting from the current approach of conducting separate assessments for the EPO and WCPO.

This model is the same as that used in the previous full assessment conducted in 2013 (IATTC Stock Assessment Report 14) which included several improvements. First of all, a new Richards growth curve estimated externally from an integrated analysis of otolith age-readings and tag-recapture observations was introduced. This curve reduced the uncertainty about the average size of the oldest fish (L_2 parameter). In addition, the parameters which determine the variance of the length-at-age were also taken from the new externally-derived growth estimates. Diagnostic analyses with the previous base case model configuration indicated a dominant influence of the size-composition data in determining the productivity (the R_0 parameter) of the bigeye stock, and conflicts among datasets were also found. As a result, improvements were made in the previous full assessment on the weighting assigned to the different datasets. Specifically, the size-composition data of all fisheries were down-weighted. In addition, the number of catch per unit of effort (CPUE) data series used as indices of abundance was reduced in order to minimize conflict trends among data sets. Rather than fitting to a total of ten CPUE series (two purse-seine indices and eight longline indices), a reduced set of indices of abundance was chosen to best represent the bigeye stock trends (the early and late periods of the Central and Southern longline fisheries).

The stock assessment requires a substantial amount of information. Data on retained catch, discards, CPUE, and size compositions of the catches from several different fisheries have been analyzed. Several assumptions regarding processes such as growth, recruitment, movement, natural mortality, and fishing mortality, have also been made. Catch and CPUE data for the surface fisheries have been updated, and include new data for 2014. New or updated longline catch data are available for China (2013), Japan (2008-2013), Korea (2013), Chinese Taipei (2011-2013), the United States (2012-2013), French Polynesia (2013) and Vanuatu (2013-2014). Longline catch data for 2014 are available for China, Japan, Chinese Taipei, and Korea from the monthly report statistics. For longline fisheries with no new catch data for 2014, catches were assumed to be the same as in 2013. New or updated CPUE data are available for 2014 and updates are available for 2013. New or updated length-frequency data are available for 2014 and updates are available for 2013. New or updated length-frequency data are available for the Japanese longline fleet (2011-2013). New purse-seine length-frequency data are available for 2014 and updates are available for 2013. New or updated length-frequency data are available for the Japanese longline fleet (2011-2013).

A prominent feature in the time series of estimated bigeye recruitment is that the highest recruitment peaks of 1983 and 1998 coincide with the strongest El Niño events during the historic period of the assessment (Figure D-2). There was a period of above-average annual recruitment during 1994-1998, followed by a period of below-average recruitment in 1999-2000. The recruitments were above average from 2001 to 2006, and were particularly strong in 2005. More recently, the recruitments were below average during 2007-2009, and have fluctuated around average during 2010-2013. The most recent annual recruitment estimate (2014) is estimated to be slightly above average levels. However, this estimate is highly uncertain, and should be regarded with caution, due to the fact that recently-recruited bigeye are represented in only a few length-frequency data sets.

There have been important changes in the amount of fishing mortality caused by the fisheries that catch bigeye tuna in the EPO. On average, since 1993 the fishing mortality of bigeye less than about 15 quarters old has increased substantially, and that of fish more than about 15 quarters old has also increased, but to a lesser extent) (Figure D-3). The increase in the fishing mortality of the younger fish was caused by the expansion of the purse-seine fisheries that catch tuna in association with floating objects. It is clear that the longline fishery had the greatest impact on the stock prior to 1995, but with the decrease in longline effort and the expansion of the floating-object fishery, at present the impact of the purse-seine fishery on the bigeye stock is far greater than that of the longline fishery (Figure D-4). The discarding of small bigeye has a small, but detectable, impact on the depletion of the stock.

Over the range of spawning biomasses estimated by the base case assessment, the abundance of bigeye recruits appears to be unrelated to the spawning potential of adult females at the time of hatching.

Since the start of 2005, the spawning biomass ratio (SBR; the ratio of the spawning biomass at that time to that of the unfished stock) gradually increased, to a level of 0.30 at the start of 2010. This may be attributed to a combined effect of a series of above-average recruitments since 2001, the IATTC tuna conservation resolutions and decreased longline fishing effort in the EPO during 2004-2009. However, although the resolutions have continued since 2009, the rebuilding trend was not sustained during 2010-2013, and the SBR gradually declined to a low historic level of 0.19 at the start of 2013 (Figure D-5). This decline could be related to a period dominated by below-average recruitments that began in late 2007 and coincides with a series of particularly strong La Niña events. More recently, the SBR is estimated to have increased slightly, from 0.19 in 2013 to 0.22 at the start of 2015; in the model, this increase is driven mainly by the recent increase in the catch per unit of effort (CPUE) of the longline fisheries that catch adult bigeye.

At the beginning of 2015, the spawning biomass of bigeye tuna in the EPO appears to have been about 6% above S_{MSY} , and the recent catches are estimated to have been about 13% lower than the maximum sustainable yield (MSY). If fishing mortality is proportional to fishing effort, and the current patterns of age-specific selectivity are maintained, F_{MSY} is about 14% higher than the current level of effort (Table D-1).

According to the base case results, the most recent estimate indicates that the bigeye stock in the EPO is not overfished ($S>S_{MSY}$) and that overfishing is not taking place ($F<F_{MSY}$) (Figure D-6). Likewise, the current base case model indicates that the interim limit reference points of 0.38 S_{MSY} and 1.6 F_{MSY}, which correspond to a 50% reduction in recruitment from its average unexploited level based on a conservative steepness value (h = 0.75) for the Beverton-Holt stock-recruitment relationship, have not been exceeded (Figure D-6). These interpretations, however, are subject to uncertainty, as indicated by the approximate confidence intervals around the most recent estimate in the phase plots, which allows $F>F_{MSY}$). Also, they are strongly dependent on the assumptions made about the steepness parameter of the stock-recruitment relationship, the assumed levels of adult natural mortality, the growth curve, and the weighting assigned to the size-composition data.

The MSY of bigeye in the EPO could be maximized if the age-specific selectivity pattern were similar to that of the longline fisheries, because they catch larger individuals that are close to the critical weight.

Before the expansion of the floating-object fishery that began in 1993, the MSY was greater than the current MSY and the fishing mortality was much less than F_{MSY} (Figure D-7).

At current levels of fishing mortality, and if recent levels of effort and catchability continue and average recruitment levels persist, the spawning biomass is predicted to continue rebuilding and stabilize at an SBR of 0.25 around 2022, above the level corresponding to MSY (0.21) (Figure D-5). If a stock-recruitment relationship is assumed, it is estimated that catches will be lower in the future at current levels of fishing effort, particularly for the surface fisheries (Figure D-8).

These simulations are based on the assumption that selectivity and catchability patterns will not change in the future. Changes in targeting practices or increased catchability of bigeye as abundance declines (e.g. density-dependent catchability) could result in differences from the outcomes predicted here.

Key Results

- 1. The results of this assessment indicate a recovery trend for bigeye tuna in the EPO during 2005-2009, subsequent to IATTC tuna conservation resolutions initiated in 2004. However, the decline of the spawning biomass that began at the start of 2010 reduced both summary and spawning biomasses to their lowest historic levels at the start of 2013, and persisted through 2013. This decline may be related to a series of recent below-average recruitments which coincide with a series of strong la Niña events. More recently, the SBR is estimated to have increased slightly, from 0.19 in 2013 to 0.22 at the start of 2015; in the model, this increase is driven mainly by the recent increase in the CPUE of the longline fisheries which catch adult bigeye. At current levels of fishing mortality, and if recent levels of effort and catchability continue and average recruitment levels persist, the spawning biomass is predicted to continue rebuilding, and stabilize at about 0.25, above the level corresponding to MSY (0.21).
- 2. There is uncertainty about recent and future recruitment and biomass levels.
- 3. The recent fishing mortality rates are estimated to be below the level corresponding to MSY whereas recent levels of spawning biomass are estimated to be slightly above that level. These interpretations are uncertain and highly sensitive to the assumptions made about the steepness parameter of the stock-recruitment relationship, the assumed rates of natural mortality for adult bigeye, the growth curve, and the weighting assigned to the size-composition data, in particular to the longline size-composition data. The results are more pessimistic if a stock-recruitment relationship is assumed, if lower rates of natural mortality are assumed for adult bigeye, if the length of the oldest fish is assumed to be greater, and if a greater weight is assigned to the size-composition data, in particular for the longline fisheries.
- 4. The IATTC staff is collaborating with the Secretariat of the Pacific Community (SPC) on an updated Pacific-wide wide bigeye stock assessment. This research will incorporate the new bigeye tagging data in a spatially-structured population dynamics model, which will help to evaluate potential biases resulting from the current approach of conducting separate assessments for the EPO and WCPO.

FIGURE D-1. Total catches (retained catches plus discards) of bigeye tuna by the purse-seine fisheries, and retained catches for the longline fisheries, in the eastern Pacific Ocean, 1975-2014. The purse-seine catches are adjusted to the species composition estimate obtained from sampling the catches. The 2014 catch data are preliminary.

FIGURA D-1. Capturas totales (capturas retenidas más descartes) de atún patudo por las pesquerías de cerco y capturas retenidas de las pesquerías palangreras en el Océano Pacífico oriental, 1975-2014. Las capturas cerqueras se basan en datos de descargas, ajustados a la estimación de la composición por especie.

FIGURE D-2. Estimated annual recruitment of bigeye tuna to the fisheries of the EPO. The estimates are scaled so that the estimate of virgin recruitment is equal to 1.0 (dashed horizontal line). The solid line shows the maximum likelihood estimates of recruitment, and the shaded area indicates the approximate 95% intervals around those estimates.

FIGURA D-2. Reclutamiento estimado de atún patudo a las pesquerías del OPO. Se escalan las estimaciones para que la estimación de reclutamiento virgen equivalga a 1,0 (línea de trazos horizontal). La línea sólida indica las estimaciones de reclutamiento de verosimilitud máxima, y el área sombreada indica los intervalos de confianza de 95% aproximados de esas estimaciones.

FIGURE D-3. Average annual fishing mortality, by all gears, of bigeye tuna recruited to the fisheries of the EPO. Each panel illustrates the average fishing mortality rates that affected the fish within the range of ages indicated in the title of each panel. For example, the trend illustrated in the top panel is an average of the fishing mortalities that affected the fish that were 1-4 quarters old.

FIGURA D-3. Mortalidad por pesca anual media, por todas las artes, de atún patudo reclutado a las pesquerías del OPO. Cada recuadro ilustra las tasas medias de mortalidad por pesca que afectaron a los peces de la edad indicada en el título de cada recuadro. Por ejemplo, la tendencia ilustrada en el recuadro superior es un promedio de las mortalidades por pesca que afectaron a los peces de entre 1 y 4 trimestres de edad.

FIGURE D-4. Trajectory of the spawning biomass of a simulated population of bigeye tuna that was not exploited (top line) and that predicted by the stock assessment model (bottom line). The shaded areas between the two lines show the portions of the impact attributed to each fishing method. t = metric tons. **FIGURA D-4.** Trayectoria de la biomasa reproductora de una población simulada de atún patudo no explotada (línea superior) y la que predice el modelo de evaluación (línea inferior). Las áreas sombreadas entre las dos líneas señalan la porción del efecto atribuida a cada método de pesca. t = toneladas métricas.

FIGURE D-5. Estimated spawning biomass ratios (SBRs) of bigeye tuna in the EPO, including projections for 2015-2024 based on average fishing mortality rates during 2012-2014. The dashed horizontal line (at about 0.21) identifies the SBR at MSY. The solid line illustrates the maximum likelihood estimates, and the estimates after 2015 (the large dot) indicate the SBR predicted to occur if fishing mortality rates continue at the average of that observed during 2012-2014. The dashed lines are the 95-percent confidence intervals around these estimates.

FIGURA D-5. Cocientes de biomasa reproductora (SBR) del atún patudo en el OPO, incluyendo proyecciones para 2015-2024 basadas en las tasas medias de mortalidad por pesca durante 2012-2014. La línea sólida ilustra las estimaciones de verosimilitud máxima, y las estimaciones a partir de 2015 (el punto grande) señalan el SBR predicho si las tasas de mortalidad por pesca continúan en el promedio observado durante 2012-2014. Las líneas de trazos representan los intervalos de confianza de 95% alrededor de esas estimaciones.

FIGURE D.6. Kobe (phase) plot of the time series of estimates of spawning stock size and fishing mortality relative to their MSY reference points. The panels represent interim target reference points (*Smsy* and *Fmsy*; solid lines) and limit reference points (dashed lines) of 0.38 *Smsy* and 1.6 *Fmsy*, which correspond to a 50% reduction in recruitment from its average unexploited level based on a conservative steepness value (h = 0.75) for the Beverton-Holt stock-recruitment relationship. Each dot is based on the average fishing mortality rate over three years; the large dot indicates the most recent estimate. The squares around the most recent estimate represent its approximate 95% confidence interval. The triangle is the first estimate (1975).

FIGURA D.6. Gráfica de Kobe (fase) límite de la serie de tiempo de las estimaciones del tamaño de la población reproductora y la mortalidad por pesca relativas a sus puntos de referencia de RMS. Los recuadros representan los puntos de referencia límite provisionales de 0,38 S_{RMS} y 1,6 F_{RMS} , que corresponden a una reducción de 50% del reclutamiento de su nivel medio no explotado basada en un valor cauteloso de la inclinación de la relación población reclutamiento de Beverton-Holt (h = 0.75). Cada punto se basa en la tasa de explotación media de un trienio; el punto grande indica la estimación más reciente. Los cuadros alrededor de la estimación más reciente representan el intervalo de confianza de 95% aproximado. El triángulo es la primera estimación (1975).

FIGURE D-7. Estimates of MSY-related quantities calculated using the average age-specific fishing mortality for each year. (S_{recent} is the spawning biomass at the beginning of 2015.) **FIGURA D-7.** Estimaciones de cantidades relacionadas con el RMS calculadas usando la mortalidad por pesca por edad para cada año. ($S_{reciente}$ es la biomasa reproductora al principio de 2015.)

FIGURE D-8. Historic and predicted annual catches of bigeye tuna during 2015-2024 for the surface (top panel) and longline (bottom panel) fisheries, based on fishing mortality rates during 2012-2014. Predicted catches are compared between the base case, the analysis assuming F_{MSY} and the analysis in which a stock-recruitment relationship (h = 0.75) was used. t = metric tons.

FIGURA D-8. Capturas anuales históricas y predichas de atún patudo durante 2015-2024 en las pesquerías de superficie (recuadro superior) y de palangre (recuadro inferior), basadas en las tasas de mortalidad por pesca durante 2012-2014. Se comparan las capturas predichas entre el caso base, el análisis que supone F_{MSY} y el análisis en el que se usa una relación población-reclutamiento (h = 0.75). t = toneladas métricas.

TABLE D.1. Estimates of the MSY and its associated quantities for bigeye tuna for the base case assessment and the sensitivity analyses. All analyses are based on average fishing mortality during 2012-2014. B_{recent} and B_{MSY} are defined as the biomass of fish 3+ quarters old (in metric tons) at the beginning of 2015 and at MSY, respectively. S_{recent} and S_{MSY} are in metric tons. C_{recent} is the estimated total catch in 2014. The *F* multiplier indicates how many times effort would have to be effectively increased to achieve the MSY in relation to the average fishing mortality during 2012-2014.

TABLA D.1. Estimaciones del RMS y sus cantidades asociadas para el atún patudo para la evaluación del caso base y los análisis de sensibilidad. Todos los análisis se basan en la mortalidad por pesca promedio de 2012-2014. Se definen B_{recent} y B_{RMS} como la biomasa de peces de 3+ trimestres de edad (en toneladas métricas) al principio de 2015 y en RMS, respectivamente. Se expresan S_{recent} y S_{MSY} en toneladas métricas. C_{recent} es la captura total estimada en 2014. El multiplicador de *F* indica cuántas veces se tendría que incrementar el esfuerzo para lograr el RMS en relación con la mortalidad por pesca media durante 2012-2014.

	Base case- Caso base	h = 0.75
MSY-RMS	113,730	110,075
$B_{\rm MSY}$ - $B_{\rm RMS}$	433,396	778,733
$S_{\rm MSY}$ - $S_{\rm RMS}$	108,502	216,205
$B_{\rm MSY}/B_0$ - $B_{\rm RMS}/B_0$	0.25	0.33
$S_{\rm MSY}/S_0$ - $S_{\rm RMS}/S_0$	0.21	0.30
$C_{\text{recent}}/\text{MSY-}C_{\text{recent}}/\text{RMS}$	0.87	0.90
$B_{\rm recent}/B_{\rm MSY}$ - $B_{\rm recent}/B_{\rm RMS}$	1.03	0.82
$S_{\text{recent}}/S_{\text{MSY}}$ - $S_{\text{recent}}/S_{\text{RMS}}$	1.06	0.82
F multiplier-		
Multiplicador de F	1.14	0.92

D. ATÚN PATUDO

Este informe presenta la evaluación más reciente de la población del atún patudo (*Thunnus obesus*) en el Océano Pacífico oriental (OPO). Se usó en la evaluación un modelo de evaluación de poblaciones estadístico integrado con estructura por edad (*Stock Synthesis* 3.23b).

Han ocurrido cambios sustanciaes en la pesquería de atún patudo en el OPO en las últimas décadas (Figura D-1). Inicialmente, la mayor parte de la captura de patudo fue realizada por buques palangreros. Con la expansión de la pesquería sobre plantados a partir de 1993, la pesquería de cerco ha tomado un componente creciente de la captura de patudo. En los últimos años, las capturas cergueras de patudo provinieron principalmente de entre 5°N y 5°S en todo el Pacífico ecuatorial al oeste hasta el límite occidental del OPO (150°O; Figure A-3). Las capturas palangreras de patudo en el OPO provienen predominantemente de al sur de 5°S, pero se captura también una porción sustancial al norte de 10°N (Figura A-4). Se realiza la evaluación como si existiera una sola población de patudo en el OPO, y ocurrieran desplazamientos mínimos de peces entre el OPO y el Océano Pacífico central y occidental. Sus resultados son consistentes con aquéllos de otros análisis del atún patudo a escala del Pacífico entero. Sin embargo, la distribución de las capturas de patudo se extiende por todo el Océano Pacífico ecuatorial. Además, se ha acumulado recientemente una gran cantidad de datos de marcado convencional y electrónico del Programa de Marcado de Atún del Pacífico, que ha enfocado sus esfuerzos de marcado de patudo entre 180° y 140°O desde 2008. Las marcas recuperadas demuestran claramente que ocurren extensos desplazamientos longitudinales de patudo que atraviesan el límite de ordenación de la CIAT en 150°O, en particular de oeste a este. El personal de la CIAT está colaborando con la Secretaría de la Comunidad del Pacífico (SPC) en una evaluación actualizada del patudo a escala del Pacífico entero. Esta investigación incorporará los nuevos datos de marcado en un modelo de dinámica poblacional con estructura espacial, lo cual ayudará a evaluar los sesgos potenciales ocasionados por el enfoque actual de realizar evaluaciones separadas para el OPO y el Océano Pacífico central y occidental.

Este modelo es el mismo que se usó en la evaluación completa previa realizada en 2014 (Informe de Evaluación de Stocks de la CIAT 15), que incluyó varias mejoras. En primer lugar, se introdujo una nueva curva de crecimiento de Richards estimada externamente a partir de un análisis integrado de datos de otolitos y observaciones de marcado y recaptura. Esta curva redujo en particular la incertidumbre acerca del tamaño medio de los peces más viejos (parámetro L_2). Además, los parámetros que determinan la varianza de la talla por edad fueron asimismo tomados de las nuevas estimaciones de crecimiento derivadas externamente. Los análisis diagnósticos con la configuración de caso base previa del modelo indicaron una influencia dominante de los datos de composición por talla en la determinación de la productividad (parámetro R_0) de la población de patudo, y se descubrieron también conflictos entre los conjuntos de datos. Como consecuencia, se mejoró en la evaluación completa previa la ponderación asignada a los distintos conjuntos de datos. Concretamente, se redujo la ponderación de los datos de composición por talla de todas las pesquerías. Además, el número de series de datos de captura por unidad de esfuerzo (CPUE) usado como índices de abundancia fue reducido a fin de minimizar las tendencias conflictivas entre los conjuntos de datos. En lugar de ajustar a un total de diez series de CPUE (dos de cerco y ocho de palangre), se seleccionó un conjunto reducido de índices de abundancia como la mejor representación de las tendencias de la población de patudo (los periodos temprano y tardío de las pesquerías palangreras central v del sur).

La evaluación de la población requiere una cantidad sustancial de información. Se analizaron datos de capturas retenidas, descartes, CPUE, y de composición por tamaño de las capturas de varias pesquerías distintas. Se hicieron también varios supuestos sobre procesos tales como crecimiento, reclutamiento, desplazamiento, mortalidad natural, y mortalidad por pesca. Se actualizaron los datos de captura y CPUE de las pesquerías de superficie, e incluyen datos nuevos de 2014. Se dispone de datos nuevos o actualizados de la captura palangrera de China (2013), Japón (2008-2013), Corea (2013), Taipéi Chino (2011-2013), Estados Unidos (2012-2013), Polinesia Francesa (2013), y Vanuatu (2013-2014). Se dispone de datos de captura palangrera de 2014 para China, Japón, Taipéi Chino, y Corea a partir de las

estadísticas de los informes mensuales. En el caso de las pesquerías palangreras sin nuevos datos de captura para 2014, se supuso que las capturas en 2014 fueron iguales a las de 2013. Se dispone de datos nuevos o actualizados de CPUE para la flota palangrera japonesa (2008-2013). Se dispone de datos nuevos de frecuencia de talla de la pesquería de cerco para 2014, y actualizaciones de 2013, más datos de frecuencia de talla nuevos o actualizados (2011-2013) de la flota palangrera japonesa.

Una característica prominente de la serie de tiempo de estimaciones de reclutamiento de patudo es que los picos máximos del reclutamiento de 1983 y 1998 coincidieron con los eventos de El Niño más fuertes del periodo histórico de la evaluación (Figura D-2). Hubo un período de reclutamiento anual superior al promedio durante 1994-1998, seguido por un período de reclutamiento inferior al promedio durante 1999-2000. Los reclutamientos fueron superiores al promedio entre 2001 y 2006, y fueron particularmente fuertes en 2005. Más recientemente, los reclutamientos fueron inferiores al promedio durante 2007-2009, y han fluctuado alrededor del promedio durante 2010-2013. La estimación más reciente del reclutamiento anual (2014) es ligeramente superior al promedio. No obstante, esta estimación es altamente incierta, y debe ser considerada con cautela, debido a que el patudo recién reclutado está representado en solamente unos pocos conjuntos de datos de frecuencia de talla.

Han ocurrido cambios importantes en la cantidad de mortalidad por pesca causada por las pesquerías que capturan atún patudo en el OPO. En promedio, desde 1993 la mortalidad por pesca de patudo de menos de unos 15 trimestres de edad ha aumentado sustancialmente, y la de los de más de unos 15 trimestres de edad también ha aumentado, pero en menor grado (Figura D-3). El aumento de la mortalidad por pesca de los peces más jóvenes fue causado por la expansión de las pesquerías de cerco que capturan atún en asociación con objetos flotantes. Queda claro que la pesquería de palangre ejerció el mayor impacto sobre la población antes de 1995, pero con la reducción del esfuerzo de palangre, y la expansión de la pesquería sobre objetos flotantes, en la actualidad el impacto de la pesquería de cerco sobre la población de patudo es mucho mayor que aquél de la pesquería de palangre (Figura D-4). Los descartes de patudo pequeño tienen un impacto pequeño pero detectable sobre la merma de la población.

Dentro de la gama de biomasas reproductoras estimadas por la evaluación del caso base, la abundancia de los reclutas de patudo no parece estar relacionada con el potencial reproductor de las hembras adultas en el momento de cría.

Desde el principio de 2005, el cociente de biomasa reproductora (*spawning biomass ratio*, o SBR: el cociente de la biomasa reproductora actual a aquélla de la población no explotada) aumentó paulatinamente a 0,30 al principio de 2010. Esto puede ser atribuido al efecto combinado de una serie de reclutamientos superiores al promedio desde 2001, las resoluciones de conservación de atunes de la CIAT, y una reducción del esfuerzo de pesca palangrera en el OPO durante 2004-2009. No obstante, aunque las soluciones han continuado desde 2009, la tendencia reconstructiva no continuódurante 2010-2013, y el SBR disminuyó paulatinamente a un nivel histórico bajo de 0,19 al principio de 2013 (Figura D-4). Esta disminución podría estar relacionada con un período dominado por reclutamientos inferiores al promedio que comenzó a fines de 2007 y coincide con una serie de eventos de La Niña particularmente fuertes. Más recientemente, se estima que el SBR ha aumentado ligeramente, de 0.19 en 2013 a 0.22 al principio de 2015; en el modelo, este aumento es impulsado principalmente por el incremento reciente de la captura por unidad de esfuerzo (CPUE) de las pesquerías palangreras que capturan patudo adulto.

Al principio de 2015, la biomasa reproductora del patudo en el OPO parece haber sido un 6% mayor que S_{RMS} , y las capturas recientes fueron un 13% inferiores al rendimiento máximo sostenible (RMS) Si la mortalidad por pesca (*F*) es proporcional al esfuerzo de pesca, y se mantienen los patrones actuales de selectividad por edad, F_{RMS} es aproximadamente un 14% mayor que el nivel de esfuerzo actual (<u>Tabla D-1</u>).

Según los resultados del caso base, la estimación más reciente indica que la población de patudo en el OPO no se encuentra sobrepescada ($S < S_{RMS}$), y que no está ocurriendo sobrepesca ($F < F_{RMS}$) (Figura D-6). Se estima que la explotación actual se encuentra 14% por encima de los puntos de referencia objetivo de RMS. Similarmente, el modelo actual de caso base indica que los puntos de referencia límite provisionales de 0.38 S_{RMS} y 1,6 F_{RMS} , que corresponden a una reducción de 50% del reclutamiento de su nivel medio no explotado basada en un valor cauteloso de la inclinación de la relación población reclutamiento de Beverton-Holt (h = 0.75), no han sido rebasados (Figura D-6). Sin embargo, estas interpretaciones están sujetas a incertidumbre, tal como indican los intervalos de confianza aproximados alrededor de la estimación más reciente en las gráficas de fase, que permiten $F > F_{\text{RMS}}$. Además, dependen fuertemente de los supuestos acerca del parámetro de inclinación de la relación población-reclutamiento, los niveles supuestos de mortalidad natural de los adultos, y la ponderación asignada a los datos de composición por talla.

El RMS de patudo en el OPO podría ser maximizado si el patrón de selectividad por edad fuese similar a aquél de las pesquerías de palangre, porque capturan peces más grandes de un peso cercano al crítico. Antes de la expansión de la pesquería sobre objetos flotantes que comenzó en 1993, el RMS fue mayor que el RMS actual, y la mortalidad por pesca fue mucho menos que F_{RMS} (Figura D-7).

Con los niveles actuales de mortalidad por pesca, y si persisten los niveles recientes de esfuerzo y capturabilidad y niveles de reclutamiento medios, se predice que la biomasa reproductora seguirá aumentando, y alrededor de 2022 se estabilizará en un SBR de 0.25, nivel mayor que aquel correspondiente al RMS (0.21) (Figura D-5). Se estima que las capturas serán menores en el futuro con los niveles actuales de esfuerzo de pesca si se supone una relación población-reclutamiento, particularmente en el caso de las pesquerías de superficie (Figura D-8).

Estas simulaciones se basan en el supuesto que los patrones de selectividad y capturabilidad no cambiarán en el futuro. Cambios en las prácticas con respecto a los objetivos de la pesca, o una mayor capturabilidad de patudo a medida que disminuye la abundancia (por ejemplo, capturabilidad dependiente de la densidad) podrían resultar en diferencias de los resultados aquí predichos.

Resultados clave

- 1. Los resultados de esta evaluación indican una tendencia recuperativa del atún patudo en el OPO durante 2005-2009, subsiguiente a las resoluciones de conservación de atún de la CIAT iniciadas en 2004. No obstante, la disminución de la biomasa reproductora que comenzó a principios de 2010 redujo la biomasa tanto sumaria como reproductora a su nivel histórico mínimo al principio de 2013, y persistió durante 2013. Esta disminución podría estar relacionada con una serie reciente de reclutamientos inferiores al promedio que coinciden con una serie de eventos fuertes de La Niña. Más recientemente, se estima que el SBR ha aumentado ligeramente, de 0.19 en 2013 a 0.22 al principio de 2015; en el modelo, este aumento es impulsado principalmente por el incremento reciente de la CPUE de las pesquerías palangreras que capturan patudo adulto. Con los niveles actuales de mortalidad por pesca, y si continúan los niveles recientes de esfuerzo y capturabilidad y persisten los niveles medios de reclutamiento, se predice que la biomasa reproductora seguirá recuperándose y se estabilizará alrededor de 0.25, por encima del nivel correspondiente al RMS (0.21).
- 2. Existe incertidumbre con respecto a los niveles de reclutamiento y biomasa recientes y futuros.
- 3. Se estima que las tasas recientes de mortalidad por pesca están por debajo del nivel correspondiente al RMS, mientras que los niveles recientes de la biomasa reproductora han estado ligeramente por encima de dicho nivel. Estas interpretaciones son inciertas, y altamente sensibles a los supuestos correspondientes al parámetro de inclinación de la relación población-reclutamiento, las tasas supuestas de mortalidad natural del patudo adulto, la curva de crecimiento, y la ponderación asignada a los datos de composición por talla, en particular los de palangre. Los resultados son más pesimistas si se supone una relación población-reclutamiento, tasas más bajas de mortalidad natural del patudo adulto, y una talla mayor de los peces más viejos, y si se asigna una ponderación mayor a los datos de composición por talla, en particular los de las pesquerías de palangre.

4. El personal de la CIAT está colaborando con la Secretaría de la Comunidad del Pacífico (SPC) en una evaluación actualizada del patudo a escala del Pacífico entero. Esta investigación incorporará los nuevos datos de marcado en un modelo de dinámica poblacional con estructura espacial, lo cual ayudará a evaluar los sesgos potenciales ocasionados por el enfoque actual de realizar evaluaciones separadas para el OPO y el Océano Pacífico central y occidental.

E. PACIFIC BLUEFIN TUNA

Tagging studies have shown that there is exchange of Pacific bluefin between the eastern and western Pacific Ocean. Larval, postlarval, and early juvenile bluefin have been caught in the western Pacific Ocean (WPO), but not in the eastern Pacific Ocean (EPO), so it is likely that there is a single stock of bluefin in the Pacific Ocean (or possibly two stocks in the Pacific Ocean, one spawning in the vicinity of Taiwan and the Philippines and the other spawning in the Sea of Japan).

Most of the commercial catches of bluefin in the EPO are taken by purse seiners. Nearly all of the purseseine catches have been made west of Baja California and California, within about 100 nautical miles of the coast, between about 23°N and 35°N. Ninety percent of the catch is estimated to have been between about 60 and 100 cm in length, representing mostly fish 1 to 3 years of age. Aquaculture facilities for bluefin were established in Mexico in 1999, and some Mexican purse seiners began to direct their effort toward bluefin during that year. During recent years, most of the catches have been transported to holding pens, where the fish are held for fattening and later sale to sashimi markets. Lesser amounts of bluefin are caught by recreational, gillnet, and longline gear. Bluefin have been caught during every month of the year, but most of the fish are taken during May through October.

Bluefin are exploited by various gears in the WPO from Taiwan to Hokkaido. Age-0 fish about 15 to 30 cm in length are caught by trolling during July-October south of Shikoku Island and south of Shizuoka Prefecture. During November-April, age-0 fish about 35 to 60 cm in length are taken by trolling south and west of Kyushu Island. Age-1 and older fish are caught by purse seining, mostly during May-September, between about 30°-42°N and 140°-152°E. Bluefin of various sizes are also caught by traps, gillnets, and other gear, especially in the Sea of Japan. Small amounts of bluefin are caught near the southeastern coast of Japan by longlining. The Chinese Taipei small-scale longline fishery, which has expanded since 1996, takes bluefin tuna more than 180 cm in length from late April to June, when they are aggregated for spawning in the waters east of the northern Philippines and Taiwan.

The high-seas longline fisheries are directed mainly at tropical tunas, albacore, and billfishes, but small amounts of Pacific bluefin are caught by these fisheries. Small amounts of bluefin are also caught by Japanese pole-and-line vessels on the high seas.

Tagging studies, conducted with conventional and archival tags, have revealed a great deal of information about the life history of bluefin. Some fish apparently remain their entire lives in the WPO, while others migrate to the EPO. These migrations begin mostly during the first and second years of life. The first-and second-year migrants are exposed to various fisheries before beginning their journey to the EPO. The migrants, after crossing the ocean, are exposed to commercial and recreational fisheries off California and Baja California. Eventually, the survivors return to the WPO.

Bluefin more than about 50 cm in length are most often found in waters where the sea-surface temperatures (SSTs) are between 17° and 23°C. Fish 15 to 31 cm in length are found in the WPO in waters where the SSTs are between 24° and 29°C. The survival of larval and early juvenile bluefin is undoubtedly strongly influenced by the environment. Conditions in the WPO probably influence the portions of the juvenile fish there that migrate to the EPO, and also the timing of these migrations. Likewise, conditions in the EPO probably influence the timing of the return of the juvenile fish to the WPO.

A full stock assessment was carried out by the Pacific Bluefin Working Group of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC) in 2012. The assessment was conducted with Stock Synthesis 3, an integrated statistical age-structured stock assessment model. Uncertainties were found in the assessment, and these were characterized through a series of 20 models, each with alternative data weightings and structural assumptions. While no single model scenario provided a good fit to all sources of data deemed reliable, long-term fluctuations in spawning stock biomass (SSB) occurred throughout the assessment period (1952-2011), and the SSB has been declining for more than a decade; however, there is no evidence of reduced recruitment. Age-

specific fishing mortality has increased 8-41% in the recent period (2007-2009) relative to the baseline period (2002-2004) used in recent WCPFC and IATTC conservation measures.

A model configuration was chosen as the representative model to determine stock status and provide management advice, acknowledging that while it represents the general conclusions above, the model was unable to reconcile all key data sources. According to this model, estimated age-specific fishing mortalities for the stock in the recent period (2007-2009) relative to 2002-2004 (the base period for the current WCPFC conservation measures) show increases of 4, 17, 8, 41 and 10% for ages 0, 1, 2, 3 and 4+, respectively. Although no target or limit reference points have been established for the Pacific bluefin stock, the current *F* (2007-2009 average) is above all target and limit biological reference points commonly used for management. The current (2010) Pacific bluefin SSB level is near historic low levels, and the ratio of SSB in 2010 relative to unfished SSB is low.

Stock projections of spawning biomass and catches of Pacific bluefin tuna from 2011 to 2030 were conducted assuming alternative harvest scenarios. Recent WCPFC and IATTC conservation and management measures that entered into force in 2011 and 2012, respectively, combined with additional Japanese domestic regulations aimed at reducing mortality, if properly implemented and enforced, are expected to contribute to improvements in the stock status of Pacific bluefin tuna.

The ISC stock assessment was updated in 2014 using data up to and including 2013. The results of the updated assessment generally followed those of the previous assessment. The IATTC staff conducted an alternative analysis of the data outside the stock assessment model (document <u>SAC-05-10a</u>). This analysis confirmed the results of the ISC update assessment. The average recruitment for the last five years was estimated to be below the historical average. Estimated age-specific fishing mortalities on the stock during 2009-2011 relative to 2002-2004 increased for ages 0-6 and decreased for ages 7+. Although no target or limit reference points have been established for the Pacific bluefin stock under the auspices of the IATTC, the average fishing mortality during 2009-2011 exceeds all target and limit biological reference points (BRPs) commonly used by fisheries managers except one, and the depletion ratio (ratio of SSB in 2012 relative to unfished SSB) is less than 6%. In summary, based on reference point ratios, overfishing is occurring and the stock is overfished. Based on projection results, the recently-adopted conservation measures, if continued in to the future, are expected to increase the SSB even if the recent low recruitment continues. A full stock assessment of bluefin tuna will be carried out by the ISC in March 2016.

The total catches of bluefin have fluctuated considerably during the last 50 years (Figure E-1). The consecutive years of above-average catches (mid-1950s to mid-1960s) and below-average catches (early 1980s to early 1990s) could be due to consecutive years of above-average and below-average recruitments.

The IATTC has adopted resolutions to restrict the catch of bluefin tuna in the EPO. Resolutions C-12-09, C-13-02, and C-14-06 limit the commercial catches in the IATTC Convention Area by all CPCs to 10,000 metric tons during 2012-2013, 5,000 metric tons in 2014, and 6,600 during 2015-2016, respectively.

Reference points

Developing management reference points for bluefin is problematic, due to sensitivity to the stock assessment model's assumptions. In particular, absolute levels of biomass and fishing mortality, and reference points based on maximum sustainable yield (MSY), are hypersensitive to the value of natural mortality. Relative trends in biomass and fishing mortality levels are more robust to model assumptions. Therefore, management reference points based on relative biomass or fishing mortality should be considered for managing bluefin. It is unlikely that these management measures can be designed to optimize yield, and management should be designed to provide reasonable yields while ensuring sustainability until the uncertainty in the assessment is reduced.

A management "indicator" was developed that is based on integrating multiple years of fishing mortality

and takes into consideration the age structure of the fishing mortality. The indicator is based on estimating the impact of fisheries on the stock of fish. The fishery impact over time is used as an indicator for developing reference points based on historic performance. The assumption is that if the fishery impact is less than that seen in the past, then the population is likely to be sustainable at current levels of fishing mortality.

The fishery impact indicator is estimated for bluefin based on spawning biomass. The fisheries are grouped into those in the eastern Pacific Ocean (EPO) and those of the WPO because setting management guidelines for the EPO is the goal of this analysis. The base case assessment developed by the ISC in 2008 is used as the stock assessment model. The sensitivity of the fishery impact and its use as a management indicator to the different natural mortality assumptions are evaluated.

The index of impact proposed for management is calculated as the estimate of actual spawning biomass divided by the hypothetical spawning biomass in the absence of a fishery. This assumes that the impact is measured under the assumption that the impact of other fisheries is not controlled.

The estimated impact of the fisheries on the bluefin population for the entire time period modeled (1952-2006) is substantial (Figure E-2). The impact is highly sensitive to the assumed values for natural mortality. The WPO fisheries have had a greater impact than the EPO fisheries, and their rate of increase in recent years is greater. The temporal trend in the impact is robust to the assumed level of natural mortality.

The temporal trend in the estimated fisheries impact is robust to the assumption about natural mortality. Therefore, using the relative fishery impact as an indicator for management advice based on estimated historical performance may be useful. The impact of the EPO fisheries was substantially less during 1994-2007 than it was during 1970-1993, when bluefin was reduced to a much lower level; however, the impact has been increasing recently. The estimated status of bluefin is uncertain, and is sensitive to model assumptions. Catch levels should be set based on the years in which the impact was low until the uncertainty in the assessment is reduced. This management measure should ensure that the fishery is sustainable, provided equivalent measures are taken in the WPO.

FIGURA E-1. Capturas retenidas de atún aleta azul del Pacífico.

FIGURE E-2. Estimates of the impact on the Pacific bluefin tuna population of fisheries in the EPO and in the WPO (upper panel). The dashed line represents the estimated hypothetical unfished spawning biomass, and the solid line the estimated actual spawning biomass. The shaded areas indicate the impact attributed to each fishery. The lower panel presents the proportion of impact attributed to the EPO and WPO.

FIGURA E-2. Estimaciones del impacto sobre la población de atún aleta azul del Pacífico de las pesquerías en el OPO y en el WPO (panel superior). La línea de trazos representa la biomasa reproductora no pescada hipotética estimada, y la línea sólida la biomasa reproductora real estimada. Las áreas sombreadas indican el impacto atribuido a cada pesquería. El panel inferior ilustra la proporción del impacto atribuida al OPO y al WPO.

E. ATÚN ALETA AZUL DEL PACÍFICO

Los estudios de marcado han demostrado que ocurre intercambio de aleta azul del Pacífico entre el Océano Pacífico oriental y occidental. Se han capturado aletas azules larvales, poslarvales, y juveniles tempranos en el Pacífico occidental pero no en el OPO, por lo que es probable que exista una sola población de aleta azul en el Océano Pacífico (o posiblemente dos poblaciones en el Océano Pacífico, uno que desova cerca de Taiwán y Filipinas, y el otro que desova en el Mar de Japón).

La mayoría de las capturas comerciales de aleta azul en el OPO es realizada por buques cerqueros. Casi todas las capturas cerqueras han provenido de una zona frente a Baja California y California, a menos de unas 100 millas náuticas de la costa, entre 23°N y 35°N. Se estima que el 90% de la captura midió entre aproximadamente 60 y 100 cm de talla, representando principalmente peces de entre 1 y 3 años de edad. En 1999 fueron establecidas en México instalaciones de acuacultura de aleta azul, y algunos cerqueros mexicanos comenzaron a dirigir su esfuerzo hacia el aleta azul en ese año. En los últimos años, la mayoría de las capturas han sido son transportadas a corrales marinos, donde se mantienen los peces para engordarlos y luego venderlos en el mercado de *sashimi*. Se capturan cantidades menores de aleta azul con arte de pesca recreacional, redes de transmalle, y palangres. Se captura la especie en todos los meses del año, pero la mayor parte de la captura es lograda entre mayo y octubre.

El aleta azul es pescado con varias artes en el Pacífico occidental y central desde Taiwán hasta Hokkaido. Peces de 0 años de edad de entre unos 15 y 30 cm de talla son capturados con curricán durante juliooctubre al sur de Shikoku y al sur de la Prefectura de Shizuoka. Durante noviembre-abril, peces de edad 0 de entre unos 35 y 60 cm son capturados con curricán al sur y oeste de Kyushu. Peces de edad 1 y mayores son capturados con redes de cerco, principalmente durante mayo-septiembre, entre 30°-42°N y 140°-152°E. Se capturan también aletas azules de varios tamaños con trampas, redes de transmalle, y otras artes de pesca, especialmente en el Mar de Japón. Se capturan pequeñas cantidades de la especie con palangre cerca del litoral sudeste de Japón. La pesquería palangrera a pequeña escala de Taipéi Chino, que se ha expandido desde 1996, captura atunes aleta azul de más de 180 cm desde fines de abril hasta junio, cuando se agregan para el desove en las aguas al este del norte de Filipinas y Taiwán.

Las pesquerías palangreras de alta mar están dirigidas principalmente hacia los atunes tropicales, la albacora, y los peces picudos, pero capturan pequeñas cantidades de aleta azul del Pacífico. Buques cañeros japoneses capturan asimismo pequeñas cantidades de aleta azul en alta mar.

Los estudios de marcado, con marcas convencionales y archivadoras, han arrojado una gran cantidad de información sobre el ciclo vital del aleta azul. Algunos peces permanecen aparentemente toda la vida en el Pacífico occidental, mientras que otros migran al OPO; estas migraciones comienzan principalmente durante el primer y segundo año de vida. Los migrantes de primer o segundo año están expuestos a varias pesquerías antes de iniciar su migración al OPO. Después de cruzar el océano, están expuestos a las pesquerías comercial y recreacional frente a California y Baja California. Posteriormente, los supervivientes regresan al Pacífico occidental.

Se encuentran aletas azules de más de 50 cm de talla con mayor frecuencia en aguas de entre 17° y 23°C de temperatura de superficie. En el Pacífico occidental se encuentran peces de entre 15 y 31 cm en aguas de entre 24° y 29°C de temperatura de superficie. La supervivencia de las larvas y juveniles tempranos de la especie es indudablemente afectada de manera importante por las condiciones ambientales. Las condiciones en el Pacífico occidental afectan probablemente cuáles porciones de los peces juveniles migran al OPO, y cuándo. Asimismo, las condiciones en el OPO probablemente afectan cuándo los peces juveniles regresan al Pacífico occidental.

Una evaluación completa de la población fue realizada por el Grupo de Trabajo sobre el Aleta Azul del Pacífico del Comité Científico Internacional del Pacífico Norte (ISC) en 2012. La evaluación fue realizada con *Stock Synthesis 3*, un modelo de evaluación de poblaciones estadístico integrado con estructura por edad. Se descubrieron incertidumbres en la evaluación, que fueron caracterizadas mediante

una serie de 20 modelos, cada uno con ponderaciones de datos y supuestos estructurales alternativos. Mientras que ningún escenario del modelo produjo un ajuste bueno a todas las fuentes de datos consideradas fiables, ocurrieron fluctuaciones a largo plazo de la biomasa de la población reproductora durante todo el período de la evaluación (1952-2011), y la SSB viene disminuyendo desde hace más de una década; no obstante, no existen pruebas de un reclutamiento reducido. La mortalidad por pesca por edad ha aumentado entre 8 y 41% en el periodo reciente (2007-2009) con respecto al periodo base (2002-2004) usado en las medidas de conservación recientes de la WCPFC y la CIAT.

Se seleccionó una configuración del modelo como modelo representativo para determinar la condición de la población y brindar asesoramiento de ordenación, teniendo en cuenta que, mientras representa las conclusiones generales antes comentadas, no fue capaz de conciliar todas las fuentes de datos clave. Según este modelo, la mortalidad por pesca por edad estimada de la población en el periodo reciente (2007-2009) relativa a 2002-2004 (el periodo base de las medidas de conservación actuales de la WCPFC) muestra incrementos de 4, 17, 8, 41 y 10% para las edades de 0, 1, 2, 3, y 4+, respectivamente. Aunque no se han establecido puntos de referencia objetivo o límite para la población del aleta azul del Pacífico, la *F* actual (promedio de 2007-2009) es superior a todos los puntos de referencia biológicos objetivo y límite usados comúnmente en la ordenación. El nivel de SSB actual (2010) de la especie se encuentra cerca de los niveles bajos históricos, y la relación entre la SSB en 2010 y la SSB sin pesca es baja.

Se realizaron proyecciones de la biomasa reproductora y las capturas de aleta azul del Pacífico entre 2011 y 2030 con distintos escenarios de explotación supuestos. Se espera que las medidas recientes de conservación y ordenación de la WCPFC y la CIAT, que entraron en vigor en 2011 y 2012, respectivamente, combinadas con el reglamento japonés adicional para reducir la mortalidad, si se incrementan y aplican debidamente, contribuyan a mejoras de la condición de la población de aleta azul del Pacífico.

La <u>evaluación de la población del ISC</u> fue actualizada en 2014 usando datos de hasta 2013, inclusive. Los resultados de la evaluación actualizada siguieron generalmente aquellos de la evaluación previa. El personal de la CIAT realizó un análisis alternativo de los datos externo al modelo de evaluación (documento <u>SAC-05-10a</u>), que confirmó los resultados de la evaluación del ISC. Se estimó que el reclutamiento medio durante el último quinquenio fue inferior al promedio histórico. La estimación de la mortalidad por pesca por edad durante 2009-2011 con respecto a 2002-2004 aumentó en el caso de las edades 0-6 y disminuyó en el caso de las edades 7+. Aunque no se han establecido puntos de referencia objetivo o límite para la población de aleta azul del Pacífico bajo los auspicios de la CIAT, la mortalidad por pesca media durante 2009-2011 supera todos los puntos de referencia biológicos (PRB) usados comunmente en la gestión de pesquerías excepto uno, y el cociente de merma (la razón de la SSB en 2012 a la SSB sin pesca) es menos de 6%. En resumen, a partir de razones de puntos de referencia, está ocurriendo sobrepesca y la población se encuentra sobrepescada. A partir de los resultados de proyecciones, se espera que las medidas de conservación adoptadas recientemente, si continúan a futuro, incrementen la SSB aún si continúa el reclutamiento bajo reciente. El ISC realizará una evaluación completa del atún aleta azul en marzo de 2016

Las capturas totales de aleta azul han fluctuado considerablemente durante los últimos 50 años (<u>Figura E-1</u>). Los años consecutivos de capturas superiores al promedio (mediados de los años 1950 a mediados de los 1960) y capturas inferiores al promedio (principios de los años 1980 a principios de los 1990) podrían deberse a años consecutivos de reclutamientos superiores e inferiores al promedio.

La CIAT ha adoptado resoluciones para limitar la captura de atún aleta azul en el OPO. Las resoluciones C-12-09, C-13-02, y C-14-06. limitan las capturas comerciales en el Área de la Convención de la CIAT por todos los CPC a 10,000 toneladas durante 2012-2013, a 5,000 toneladas en 2014, y 6,600 toneladas durante 2015-2016, respectivamente.

Puntos de referencia

El desarrollo de puntos de referencia para la ordenación del aleta azul es problemático, debido a la sensibilidad a los supuestos del modelo de evaluación de la población. En particular, los niveles absolutos de biomasa y de mortalidad por pesca, y los puntos de referencia basados en el rendimiento máximo sostenible (RMS), son hipersensibles al valor de mortalidad natural. Las tendencias relativas de los niveles de biomasa y de la mortalidad por pesca son más robustas a los supuestos del modelo. Por lo tanto, puntos de referencia para la ordenación basados en biomasa o mortalidad por pesca relativa deberían ser considerados para la ordenación del aleta azul. Es poco probable que estas medidas de ordenación puedan ser diseñadas para optimizar el rendimiento, y la ordenación debería ser ideada para producir rendimientos razonables, y al mismo tiempo asegurar la sustentabilidad hasta que se reduzca la incertidumbre en la evaluación.

Se desarrolló un « indicador » de ordenación que se basa en la integración de múltiples años de mortalidad por pesca y que toma en consideración la estructura por edades de la misma. El indicador se basa en estimaciones del impacto de la pesca sobre la población de peces. Se usa el impacto de la pesca a lo largo del tiempo como indicador para desarrollar puntos de referencia basados en desempeño histórico. El supuesto es que, si el impacto de la pesca es menor que aquél observado en el pasado, es probable que la población sea sostenible con los niveles actuales de mortalidad por pesca.

Se estima el indicador de impacto de pesca para el aleta azul a partir de la biomasa reproductora. Se agrupan las pesquerías en aquéllas en el Océano Pacífico oriental (OPO) y aquéllas en el Océano Pacífico occidental, porque fijar directrices de ordenación para el OPO es la meta de este análisis. Se usa la evaluación de caso base desarrollada por el ISC en 2008 para los atunes y especies afines en el Océano Pacífico norte como modelo de evaluación de la población. Se evalúan la sensibilidad del impacto de la pesca y su uso como indicador de ordenación a los distintos supuestos sobre la mortalidad natural.

Se calcula el índice del impacto propuesto para la ordenación como la estimación de la biomasa reproductora real dividida por la biomasa reproductora hipotética en ausencia de pesca. Esto supone que se mide el impacto bajo el supuesto que no se controla el impacto de las otras pesquerías.

El impacto estimado de la pesca sobre la población de aleta azul del Pacífico durante todo el período modelado (1952-2006) es sustancial (Figura E-2). El impacto es altamente sensible al valor de mortalidad natural supuesto. Las pesquerías del Pacífico occidental han tenido un impacto mayor que aquellas del OPO, y su tasa de aumento en los últimos años es mayor. La tendencia temporal del impacto es robusta al nivel de mortalidad natural supuesto.

La tendencia temporal del impacto estimado de la pesca es robusta al supuesto acerca de la mortalidad natural. Por lo tanto, podría ser útil usar el impacto relativo de la pesca como indicador para el asesoramiento de ordenación basado en desempeño histórico. El impacto de las pesquerías del OPO fue sustancialmente menor durante 1994-2007 que durante 1970-1993, cuando las poblaciones fueron reducidas a un nivel mucho más bajo, pero el impacto ha aumentado recientemente. La estimación de la condición de la población es incierta, y es sensible a los supuestos del modelo. Hasta que se reduzca la incertidumbre en la evaluación, se deberían fijar los niveles de captura sobre la base de aquellos años en los que el impacto fue bajo. Esta medida de ordenación debería asegurar que la pesquería sea sostenible, siempre que se tomen medidas equivalentes en el Océano Pacífico occidental.

F. ALBACORE TUNA

There are two stocks of albacore in the Pacific Ocean, one occurring in the northern hemisphere and the other in the southern hemisphere. Albacore are caught by longline gear in most of the North and South Pacific, but not often between about 10°N and 5°S, by trolling gear in the eastern and central North and South Pacific, and by pole-and-line gear in the western North Pacific. In the North Pacific about 57% of the fish are taken in pole-and-line and troll fisheries that catch smaller, younger albacore, whereas about 95% of the albacore caught in the South Pacific are taken by longline. The total annual catches of North Pacific albacore peaked in 1976 at about 125,000 t, declined to about 38,000 t in 1991, and then increased to about 122,000 t in 1999 (Figure F-1a). Following a second decline in the early 2000s, catches have recovered slightly, and have fluctuated between about 69,000 and 93,000 t in recent years (2006-2013). During 2009-2013 the average annual catch was about 83,000 t. The total annual catches of South Pacific albacore ranged from about 25,000 to 50,000 t during the 1980s and 1990s, but increased after that, ranging from about 59,000 to 89,000 t during 2003-2013 (Figure F-1b). During 2009-2013 the average annual catch was about 82,000 t.

Juvenile and adult albacore are caught mostly in the Kuroshio Current, the North Pacific Transition Zone, and the California Current in the North Pacific and in the Subtropical Convergence Zone in the South Pacific, but spawning occurs in tropical and subtropical waters, centering around 20°N and 20°S latitudes. North Pacific albacore are believed to spawn between March and July in the western and central Pacific.

The movements of North Pacific albacore are strongly influenced by oceanic conditions, and migrating albacore tend to concentrate along oceanic fronts in the North Pacific Transition Zone. Most of the catches are made in water temperatures between about 15° and 19.5°C. Details of the migration remain unclear, but juvenile fish (2- to 5-year-olds) are believed to move into the eastern Pacific Ocean (EPO) in the spring and early summer, and return to the western and central Pacific, perhaps annually, in the late fall and winter, where they tend to remain as they mature. This pattern may be complicated by sex-related movements of large adult fish (fork length > 125 cm), which are predominately male, to areas south of 20°N. The significance of such movements for the demographic dynamics of this stock are uncertain at present.

Less is known about the movements of albacore in the South Pacific Ocean. The juveniles move southward from the tropics when they are about 35 cm long, and then eastward along the Subtropical Convergence Zone to about 130°W. When the fish approach maturity they return to tropical waters, where they spawn. Recoveries of tagged fish released in areas east of 155°W were usually made at locations to the east and north of the release site, whereas those of fish released west of 155°W were usually made at locations to the west and north of the release site.

The most recent stock assessments for the South and North Pacific stocks of albacore were presented in 2012 and 2014, respectively.

The assessment of South Pacific albacore, which was carried out in 2012 with MULTIFAN-CL by scientists of the Secretariat of the Pacific Community, incorporated catch and effort data, length-frequency data, tagging data, and information on biological parameters. Although there were sources of structural uncertainty, in particular growth, it was concluded that the stock was above the level corresponding to the maximum sustainable yield (MSY). Specifically, the current abundance relative to biomass-based reference points $B_{current}/B_{MSY}$ and $SB_{current}/SB_{MSY}$ is estimated to be above 1.0, and therefore the stock was not in an overfished state. In addition, it was concluded that the risk of overfishing occurring was low (the median of the most recent fishing mortality estimate relative to the fishing mortality reference point $F_{current}/F_{MSY}$ was 0.21). There appeared to be no need to restrict the fisheries for albacore in the South Pacific Ocean, but additional research to attempt to resolve the uncertainties in the data was recommended. A new stock assessment of South Pacific albacore is currently being carried out by scientists of the Secretariat of the Pacific Community (SPC), and will be presented to the Scientific Committee of the Western and Central Pacific Fisheries Commission (WCPFC) in August 2015.

An assessment of North Pacific albacore using fisheries data through 2012 was conducted at a workshop of the Albacore Working Group of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC), held in April 2014. The stock was assessed using an age- and sex-structured Stock Synthesis (SS Version 3.24f) model fitted to time series of standardized CPUE and size-composition data over a 1966 to 2012 time frame. The base-case model was fitted to the Japanese pole-and-line (PL) and longline (LL) indices, which were considered by the Working Group to be the most representative indices of abundance trends for juveniles and adults, respectively. All available fishery data from the Pacific Ocean north of the equator were used for the stock assessment, which assumed a single well-mixed stock. Sex-specific growth curves were used because there is evidence of sexually dimorphic growth, with male albacore attaining greater sizes and ages than females. The assumed value of the steepness parameter (h) in the Beverton-Holt stockrecruitment relationship was 0.9, based on two separate external estimates of this parameter. The assessment model was fitted to the abundance indices and size-composition data in a likelihood-based statistical framework. Maximum likelihood estimates of model parameters, derived outputs, and their variances were used to characterize stock status. Several sensitivity analyses were conducted to evaluate both changes in model performance and the range of uncertainty resulting from changes in model parameters, including some of the data series used in the analyses, growth curve parameters, natural mortality, stock-recruitment steepness, initial year, selectivity estimation, and weighting of size-composition data. The conclusions reached at that

1. The base-case model estimates that the spawning stock biomass (SSB) has likely fluctuated between 98,000 and 204,000 t between 1966 and 2012 (Figure F-2), and that recruitment has averaged about 43 million fish annually during this period. There are periods of above- and below-average recruitment at the beginning of the assessment time frame, followed by fluctuations around the average since the 1990s. Female SSB was estimated to be approximately 110,101 t in the terminal year of the assessment (2012), and stock depletion is estimated to be 35.8% of unfished SSB.

workshop were presented to the eleventh plenary meeting of the ISC, held in August 2014. Among these were

the following:

- 2. The estimated spawners per recruit (SPR) relative to the unfished population in the terminal year of the assessment is 0.41, which corresponds to a relatively low exploitation level (*i.e.*, 1-SPR = 0.59). While the base case model's estimate of current *F*-at-age on juvenile fish is lower than in 2002-2004, and current *F* on adult fish (50% of age-5 fish, and all fish age 6 and older) is higher, on average, than during 2002-2004.
- 3. The Kobe plot (Figure F-3) depicts the status of the stock in relation to MSY-based and MSY proxy reference points from the base-case model. The plot is presented for illustrative purposes only, since the IATTC has not established biological reference points for north Pacific albacore. The ISC Working Group concluded that the stock is likely not in an overfished condition at present, as there is little evidence from the assessment that fishing has reduced SSB below reasonable candidate biomass-based reference points.
- 4. Under the base-case model, the point estimate (\pm SD) of maximum sustainable yield (MSY) is 105,571 \pm 14,759 t, and the point estimate of spawning biomass to produce MSY (SSB_{MSY}, adult female biomass) is 49,680 \pm 6,739 t. The ratio of $F_{2010-2012}/F_{MSY}$ is estimated to be 0.52, and the ratio of $F_{2002-2004}/F_{MSY}$ (2002-2004 are the reference years for IATTC conservation and management measures for north Pacific albacore) is estimated to be 0.76.
- 5. Stochastic stock projections were conducted externally to the base case model to evaluate the impact of various levels of fishing intensity on future female SSB for north Pacific albacore. Future recruitment was based on random resampling of historical recruitment for three periods: (1) low recruitment (about 29 million recruits), 1983-1989, (2) average recruitment (about 43 million), 1966-2010, and high recruitment (about 55 million recruits), 1966-1975. These calculations incorporate the structure of the assessment model (*e.g.*, multi-fleet, multi-season, size- and age-selectivity) to produce results consistent with the assessment model. Projections started in 2011 and continued through 2041

under two levels of fishing mortality (constant $F_{2010-2012}$, constant $F_{2002-2004}$) and constant catch averaged for 2010-2012, and three levels of recruitment (low, average, and high, as defined above). Based on these projections, the stock performs better under the constant $F_{2010-2012}$ harvest scenario than the constant $F_{2002-2004}$ harvest scenario. Assuming average historical recruitment and fishing at a constant current *F*, median female SSB is expected to remain relatively stable between the 25th and median historical percentiles over both the short and long term. In contrast, if a low-recruitment scenario is assumed, then median female SSB declines under both harvest scenarios. The high-recruitment scenario is more optimistic, with median SSB increasing above the historical median SSB.

- 6. The Working Group concluded that the north Pacific albacore stock is not experiencing overfishing and is probably not in an overfished condition. The current exploitation level ($F_{2010-2012}$) is estimated to be below that of $F_{2002-2004}$, which had led previously to the implementation of conservation and management measures for the stock in the eastern Pacific (IATTC Resolution C-05-02, supplemented by Resolution C-13-03) and the western and central Pacific Ocean (WCPFC CMM 2005-03). The Working Group noted that there is no evidence that fishing has reduced SSB below thresholds associated with the majority of biomass-based reference points that might be chosen and that population dynamics in the north Pacific albacore stock are largely driven by recruitment, which is affected by both environmental changes and the stock-recruitment relationship. The Working Group concluded that the north Pacific albacore stock is healthy, and that current productivity is sufficient to sustain recent exploitation levels, assuming average historical recruitment in both the short and long term.
- 7. The Working Group noted that the lack of sex-specific size data, the absence of updated estimates of important life history parameters (natural mortality, maturity), and the simplified treatment of the spatial structure of north Pacific albacore population dynamics are important sources of uncertainty in the assessment.

In 2013 the IATTC adopted resolution $\underline{C-13-03}$ on North Pacific albacore, which supplemented $\underline{C-05-02}$. By 1 December 2013, all CPCs were required to report catch, by gear and effort directed at northern albacore, in the Convention Area during 2007-2012, as well as the average effort for 2002-2004. The effort in vessel-days during 2007-2012 was only 2% higher than during 2002-2004, and the average number of vessels operating during 2007-2012 was about 7% lower than during 2002-2004.

Currently the Working Group is developing a work plan to implement a Management Strategy Evaluation for the North Pacific albacore stock.

FIGURE F-1a. Retained catches of North Pacific albacore. **FIGURA F-1a.** Capturas retenidas de albacora del Pacífico norte.

FIGURE F-1b. Retained catches of South Pacific albacore. **FIGURA F-1b.** Capturas retenidas de albacora del Pacífico sur.

FIGURE F-2. Spawning stock biomass of North Pacific albacore tuna, from the North Pacific Albacore Workshop analysis of 2012.

FIGURA F-2. Biomasa de la población reproductora del atún albacora del Pacífico norte, de los análisis de la Reunión Técnica sobre el albacora del Pacífico norte de 2012.

FIGURE F-3. Kobe (phase) plot for the North Pacific albacore stock from the base-case assessment model (which assumes a steepness value of 0.9). The *F* proxy is computed as (1-(Spawning biomass per recruit [year] / Spawning biomass per recruit [virgin])). The limit and target reference points are those proposed by the IATTC staff and are included here for illustrative purposes. The dashed lines represent the proposed limit reference points. The limit biomass reference point corresponds to a depletion level that causes a 50% reduction in recruitment from its average unexploited level based on a conservative steepness value (h = 0.75). The limit fishing mortality reference point. The squares around the most recent estimate represent its approximate 95% confidence interval. The triangle is the first estimate (1966).

FIGURA F-3. Gráfica de Kobe (fase) para la población de atún albacora del Pacífico norte del modelo de evaluación de caso base (que supone un valor de inclinación de 0.9). Se computa la aproximación de F como (1-(Biomasa reproductora por recluta [año] / Biomasa reproductora por recluta [virgen])). Los puntos de referencia límite y objetivo son los propuestos por el personal de la CIAT, y se incluyen aquí con fines ilustrativos. Las líneas de trazos representan los puntos de referencia límite propuestos. El punto de referencia límite basado en biomasa corresponde a un nivel de merma que causa una reducción de 50% del reclutamiento relativo a su nivel medio sin explotación basado en un valor cauteloso de la inclinación (h = 0.75). El punto de referencia límite basado en mortalidad por pesca corresponde a la mortalidad por pesca que impulsará a la población al punto de referencia límite basado en biomasa. Los cuadrados alrededor de la estimación más reciente representan su intervalo de confianza de 95% aproximado. El triángulo es la primera estimación (1975).

F. ATÚN ALBACORA

Existen dos poblaciones de atún albacora en el Océano Pacífico, una en el hemisferio norte y la otra en el hemisferio sur. La especie es capturada con palangre en la mayor parte del Pacífico Norte y Sur, pero rara vez entre aproximadamente 10°N y 5°S, con curricán en el Pacífico Norte y Sur oriental y central, y con caña en el Pacífico Norte occidental. En el Pacífico Norte un 55% del pescado es capturado con caña y curricán, que capturan albacora más joven de menor tamaño, mientras que en el Pacífico Sur un 95% de la captura de albacora es tomada con palangre. Las capturas totales anuales de albacora del Pacífico Norte en 1991, y luego aumentaron a unas 122.000 t en 1999 (Figura F-1a). Después de una segunda disminución a principios de los años 2000, las capturas se han recuperado ligeramente, hasta fluctuar entre unas 69,000 y 93,000 t en los últimos años (2006-2013). Durante 2009-2013 la captura anual media fue unas 83,000 t. Las capturas anuales totales de albacora del Pacífico Sur oscilaron entre unas 25.000 y 89.000 t durante los años 1980 y 1990, pero aumentaron posteriormente, oscilando entre unas 82,000 t.

El atún albacora juvenil y adulto es capturado principalmente en la Corriente de Kuroshio, la Zona de Transición del Pacífico Norte, y la Corriente de California en el Pacífico norte y en la Zona de Convergencia Subtropical en el Pacífico sur, pero el desove ocurre en aguas tropicales y subtropicales, y se centra en los paralelos de 20°N y 20°S. Se cree que el albacora del Pacífico Norte desova entro marzo y julio en el Pacífico occidental y central.

Los desplazamientos del albacora del Pacífico Norte son fuertemente afectados por las condiciones oceánicas, y los migrantes suelen estar concentrados en frentes oceánicos en la Zona de Transición del Pacífico Norte. La mayoría de las capturas tienen lugar en aguas de entre aproximadamente 15° y 19.5°C. No quedan claros los detalles de la migración, pero se cree que peces juveniles (de entre 2 y 5 años de edad) se trasladan al Océano Pacífico oriental (OPO) en la primavera y a principios del verano, y vuelven al Pacífico occidental y central, tal vez anualmente, a fines de otoño y en el invierno, donde suelen permanecer cuando maduran. Este patrón podría ser complicado por desplazamientos por sexo de peces adultos grandes (talla furcal (TF) >125 cm), que son predominantemente machos, a zonas al sur de 20°N. La importancia de estos desplazamientos para la dinámica demográfica de esta población es incierta.

Se sabe menos acerca de los desplazamientos de albacora en el Pacífico sur. Los juveniles se desplazan de los trópicos hacia el sur cuando miden unos 35 cm, y luego hacia el este por la Zona de Convergencia Subtropical hasta aproximadamente 130°O. Poco antes de alcanzar la madurez vuelven a aguas tropicales, donde desovan. Marcas fijadas en peces liberados al este de 155°O fueron recuperadas generalmente en lugares al este y norte del punto de liberación, mientras que aquéllas fijadas al oeste de 155°O fueron recuperadas generalmente en lugares al oeste y norte del punto de liberación.

En 2012 y 2014 fueron presentadas las evaluaciones más recientes por edad de las poblaciones de albacora del Pacífico Sur y Norte, respectivamente.

La evaluación del albacora del Pacífico Sur, realizada en 2012 con MULTIFAN-CL por científicos de la Secretaría de la Comunidad del Pacífico, incorporó datos de captura y esfuerzo, datos de frecuencia de talla, datos de marcado, e información sobre parámetros biológicos. Aunque existieron fuentes de incertidumbre estructural, en particular el crecimiento, se concluyó que la población estaba por encima del nivel correspondiente al rendimiento máximo sostenible (RMS). Específicamente, se estimó la abundancia actual relativa a los puntos de referencia basados en biomasa B_{actual}/B_{RMS} y SB_{actual}/SB_{RMS} estaban por encima de 1.0, y por lo tanto la población no se encontraba sobrepescada. Además, se concluyó que el riesgo que ocurriera sobrepesca era bajo (estimación mediana de 0.21 de la mortalidad por pesca actual relativa al punto de referencia de mortalidad por pesca F_{actual}/F_{RMS}). No pareció existir ninguna necesidad de limitar la pesca de albacora en el Pacífico Sur, pero se recomendaron investigaciones adicionales para procurar resolver las incertidumbres en los datos. Científicos de la Secretaría de la Comunidad del Pacífico están realizando una nueva evaluación de la población del

albacora del Pacífico sur, y será presentada al Comité Científico de la Comisión de Pesca del Pacífico Central y Occidental (WCPFC) en agosto de 2015.

Se realizó una evaluación del albacora del Pacífico Norte, usando datos de la pesca de hasta 2012, en una reunión del Grupo de Trabajo sobre Albacora del Comité Científico Internacional sobre los Atunes y Especies Afines en el Océano Pacífico Norte (ISC), celebrada en abril de 2014. Se evaluó la población de albacora del Pacífico norte usando un modelo Stock Synthesis (SS Versión 3.24f), con estructura por edad y sexo, ajustado a series de tiempo de CPUE estandarizada y datos de composición por talla correspondientes a 1966-2012. El modelo de caso base fue ajustado a los índices japoneses de caña (PL) y palangre (LL), que fueron considerados por el grupo de trabajo sobre albacora los índices más representativos de las tendencias de la abundancia juvenil y adulta, respectivamente. Se usaron todos los datos de pesca disponibles del Océano Pacífico al norte de la línea ecuatorial para la evaluación de la población, que supuso una sola población bien mezclada. Se usaron curvas de crecimiento por sexo porque existen indicaciones de crecimiento sexualmente dismórfico, con los machos adultos alcanzando tamaños y edades mayores que las hembras. El valor supuesto del parámetro de inclinación (h) en la relación población-reclutamiento de Beverton-Holt fue 0.9, basado en dos estimaciones externas separadas de este parámetro. El modelo de evaluación fue ajustado los índices de abundancia y datos de composición por talla en un marco estadístico basado en verosimilitud. Se usaron estimaciones de verosimilitud máxima de los parámetros del modelo, los resultados derivados, y sus varianzas para caracterizar la condición de la población. Se realizaron varios análisis de sensibilidad para evaluar cambios en el desempeño del modelo o la amplitud de la incertidumbre que resulta de cambios en los parámetros del modelo, incluyendo algunas de las series de datos usadas en los análisis, parámetros de la curva de crecimiento, mortalidad natural, inclinación población-reclutamiento, año de inicio, estimación de la selectividad, y la ponderación de los datos de composición por talla. Las conclusiones alcanzadas en dicha reunión fueron presentadas a la undécima reunión plenaria del ISC en agosto de 2014. Entre las mismas figuraban las siguientes:

- El modelo de caso base estima que es probable que la biomasa de la población reproductora (SSB) haya fluctuado entre 98.000 y 204.000 t entre 1966 y 2012 (Figura F-2), y que el reclutamiento medio anual fue de unos 43 millones de peces durante este periodo. Ocurren periodos de reclutamiento superior e inferior al promedio al principio del periodo de la evaluación, seguidos por fluctuaciones alrededor del promedio desde los años 1990. Se estimó que la SSB hembra fue aproximadamente 110,101 t en el último año de la evaluación (2012) y se estima que la reducción de la población es 35.8% de la SSB sin pesca.
- 2. La estimación del número de reproductores por recluta (RPR) relativo a la población sin pesca en el último año de la evaluación es 0.41, lo cual corresponde a un nivel de explotación relativamente bajo (o sea, 1-RPR = 0.59). Mientras que la estimación del modelo de caso base de la *F* por edad actual de peces juveniles es más baja que en 2002-2004, y la *F* actual de peces adultos (50% de peces de edad 5, y todos los peces de edad 6 o más) es mayor en promedio que durante 2002 -2004.
- 3. La gráfica de Kobe ilustra la condición de la población relativa a los puntos de referencia basados en RMS y aproximaciones de RMS del modelo de caso base (Figura F-3). Se presenta esta gráfica para fines ilustrativos ya que la CIAT no ha establecido puntos de referencia biológicos para la población de albacora del Pacífico norte. El grupo de trabajo sobre el albacora concluyó que la población probablemente no se encuentra sobrepescada en la actualidad, ya que la evaluación presenta pocas pruebas que la pesca haya reducido la SSB por debajo de puntos de referencia razonables basados en biomasa.
- 4. En el modelo de caso base, la estimación puntual (± DE) del rendimiento máximo sostenible (RMS) es 105,571 ± 14,759 t, y la estimación puntual de la biomasa reproductora necesaria para producir el RMS (SSB_{MSY}, biomasa adulta hembra) es 49,680 ± 6,739 t. Se estima que la razón de $F_{2010-2012}/F_{RMS}$ es 0.52, y la de $F_{2002-2004}/F_{RMS}$ (años de referencia para las medidas de conservación y ordenación de albacora del Pacífico norte adoptadas por la CIAT) es 0.76.

- 5. Se realizaron provecciones estocásticas de la población externas al modelo de caso base para evaluar el impacto de varios niveles de intensidad de pesca sobre la SSB hembra futura para el albacora del Pacífico norte. Se basó el reclutamiento futuro en un remuestreo aleatorio del reclutamiento histórico en tres periodos: (1) reclutamiento bajo (unos 29 millones), 1983-1989, (2) reclutamiento medio (unos 43 millones), 1966-2010, y (3) reclutamiento alto (unos 55 millones), 1966-1975. Estos cálculos incorporan la estructura del modelo de evaluación (por ejemplo, multi-flota, multitemporada, selectividad por tamaño y edad) para producir resultados consistentes con el modelo de evaluación. Las proyecciones comienzan en 2011 y continúan hasta 2041 con dos niveles de mortalidad por pesca ($F_{2010-2012}$ constante, $F_{2002-2004}$ constante) y captura constante promediada para 2010-2012, y tres niveles de reclutamiento (bajo, medio, y alto, arriba definidos). Estas proyecciones indican que el desempeño de la población es mejor con el escenario de $F_{2010,2012}$ constante que con el escenario de F₂₀₀₂₋₂₀₀₄ constante. Suponiendo un reclutamiento histórico medio y pesca en una F actual constante, se espera que la SSB hembra mediana siga relativamente estable entre los percentiles 25 y mediano tanto a corto como a largo plazo. Por contraste, si se supone un escenario de reclutamiento bajo, entonces la SSB hembra mediana disminuve en ambos escenarios de captura. El escenario de reclutamiento alto es más optimista, con la SSB mediana aumentando a por encima de la SSB mediana histórica.
- 6. El grupo de trabajo concluyó que la población del albacora del Pacífico norte no está siendo sobrepescada y probablemente tampoco se encuentra sobrepescada. Se estima que el nivel actual de explotación ($F_{2010-2012}$) es inferior a aquel de $F_{2002-2004}$, que condujo previamente a la implementación de medidas de conservación y ordenación para la población de albacora del Pacífico norte en el OPO (Resolución C-05-02, suplementada por la <u>Resolución C-13-03</u>) y el Pacífico central y occidental (WCPFC CMM 2005-03). El grupo de trabajo señaló que no existen pruebas de que la pesca haya reducido la SSB por debajo de los umbrales asociados a la mayoría de los puntos de referencia basados en biomasa que podrían ser seleccionados y que la dinámica de la población de albacora del Pacífico norte es impulsada principalmente por el reclutamiento, que es afectado tanto por cambios ambientales como por la relación población-reclutamiento. El grupo de trabajo concluyó que la población de albacora del Pacífico norte está en buenas condiciones y que la productividad actual es suficiente para sostener los niveles recientes de explotación, suponiendo un reclutamiento medio histórico tanto a corto como a largo plazo.
- 7. El grupo de trabajo señaló que la falta de datos de tamaño por sexo, la ausencia de estimaciones actualizadas de parámetros importantes del ciclo vital (mortalidadnatural, madurez), y el tratamiento simplificado de la estructura espacial de la dinámica poblacional del albacora del Pacífico norte se fuentes importantes de incertidumbre en la evaluación.

En 2013 la CIAT aprobó la resolución <u>C-13-03</u>, que suplió la resolución <u>C-05-02</u> sobre el albacora del norte. Requiere que todos los CPC informen, antes del 1 de diciembre de 2013, de sus capturas, por arte y esfuerzo dirigido al albacora del norte en el Área de la Convención durante 2007-2012, así como el esfuerzo medio de 2002-2004. El esfuerzo (en días de buque) durante 2007-2012 fue solamente 2% mayor que el nivel de 2002-2004. El número medio de buques que operaron durante 2007-2012 fue un 7% menor que durante 2002-2004.

El grupo de trabajo está desarrollando un plan de trabajo para implementar una evaluación de estrategia de ordenación para la población de albacora del Pacífico norte.

G. SWORDFISH

Swordfish (*Xiphias gladius*) occur throughout the Pacific Ocean between about 50°N and 50°S. They are caught mostly by the longline fisheries of Far East and Western Hemisphere nations. Lesser amounts are taken by gillnet and harpoon fisheries. They are seldom caught by recreational fishermen.

Swordfish grow in length very rapidly, with both males and the faster-growing females reaching lowerjaw-fork lengths of more than a meter during their first year. Swordfish begin reaching maturity at about two years of age, when they are about 150 to 170 cm in length, and by age four all are mature. They probably spawn more than once per season. For fish greater than 170 cm in length, the proportion of females increases with increasing length.

Swordfish tend to inhabit waters further below the surface during the day than at night, and they tend to inhabit frontal zones. Several of these occur in the eastern Pacific Ocean (EPO), including areas off California and Baja California, off Ecuador, Peru, and Chile, and in the equatorial Pacific. Swordfish tolerate temperatures of about 5° to 27°C, but their optimum range is about 18° to 22°C, and larvae have been found only at temperatures exceeding 24°C.

The stock structure of swordfish in the Pacific is fairly well known. A number of specific regions of spawning are known, and analyses of fisheries and genetic data indicate that there is only limited exchange of swordfish between geographical areas, including between the eastern and western, and the northern and southern, Pacific Ocean.

The best available scientific information from genetic and fishery data indicate that the swordfish of the northeastern Pacific Ocean (NEPO) and the southeastern Pacific Ocean (SEPO: south of about 5°S) constitute two distinct stocks. Also, there may be occasional movement of a northwestern Pacific stock of swordfish into the EPO at various times. Though assessments of eastern Pacific stocks did not include parameters for movements among these or other stocks, there may be limited exchange of fish among them.

The results of an assessment of a North Pacific swordfish stock in the area north of 10°N and west of 140°W indicate that the biomass level has been stable and well above 50% of the unexploited levels of stock biomass, indicating that these swordfish are not overexploited at current levels of fishing effort. A more recent analysis for the Pacific Ocean north of the equator, using a sex-specific age-structured assessment method, indicated that, at the current level of fishing effort, there is negligible risk of the spawning biomass decreasing to less than 40% of its unfished level.

The standardized catches per unit of effort of the longline fisheries in the northern region of the EPO and trends in relative abundance obtained from them do not indicate declining abundances. Attempts to fit production models to the data failed to produce estimates of management parameters, such as maximum sustainable yield (MSY), under reasonable assumptions of natural mortality rates, due to lack of contrast in the trends. This lack of contrast suggests that the fisheries in this region have not been of magnitudes sufficient to cause significant responses in the populations. Based on these considerations, and the long period of relatively stable catches (Figure G-1), it appears that swordfish are not overfished in the northern EPO.

The most recent assessment of the stock of swordfish in the southwestern EPO was conducted with Stock Synthesis, using data that were updated as of 22 April 2011. Key results from that assessment were (1) that the swordfish stock in the southeast Pacific Ocean is not experiencing overfishing and is not overfished; (2) that the spawning biomass ratio is about 1.45, indicating that the spawning biomass is about 50 percent above the carrying capacity, and substantially above the level which is expected to produce catch at the MSY level; (3) that the recent catch levels (Figure G-2) were significantly below the estimated MSY (~25,000 t); and (4) that there has been a recent series of high recruitments to the swordfish stock. There is no indication of a significant impact of fishing on this stock. The results of the assessment did suggest an expansion of the fishery onto components of the stock that were previously not, or were only lightly, exploited.

In the northern EPO the annual longline fishing effort, though recently increasing from about 23.7 million hooks in 2007 to about 43.9 million in 2011, remains significantly below the 2001-2003 average of 70.4 million hooks. Since about 2006 the catch of swordfish has remained directly proportional to longline fishing effort. Considering the continuing relatively low fishing effort and the direct response of catch to effort, at the current level of fishing effort there is negligible risk of the spawning biomass decreasing to less than 40% of its unfished level.

In the southern EPO catches have been steadily increasing since about 2005, and recent annual catches are nearing the estimated MSY.

FIGURE G-1. Retained catches of swordfish in the northeastern Pacific Ocean. **FIGURA G-1.** Capturas retenidas de pez espada en el Océano Pacífico noreste.

FIGURE G-2. Retained catches of swordfish in the southeastern Pacific Ocean **FIGURA G-2.** Capturas retenidas de pez espada en el Océano Pacífico sudeste.

G. PEZ ESPADA

El pez espada (*Xiphias gladius*) habita todo el Océano Pacífico entre aproximadamente 50°N y 50°S. Es capturado principalmente por las pesquerías palangreras de países de Lejano Oriente y del hemisferio occidental. Las pesquerías de red de transmalle y arpón capturan cantidades menores. Es rara vez capturado en la pesca recreacional.

El pez espada crece en talla muy rápidamente, y tanto los machos como las hembras, que crecen más rápidamente, alcanzan tallas de mandíbula inferior a furca caudal de más de un metro durante su primer año. Comienza a alcanzar la madurez alrededor de los dos años de edad, cuando mide unos 150 a 170 cm de talla, y se considera que a los cuatro años de edad todos son maduros. Es probable que desove más de una vez por temporada. En el caso de peces de más de 170 cm, la proporción de hembras aumenta con el aumento en la talla.

El pez espada suele permanecer a mayor profundidad de día que de noche, y vivir en zonas frontales, de las que hay varias en el Océano Pacífico oriental (OPO), entre ellas zonas frente a California y Baja California, frente a Ecuador, Perú, y Chile, y en el Pacífico ecuatorial. Tolera temperaturas de entre unos 5° y 27°C, pero su gama óptima es de 18° a 22°C, y se han encontrado larvas únicamente a temperaturas de más de 24°C.

Se conoce bastaste bien la estructura de la población del pez espada en el Pacífico. Se sabe de varias regiones específicas de desove, y los análisis de los datos de pesca y genéticos indican que ocurre un intercambio de peces espada tan sólo limitado entre zonas geográficas, inclusive entre el Océano Pacífico oriental y occidental, y norte y sur.

La mejor información científica disponible, basada en datos genéticos y de la pesca, indica que el pez espada del Océano Pacífico noreste y el Océano Pacífico sudeste (al sur de 5°S) y constituyen dos poblaciones separadas. Además, es posible que una población del Pacífico noroeste se desplace ocasionalmente al OPO en varias ocasiones. Aunque las evaluaciones de las poblaciones del Pacífico oriental no incluyeron parámetros de desplazamientos entre éstas u otras poblaciones, podría ocurrir un intercambio limitado de peces entre las mismas.

Los resultados de una evaluación de una población de pez espada del Pacífico Norte en el área al norte de 10°N y al oeste de 140°O indican que el nivel de biomasa ha sido estable y ha estado por encima del 50% del nivel de la biomasa no explotada, lo cual indica que con los niveles actuales de esfuerzo de pesca, la explotación de estos peces espada no es excesiva. Un análisis más reciente para el Océano Pacífico al norte de la línea ecuatorial, usando un método de evaluación por sexo y edad, indicó que, al nivel actual de esfuerzo de pesca, existe un riesgo insignificante de que la biomasa reproductora disminuya a menos del 40% de su nivel sin pesca.

Las tasas de captura por unidad de esfuerzo estandarizadas de las pesquerías de palangre en la región norte del OPO, y las tendencias en la abundancia relativa derivadas de las mismas, no señalan que la abundancia esté disminuyendo. Intentos de ajuste de modelos de producción a los datos no produjeron estimaciones de parámetros de ordenación, tales como el rendimiento máximo sostenible (RMS), con supuestos razonables de las tasas de mortalidad natural, debido a la falta de contraste en las tendencias. Esta falta de contraste sugiere que las pesquerías en esta región no son de magnitud suficiente como para causar reacciones significativas en las poblaciones. A partir de estas consideraciones, y del período de capturas relativamente estables (Figura G-1), parece que el pez espada no se encuentra sobrepescado en el OPO norte.

Se realizó la evaluación más reciente de la población de pez espada en el OPO sudoeste con *Stock Synthesis*, usando datos actualizados al 22 de abril de 2011. Los resultados clave de esa evaluación son que (1) la población del pez espada en el Océano Pacífico sudeste no está padeciendo sobrepesca y no se encuentra sobrepescada; (2) el cociente de biomasa reproductora es aproximadamente 1,45, lo cual indica que la biomasa reproductora está aproximadamente un 50% por encima de la capacidad de carga, y sustancialmente por encima del nivel que se espera produciría una captura al nivel de RMS; (3) los niveles recientes de captura (Figura G-2) eran significativamente inferiores al RMS estimado (~25,000 t);

y (4) ha ocurrido una serie reciente de reclutamientos altos a la población. No existe ninguna indicación de un impacto significativo de la pesca sobre esta población. Los resultados de la evaluación no sugieren una expansión de la pesquería a componentes de la población que previamente no se explotaban, o se explotaban tan sólo ligeramente.

En el norte del OPO el esfuerzo de pesca palangrero anual, pese a un incremento reciente de unos 23,7 millones de anzuelos en 2007 a unos 43,9 millones en 2011, continúa significativamente inferior al promedio de 2001-2003 de 70,4 millones de anzuelos. Desde aproximadamente 2006 la captura de pez espada ha sido directamente proporcional al esfuerzo de pesca palangrero. Considerando el esfuerzo de pesca relativamente bajo y la reacción directa de la captura al esfuerzo, con el nivel actual de esfuerzo de pesca existe un riesgo insignificante que la biomasa reproductora disminuya a menos del 40% de su nivel sin pesca.

En el sur del OPO las capturas vienen aumentando constantemente desde aproximadamente 2005, y las capturas anuales recientes están cerca del RMS estimado.

H. BLUE MARLIN

The best information currently available indicates that blue marlin constitutes a single world-wide species and that there is a single stock of blue marlin in the Pacific Ocean. For this reason, statistics on catches (Figure H-1) are compiled, and analyses of stock status are made, for the entire Pacific Ocean.

Blue marlin are taken mostly in longline fisheries for tunas and billfishes between about 30°N and 30°S. Lesser amounts are taken by recreational fisheries and by various other commercial fisheries.

Small numbers of blue marlin have been tagged with conventional dart tags, mostly by recreational fishermen. A few of these fish have been recaptured long distances from the locations of release. Blue marlin have been tagged with electronic pop-off satellite tags (PSATs) which collected data over periods of about 30-180 days, mostly in the Gulf of Mexico and the Atlantic Ocean, in studies of post-release survival and movement. More recently such studies have been undertaken in the Pacific Ocean.

Blue marlin usually inhabit regions where the sea-surface temperatures (SSTs) are greater than 24°C, and they spend about 90% of their time at depths at which the temperatures are within 1° to 2° of the SSTs.

The most recent assessment of the status and trends of the species was conducted in 2013, and included data through 2011. It indicated that blue marlin in the Pacific Ocean were fully exploited, *i.e.* that the population was being harvested at levels producing catches near the top of the yield curve.

FIGURE H-1. Retained catches of blue marlin in Pacific Ocean by region. **FIGURA H-1.** Capturas retenidas de marlín azul en el Océano Pacífico, por región.

H. MARLÍN AZUL

La mejor información ahora disponible indica que el marlín azul constituye una sola especie a nivel mundial, y que existe una sola población de la especie en el Océano Pacífico. Por este motivo, se compilan estadísticas de capturas (Figura H-1), y se realizan análisis de la condición de la población, para el Océano Pacífico entero.

El marlín azul es capturado principalmente por las pesquerías de palangre de atunes y peces picudos entre aproximadamente 30°N y 30°S. Las pesquerías recreacionales y varias otras pesquerías comerciales capturan cantidades menores.

Pequeñas cantidades de marlines azules han sido marcadas con marcas convencionales, principalmente por pescadores recreacionales. Algunos de estos peces han sido recapturados a grandes distancias del punto de liberación. Marlines azules han sido marcados con marcas electrónicas satelitales desprendibles que toman datos durante períodos de unos 30 a 180 días, principalmente en el Golfo de México y el Océano Atlántico, en estudios de la supervivencia y desplazamientos después de la liberación. Más recientemente se han emprendido estudios de este tipo en el Océano Pacífico.

El marlín azul vive generalmente en regiones con temperaturas superficiales del mar (TSM) de más de 24°C, y pasa un 90% del tiempo a profundidades donde la temperatura es de 1° a 2° menos que la TSM.

La evaluación más reciente de la condición y las tendencias fue realizada en 2013 e incluyó datos hasta 2011. En 2003 se realizó un segundo análisis, usando los mismos datos pero un modelo de evaluación alternativo. Indicó que el marlín azul en el Océano Pacífico está plenamente explotado, es decir, se está explotando la población en niveles que producen capturas cerca del ápice de la curva de rendimiento.

I. STRIPED MARLIN

Striped marlin (*Kajikia audax*) occur throughout the Pacific Ocean between about 45°N and 45°S. The assessment on which this report is based is for the stock of striped marlin in the eastern Pacific Ocean (EPO) region lying north of 10°S, east of about 145°W north of the equator, and east of about 165°W south of the equator. Although not included in the assessment model, there may be limited exchange of fish between this stock and stocks in adjacent regions.

Significant effort has been devoted to understanding the stock structure of striped marlin in the Pacific Ocean, which is now moderately well known. It has been clear for some years that there are a number of stocks. Information on the movements of striped marlin is limited. Fish tagged with conventional dart tags and released off the tip of the Baja California peninsula have generally been recaptured near where they were tagged, but some have been recaptured around the Revillagigedo Islands, a few around Hawaii, and one near Norfolk Island. Tagging studies of striped marlin in the Pacific conducted using pop-off satellite tags indicated that there is essentially no mixing of tagged fish among tagging areas and that striped marlin maintain site fidelity. Recent results of analyses of fisheries and genetic data indicate that the northern EPO is home to a single stock, though there may be a seasonal low-level presence of juveniles from a more westerly Hawaii/Japan stock.

Historically, the majority of the catch in the EPO was taken by longline fisheries; however, removals by recreational fisheries have become more important in recent years (Figure I-1). Longline fisheries expanded into the EPO beginning in the mid-1950s, and they extended throughout the region by the late 1960s. Except for a few years in the late 1960s to early 1970s in the northern EPO, these fisheries did not target billfish.

Fishing by smaller longline vessels targeting tuna and other species off Central America, for which catch data are not available, appears to have increased recently. The shifting patterns of areas fished and targeting practices increase the difficulties encountered when using fisheries data in analyses of stock status and trends. These difficulties are exacerbated when analyzing species which are not principal targets of the fishery, and further exacerbated when the total catch of the species by all fisheries is not known.

The assessment of this stock was conducted using Stock Synthesis, with data updated as of 30 October 2010. Key results of the assessment were that (1) the stock is not overfished; (2) overfishing is not occurring; (3) the spawning stock biomass has been increasing and is above that expected to support MSY catch; and (4) catches in recent years have remained at about half the MSY catch level. If fishing effort and harvests had continued at levels near 2010 levels, it was expected that the biomass of the stock would continue to increase over the near term.

The fishing effort by large longline vessels in the northern EPO has increased by about 20%, and the catch of striped marlin by longlines by about 70%, since 2010. This differential may be due to increasing striped marlin biomass or such as spatial/temporal shifts in fisheries resulting in increased availability of striped marlin to the longline fishery.

The most recent report of catch by the recreational fishery was for 1990-2007 and included preliminary data for 2008. It is estimated that this fishery makes the majority of the catch of striped marlin in the northern EPO. Based on recent analyses of other billfish species, it appears that catches of billfish, including striped marlin, by components of the smaller-vessel longline fishery operating off Central America have not been reported. Therefore the total catch of striped marlin in the EPO, and thus the total impact of fishing on the stock since about 2008-2009, is not known.

Since catches of striped marlin and fishing effort have increased in the large-vessel longline fishery, and because there is uncertainty in the estimated total catch of striped marlin in the EPO since at least 2008, the trends in spawning and total biomass of striped marlin in the EPO are unknown. Efforts have and are being made to obtain reliable catch data from all fisheries. Until the data are available and updated, and a review of the status of striped marlin in the EPO is completed, it is recommended that a precautionary approach be adopted, and that fishing effort directed at striped marlin in the EPO not be increased.

FIGURE I-1. Landings of striped marlin from the northern EPO by longline and recreational fisheries, 1954-2012. Due to unreported catches by recreational fisheries, estimates for 2009-2013 are minimums. **FIGURA I-1**. Descargas de marlín rayado del OPO norte por las pesquerías palangreras y recreativas, 1954-2012. Debido a capturas no reportadas por pesquerías recreativas, las estimaciones de 2009-2013 son mínimos.

I. MARLÍN RAYADO

El marlín rayado (*Kajikia audax*) está distribuido por todo el Océano Pacífico entre aproximadamente 45°N y 45°S. El presente informe se basa en una evaluación de la población de marlín rayado en la región del Océano Pacífico oriental (OPO) al norte de 10°S, al este de aproximadamente 145°O al norte de la línea ecuatorial y al este de aproximadamente 165°O al sur de la misma. Aunque no se incluye en el modelo de evaluación, es posible que ocurra un intercambio limitado de peces entre esta población y las poblaciones en regiones adyacentes.

Se ha dedicado un esfuerzo importante a entender la estructura de la población de marlín rayado en el Océano Pacífico, que ahora es moderadamente bien conocida. Queda claro desde hace varios años que existe varias poblaciones. La información sobre los desplazamientos del marlín rayado es limitada. Peces marcados con marcas de dardo convencionales y liberados frente a la punta de la península de Baja California han sido generalmente recapturados cerca de donde fueron marcados, pero algunos han sido recapturados cerca de las islas Revillagigedo, unos pocos cerca de Hawai, y uno cerca de la isla Norfolk. Estudios de marcado de marlín rayado en el Pacífico con marcas satelitales desprendibles indicaron que esencialmente no ocurre mezcla de peces marcados entre zonas de marcado, y que el marlín rayado mantiene fidelidad a su sitio. Los resultados recientes de análisis de datos de pesca y genéticos indican que en el OPO norte vive una sola población, aunque es posible que haya una presencia estacional a bajo nivel de juveniles de una población más al oeste de Hawai/Japón.

Históricamente, la mayor parte de la captura en el OPO fue capturada por las pesquerías de palangre, pero las capturas de la pesca recreacional se han vuelto más importantes en años recientes (Figura I-1). Las pesquerías de palangre comenzaron a ingresar al OPO a mediados de los años 1950, y para fines de los años 1960 se extendían por toda la región. Con la excepción de unos años a fines de los 1960 y principios de los 1970 en el OPO norte, estas pesquerías no se dirigieron a los peces picudos. La pesca por buques palangreros pequeños que dirigen su esfuerzo a los atunes y otras especies en aguas frente a Centroamérica, de los que no se cuenta con datos de captura, parece haber aumentado recientemente. Los patrones variables de zonas de pesca y objetivos de la pesca incrementan las dificultades encontradas al usar datos de pesca in los análisis de la condición y tendencias de la población. Estas dificultades son exacerbadas al analizar especies que no son el blanco principal de la pesquería, and exacerbadas aún más si se ignora la captura total de todas las pesquerías.

Se realizó la evaluación de esta población con el modelo *Stock Synthesis*, con datos actualizados al 30 de octubre de 2010. Los resultados clave de la evaluación son que (1) la población no se encuentra sobrepescada; (2) no está ocurriendo sobrepesca; (3) la biomasa de la población reproductora viene en aumento y se encuentra por encima del nivel que se espera produciría la captura en RMS; y (4) la captura en los últimos años ha permanecido alrededor de la mitad de la captura en el nivel de RMS. Si el esfuerzo de pesca y las capturas hubieran seguido en niveles cercanos a aquéllos de 2010, se esperaba que la biomasa de la población siguiera aumentando en el futuro cercano.

El esfuerzo de pesca de los buques palangreros grandes al norte del OPO ha aumentado un 20%, y la captura palangrera un 70%, desde 2010. Esta diferencia podría deberse a un incremento de la biomasa de marlín rayado, a cambios espaciales o temporales en las pesquerías, conduciendo a una mayor disponibilidad del marlín rayado a la pesquería palangrera.

El informe más reciente de la captura de la pesquería recreacional correspondió a 1990-2007 e incluyó datos preliminares de 2008. Se estima que esta pesquería realizó la mayoría de la captura de marlín rayado en el norte del OPO. A partir de análisis recientes de otras especies de peces picudos, parece que las capturas de peces picudos, incluido el marlín rayado, por componentes de la pesquería palangrera de buques pequeños que operan frente a Centroamérica no han sido notificadas. Por lo tanto se ignora la captura total de marlín rayado en el OPO, y por ende el impacto total de la pesca sobre la población de este aproximadamente 2008-2009.

Ya que las capturas de marlín rayado y el esfuerzo de pesca han aumentado en la pesquería palangrera de buques grandes, y en vista de la incertidumbre en la estimación de la captura total de marlín rayado en el OPO desde al menos 2008, se ignoran las tendencias de las biomasas reproductora y total. Continúan los esfuerzos para obtener datos de capturas fiables de todas las pesquerías. Hasta que los datos estén disponibles y actualizados, y se lleve a cabo una revisión de la condición del marlín rayado en el OPO, se recomienda adoptar un enfoque precautorio y no permitir un incremento del esfuerzo de pesca dirigido al marlín rayado en el OPO.

J. SAILFISH

The stock structure of sailfish (*Istiophorus platypterus*) in the Pacific Ocean is well known. They are found in highest abundance in waters relatively near the continents and the Indo-Pacific land masses bordering the Pacific, and only infrequently in the high seas separating them. This separation by its very nature suggests that the regions of abundance in the EPO and in the western Pacific should be managed separately, and in this case, the separation has over time resulted in genetically distinct populations in the east and the west.

The centers of sailfish distribution along the coast of the Americas shift in response to seasonal changes in surface and mixed-layer water temperature. Sailfish are found most often in waters warmer than about 28°C, and are present in tropical waters nearer the equator in all months of the year. Spawning takes place off the coast of Mexico during the summer and fall, and off Costa Rica during winter, and perhaps yearround in areas with suitable conditions. The sex ratio is highly skewed towards males during spawning. The known shifts in sex ratios among spawning areas, and the spatial-temporal distributions of gonad indices and size-frequency distributions, which show smaller fish offshore, suggest that there may be maturity-dependent patterns in the distribution of the species in the EPO. Sailfish can reach an age of about 11 years in the EPO.

The principal fisheries that capture sailfish in the EPO include the large-vessel, tuna-targeting longline fisheries of Chinese Taipei, Costa Rica, Japan, and Korea; the smaller-vessel longline fisheries targeting tuna and other species, particularly those operating in waters off Central America; and the artisanal and recreational fisheries of Central and South America. Sailfish are also taken occasionally in the purse-seine fisheries targeting tropical tunas.

The first assessment of sailfish in the EPO was conducted in 2013. Initial analyses indicated that either this stock had uncharacteristically low productivity and high standing biomass, or – much more probably – that there was a large amount of catch missing in the data compiled for the assessment. We were unable to identify a means to satisfactorily estimate this catch in order to obtain reliable estimates of stock status and trends using Stock Synthesis, which is generally the preferred model for assessments. As a result, the assessment was conducted using a surplus production model, which provided results consistent with those obtained with Stock Synthesis and simplified the illustration of the issues in the assessment.

Key results:

- 1. It is not possible to determine the status of the sailfish stock in the EPO with respect to specific management parameters, such as maximum sustained yield (MSY), because the parameter estimates used in making these determinations in this case cannot be derived from the model results
- 2. Sailfish abundance trended downward over 1994-2009, since when it has been relatively constant or slightly increasing (Figure J-1).
- 3. Recent reported annual catches are on the order of 500 t (Figure J-2), significantly less than the 1993-2007 average of about 2,100 t.
- 4. Model results suggest that there are significant levels of unreported catch, and the actual catch in earlier years was probably higher than those reported for 1993-2007. Assuming that this level of harvest has existed for many years, it is expected that the stock condition will not deteriorate if catch is not increased above current levels.
- 5. A precautionary approach that does not increase fishing effort directed at sailfish, and that closely monitors catch until sufficient data are available to conduct another assessment, is recommended.

- 6. A reliable assessment of the sailfish resources in the EPO cannot be obtained without reliable estimates of catch. It is therefore recommended that:
 - a. historical data on catches of sailfish be obtained wherever possible
 - b. fisheries currently reporting sailfish catches commingled with other species be required to report catches by species.
 - c. existing data from small-scale fisheries, such as local longline fleets and artisanal fisheries, be compiled and that, where necessary, catch monitoring programs to identify catches by species be implemented.

FIGURE J-1. Observed and predicted indices of relative abundance of sailfish in the EPO from Japanese longline (JPN LL) and Mexican recreational (MEX RG) fisheries. The 2010 observation in the JPN LL series was not included in the analyses.

FIGURA J-1. Indices observados y predichos de abundancia relativa del pez vela en el OPO, basados en las pesquerías palangrera japonesa (JPN LL) y recreacional mexicana (MEX RG). No se incluyó en los análisis la observación de 2010 en la serie JPN LL.

FIGURE J-2. Total reported catches of sailfish in the EPO, 1990-2013. The actual catches were probably greater.

FIGURA J-2. Capturas totales reportadas de pez vela en el OPO, 1990-2013. (Las capturas reales son probablemente mayores).

J. PEZ VELA

La estructura de la población del pez vela (*Istiophorus platypterus*) en el Océano Pacífico es bien conocida. La abundancia máxima del pez vela ocurre en aguas relativamente cercanas a los continentes y las masas terrestres indopacíficas que lindan con el Océano Pacífico, y tan sólo infrecuentemente en las aguas de alta mar que los separan. Esta separación por su propia naturaleza sugiere que las regiones de abundancia en el OPO y en el Pacífico occidental deberían ser gestionadas por separado, y en este caso la separación ha resultado a lo largo del tiempo en poblaciones genéticamente distintas en el este y el oeste.

Los centros de la distribución del pez vela a lo largo del litoral del continente americano cambian en reacción a cambios estacionales de la temperatura del agua en la superficie y en la capa de mezcla. Se encuentra la especie con mayor frecuencia en aguas de más de unos 28°C, y están presentes en aguas tropicales más cercanas a la línea ecuatorial en todos los meses del año. El desove tiene lugar frente al litoral mexicano durante el verano y otoño, y frente a Costa Rica durante el invierno, y tal vez durante todo el año en áreas con condiciones adecuadas. La proporción de sexos es altamente asimétrica hacia los machos durante el desove. Los cambios conocidos en la proporción de sexos entre las áreas de desove, y las distribuciones espaciotemporales de los índices de gónadas y las distribuciones de frecuencia de talla, que señalan peces más pequeños en alta mar, sugieren que podrían existir patrones dependientes de la madurez en la distribución de la especie en el OPO. El pez vela puede alcanzar una edad de unos 11 años en el OPO.

Las pesquerías principales que capturan pez vela en el OPO incluyen las pesquerías palangreras atuneras de buques grandes de Taipéi Chino, Costa Rica, Japón, y Corea; las pesquerías palangreras de buques más pequeños dirigidas hacia los atunes y otras especies, particularmente aquellas que operan en las aguas costeras de Centroamérica, y las pesquerías artesanales y recreacionales de América Central y del Sur. Son también a veces capturados en las pesquerías atuneras de cerco.

La primera evaluación del pez vela en el OPO fue realizada en el año en curso (2013). Los análisis iniciales indicaron que esta población cuenta con la productividad anormalmente baja y una alta biomasa constante, o – mucho más probable – que falta una gran cantidad de la captura en los datos compilados para la evaluación. No fue posible identificar una forma de estimar satisfactoriamente esta captura y así obtener una estimación confiable de la condición y tendencias de la población usando *Stock Synthesis*, el modelo generalmente preferido para las evaluaciones. Por consiguiente, se realizó una evaluación con un modelo de producción excesiva, el cual produjo resultados consistentes con aquellos obtenidos con *Stock Synthesis* y simplificó la ilustración de los problemas en la evaluación.

Resultados clave:

- 1. No es posible determinar la condición de la población del pez vela en el OPO con respecto a parámetros de ordenación específicos, tal como el rendimiento máximo sostenible (RMS), porque las estimaciones de los parámetros usados para hacer estas determinaciones no pueden ser derivadas de los resultados del modelo.
- 2. La abundancia del pez vela mostró una tendencia descendente durante 1994-2009; desde entonces ha sido relativamente constante o ligeramente ascendente (Figura J-1).
- 3. Las capturas anuales recientes reportadas están alrededor de 500 t (Figura J-2), significativamente menos que el promedio de 1993-2007 de 2,100 t.
- 4. Los resultados del modelo sugieren que existen cantidades importantes de captura no reportada, y la captura en los años tempranos fue probablemente mayor que aquellas reportadas para 1993-2007. Suponiendo que este nivel de capturas existe desde hace muchos años, no es probable que la condición de la población deteriore si no se incrementa la captura más allá del nivel actual.
- 5. Se recomienda un enfoque precautorio que no aumente el esfuerzo de pesca dirigido el pez vela, y que de un seguimiento estrecho a las capturas hasta que se disponga de suficientes datos para realizar una nueva evaluación.

- 6. No es posible obtener una evaluación fiable del recurso de pez vela en el OPO sin estimaciones fiables de la captura. Se recomienda por lo tanto que:
 - a. se obtengan en todo caso posible datos históricos de captura de pez vela.
 - b. en el caso de las pesquerías que actualmente reportan sus capturas de pez vela mezcladas con otras especies, notifiquen sus capturas por especie.
 - c. Se compilen datos existentes de pesquerías a pequeña escala, tales como flotas palangreras locales y pesquerías artesanales, y que, en caso necesario, se implementen programas de seguimiento de capturas para identificar las capturas por especie.

K. UPDATED STOCK STATUS INDICATORS FOR SILKY SHARKS IN THE EASTERN PACIFIC OCEAN (1994-2014)

The results of two recent genetics studies support assessing and managing the populations of silky sharks (*Carcharhinus falciformis*) in the western and eastern Pacific Ocean separately. One of the studies suggests a further division of silky sharks in the eastern Pacific Ocean (EPO) into two stocks, approximately along the Equator.

An attempt by the IATTC staff to assess the status of the silky shark in the EPO using conventional stock assessment models has been severely handicapped by major uncertainties in the fishery data, mainly regarding catch levels in the early years, which may be why the model is unable to explain the population declines observed in the early period of the assessment (1994-1998) (Document <u>SAC-05 INF-F</u>). Although this stock assessment attempt has produced a substantial amount of new information about the silky shark in the EPO (*e.g.*, absolute and relative magnitude of the catch by different fisheries and their selectivities), the absolute scale of population trends and the derived management quantities are compromised. Therefore, an alternative scientific basis for management advice is urgently needed. Since a conventional stock assessment was not possible, the staff proposed a suite of possible stock status (or stability) indicators (SSIs) which could be considered for managing the northern and southern stocks of silky sharks in the EPO (Document <u>SAC-05-11a</u>). The silky shark indices based on standardized catch-per-unit-effort (CPUE) in purse-seine sets on floating objects (CPUE-OBJ) were updated with data for 2014 (Document SAC-06-08b).

Spatial distribution maps provide a simple quantitative overview of changes through time in both species occurrence and abundance. For silky sharks, they are available for average bycatch-per-set (BPS) from purse-seine sets on floating objects in the EPO, for small (< 90 cm), medium (90-150 cm), and large (> 150 cm) size classes separately, and all silky sharks (see Figures 1a-d of Document SAC-06-08b). For all size classes north of the equator, there is an apparent reduction in bycatch rates (transition from predominantly red- and yellow-colored 1° areas to predominantly green- and blue-colored 1° areas). This reduction seems particularly strong in the most recent period (2011-2013), and apparently begins much earlier (around the mid-2000s) for large sharks (Figure K-1). Silky shark catch rates were noticeably higher (red and yellow-colored 1° areas) in 2014. However, this may be the result of increased availability, rather than abundance, of silky sharks due to a transition to a period dominated by positive (warmer than average) SST anomalies, which were felt in 2014 and have become stronger towards 2015.

For the northern stock, the CPUE-OBJ indicator shows an initial sharp decline over a wide spatial range (1994-1998), followed by a period of stability (1996-2006), and possibly increase (2006-2010). However, there are indications that any such increase has been reversed in recent years (2010-2013) (Figure K-2).

For the southern stock, there is a major decline in bycatch rates (transition from predominantly red- and yellow-colored 1° areas to predominantly green- and blue-colored 1° areas) (see Figures 1a-d of Document SAC-06-08b). This decline is particularly marked for medium and large sharks around the early- to mid-2000s. Small individuals are relatively scarce in the southern area. It is uncertain where the recruitment to the southern stock originates. The CPUE-OBJ indicator for the southern stock shows a sharp decline during 1994-2004, followed by a period of stability at much lower levels (Figure K-2).

The CPUE-OBJ trends are corroborated by a different type of standardized indicator (presence/absence) produced from other set types (dolphin and unassociated) (see Figure 4 of Document SAC-06-08b).

No stock status target and limit reference points have been developed for silky sharks based on these indicators. In addition, no harvest control rules have been developed and tested. At this point, the indicators cannot be used directly for determining the status of the stock or for establishing catch limits: they should be used in combination with other information for those purposes. In terms of management, it is critical that precautionary measures be implemented immediately to allow silky sharks populations to rebuild in the EPO.

With respect to future research on SSIs for silk sharks, priority should be given to management strategy evaluation (MSE) work to simulation test and identify the reference points and harvest control rules that will achieve the conservation goals for silky sharks in the EPO.

FIGURE K-1. Average bycatch per set in floating-object sets, in numbers, of large (> 150 cm total length) silky sharks, 1994-2014. Blue: 0 sharks per set, green: ≤ 1 shark per set; yellow: 1-2 sharks per

set; red: > 2 sharks per set.

FIGURA K-1. Captura incidental media por lance en lances sobre objetos flotantes, en número, de tiburones sedosos grandes (> 150 cm de talla total), 1994-2014. Azul: 0 tiburones por lance, verde: ≤ 1 tiburones por lance; amarillo: 1-2 tiburones por lance; rojo: > 2 tiburones por lance.

FIGURE K-2. Standardized catch-per-unit-effort (CPUE, in number of sharks per set) of all silky sharks in floating-object sets for northern (top) and southern (bottom) EPO stocks. Approximate 95% pointwise confidence intervals were computed by resampling from the posterior distribution of estimated GAM coefficients, assuming known smoothing and scale parameters.

FIGURA K-2. Captura por unidad de esfuerzo (CPUE, en número de tiburones por lance) estandarizada de todos los tiburones en lances sobre objetos flotantes de las poblaciones del OPO del norte (arriba) y sur (abajo). Se computaron los intervalos puntuales de confianza aproximados de 95% mediante un remuestreo de la distribución posterior de los coeficientes estimados del MAG, suponiendo parámetros de escala y suavización conocidos.

K. INDICADORES ACTUALIZADOS DE LA CONDICION DE LA POBLACIÓN DEL TIBURÓN SEDOSO EN EL OCÉANO PACÍFICO ORIENTAL, 1994-2014

Los resultados de dos estudios genéticos recientes apoyan la evaluación y ordenación por separado de las poblaciones del tiburón sedoso (*Carcharhinus falciformis*) en el Océano Pacífico occidental y oriental. Uno de los estudios sugiere una división adicional de los tiburones sedosos en el Océano Pacífico oriental (OPO) en dos poblaciones, aproximadamente a lo largo de la línea ecuatorial.

Un intento de evaluar la condición del tiburón sedoso en el OPO usando modelos convencionales de evaluación de poblaciones se ha visto gravemente perjudicado por incertidumbres importantes en los datos de la pesca, principalmente con respecto a los niveles de captura en los años tempranos, lo cual podría explicar por qué el modelo es incapaz de explicar las disminuciones de la población observadas en el primeros años de la evaluación (1994-1998) (Documento <u>SAC-05 INF-F</u>). Aunque este intento de evaluar la población ha producido una cantidad sustancial de información nueva acerca del tiburón sedoso en el OPO (por ejemplo, magnitud absoluta y relativa de la captura por distintas pesquerías y su selectividad), la escala absoluta de las tendencias de la población y las cantidades de ordenación derivadas están comprometidas. Por lo tanto, es urgentemente necesaria una base científica alternativa para el asesoramiento de ordenación. El personal de la CIAT produjo un conjunto de posibles indicadores de estatus (o estabilidad) de población (SSI) que podrían ser considerados para la ordenación de las poblaciones del norte y del sur del tiburón sedoso en el OPO (Documento <u>SAC-05-11a</u>). Se actualizaron con datos de 2014 los índices del tiburón sedoso basados en captura por unidad de esfuerzo (CPUE) estandarizada en lances cerqueros sobre objetos flotantes (CPUE-OBJ) (Documento <u>SAC-06-08b</u>).

Los mapas de distribución espacial brindan una sencilla vista general cuantitativa de los cambios a lo largo del tiempo de la frecuencia y abundancia de una especie. En el caso del tiburón sedoso, se dispone de mapas de la captura incidental por lance (BPS) media en lances cerqueros sobre objetos flotantes en el OPO, para categorías de talla pequeño (< 90 cm), mediano (90-150 cm), y grande (> 150 cm) por separado, y todos los tiburones sedosos (ver Figuras 1a-d del documento SAC-06-08b). En todas las categorías de talla al norte de la línea ecuatorial, ocurre una disminución aparente de las tasas de captura incidental (transición de áreas de 1° predominantemente rojas y amarillas a áreas de 1° predominantemente verdes y azules). Esta disminución parece particularmente fuerte en el periodo más reciente (2011-2013), y aparentemente comienza mucho antes (a mediados de los años 2000) para los tiburones grandes (Figura K-1). Las tasas de captura de tiburones sedoses fueron marcadamente mayores (áreas de 1° rojas y amarillas) en 2014, pero esto podría ser resultado de una mayor disponibilidad, y no de una mayor abundancia, de tiburones sedosos debida a una transición a un periodo dominado por anomalías positivas (más cálidas de lo normal) de las TSM, que se sintieron en 2014 y se han fortalecido para 2015.

En el caso de la población del norte, el indicador CPUE-OBJ señala una disminución inicial brusca en una zona amplia (1994-1998), seguida por un periodo de estabilidad (1996-2006), y un posible incremento (2006-2010) (Figura K-2). No obstante, existen indicaciones de que este incremento se ha detenido en los últimos años (2010-2013).

En el caso de la población del sur, ocurrió una disminución importante de las tasas de captura (transición de áreas de 1° predominantemente rojas y amarillas a áreas de 1° predominantemente verdes y azules) (ver Figuras 1a-d del documento SAC-06-08b). Esta disminución es particularmente marcada para los tiburones medianos y grandes a principios y mediados de los años 2000. Los individuos pequeños son relativamente escasos en el área sur (Román-Verdesoto, 2014; <u>Román-Verdesoto and Orozco-Zoller, 2005</u>; Watson *et al.*, 2009). No se sabe el origen espacial del reclutamiento de la población del sur. El indicador CPUE-OBJ para la población del sur muestra una disminución brusca durante 1994-2004, seguida por un periodo de estabilidad en niveles mucho más bajos (<u>Figura K-2</u>).

Las tendencias de la CPUE-OBJ son corroboradas por un tipo de indicador estandarizado diferente (presencia/ausencia) producido de otros tipos de lance (delfín y no asociado) (ver Figura 4 del documento SAC-06-08b).

No se han desarrollado puntos de referencia límite y objetivo para el tiburón sedoso a partir de estos indicadores. Tampoco se han desarrollado ni evaluado reglas de control de explotación. En ese momento, los indicadores no pueden ser usados directamente para determinar la condición de la población o para establecer límites de captura: deberían ser usados en combinación con otra información para esos fines. En términos de ordenación, es crítico que se implementen de inmediato medidas precautorias para permitir la recuperación de las poblaciones del tiburón sedoso en el OPO.

Con respecto a investigaciones futuras de los SSI para el tiburón sedoso, se debería priorizar el trabajo de evaluación de estrategias de ordenación para probar por simulación e identificar los puntos de referencia y reglas de control de explotación que lograrán las metas de conservación para el tiburón sedoso en el OPO.

L. ECOSYSTEM CONSIDERATIONS

1.	Introduction	141
2.	Impact of catches	
3.	Other Fauna	147
4.	Trophic interactions	150
5.	Physical environment	
6.	Aggregate indicators	155
7.	Ecological risk assessment	
8.	Ecosystem modeling	
9.	Actions by the IATTC and the AIDCP addressing ecosystem considerations	
10.	Future developments	164

1. INTRODUCTION

The 1995 FAO Code of Conduct for Responsible Fisheries stipulates that States and users of living aquatic resources should conserve aquatic ecosystems and it provides that management of fisheries should ensure the conservation not only of target species, but also of species belonging to the same ecosystem or associated with or dependent upon the target species¹. In 2001, the Reykjavik Declaration on Responsible Fisheries in the Marine Ecosystem elaborated these principles with a commitment to incorporate an ecosystem approach into fisheries management.

Consistent with these instruments, one of the functions of the IATTC under the 2003 Antigua Convention is to "adopt, as necessary, conservation and management measures and recommendations for species belonging to the same ecosystem and that are affected by fishing for, or dependent on or associated with, the fish stocks covered by this Convention, with a view to maintaining or restoring populations of such species above levels at which their reproduction may become seriously threatened".

Consequently, the IATTC has taken account of ecosystem issues in many of its decisions, and this report on the offshore pelagic ecosystem of the tropical and subtropical Pacific Ocean, which is the habitat of tunas and billfishes, has been available since 2003 to assist in making its management decisions. This section provides a coherent view, summarizing what is known about the direct impact of the fisheries upon various species and species groups of the ecosystem, and reviews what is known about the environment and about other species that are not directly impacted by the fisheries but may be indirectly impacted by means of predator-prey interactions in the food web.

This review does not suggest objectives for the incorporation of ecosystem considerations into the management of tuna or billfish fisheries, nor any new management measures. Rather, its prime purpose is to offer the Commission the opportunity to ensure that ecosystem considerations are part of its agenda.

It is important to remember that the view that we have of the ecosystem is based on the recent past; we have almost no information about the ecosystem before exploitation began. Also, the environment is subject to change on a variety of time scales, including the well-known El Niño fluctuations and more recently recognized longer-term changes, such as the Pacific Decadal Oscillation and other climate changes.

In addition to reporting the catches of the principal species of tunas and billfishes, the staff has reported the bycatches of non-target species that are either retained or discarded. In this section, data on these bycatches are presented in the context of the effect of the fishery on the ecosystem. Unfortunately, while relatively good information is available for the tunas and billfishes, information for the entire

¹ The Code also provides that management measures should ensure that <u>biodiversity of aquatic habitats and</u> <u>ecosystems</u> is conserved and endangered species are protected and that States should assess the <u>impacts of</u> <u>environmental factors</u> on target stocks and species belonging to the same ecosystem or associated with or dependent upon the target stocks, and assess the <u>relationship among the populations in the ecosystem</u>.

fishery is not available. The information is comprehensive for large (carrying capacity greater than 363 metric tons) purse seiners that carry observers under the Agreement on the International Dolphin Conservation Program (AIDCP), and information on retained catches is also reported for other purse seiners, pole-and-line vessels, and much of the longline fleet. Some information is available on sharks that are retained by parts of the longline fleet. Information on retained and discarded non-target species is reported for large purse-seiners, and is available for very few trips of smaller ones. There is little information available on the bycatches and discards for other fishing vessels.

2. IMPACT OF CATCHES

2.1. Single-species assessments

Current information on the effects of the tuna fisheries on the stocks of individual species in the eastern Pacific Ocean (EPO) and the detailed assessments are found in this document. An ecosystem perspective requires a focus on how the fishery may have altered various components of the ecosystem. Sections 2.2 and 2.3 of this report refer to information on the current biomass of each stock considered, compared to estimates of what it might have been in the absence of a fishery. Furthermore, section 2.2 includes a summary of some recent research conducted on drifting fish aggregating device- (FAD) associated aggregations, including methods which may lead to solutions on how to reduce the fishing mortality on undesirable-sizes of bigeye and yellowfin tunas. There are no direct measurements of the stock size before the fishery began, and, in any case, the stocks would have varied from year to year. In addition, the unexploited stock size may be influenced by predator and prey abundance, which is not included in the single-species analyses.

2.2. Tunas

Information on the effects of the fisheries on bigeye, yellowfin, and skipjack tunas is found in Documents SAC-06-05, 06, and 07, respectively, and Pacific bluefin tuna is addressed in the <u>report of the ISC</u> Working Group. Albacore tuna will be addressed at this meeting. The ISC Northern Albacore Working Group completed its <u>stock assessment</u> in 2014.

IATTC staff recently published two studies that focused on the potential reduction of fishing mortality by purse seine on undesirable sizes of bigeye and yellowfin tunas and other species of concern, while still capturing associated schools of skipjack tuna. The first of these studies evaluated the simultaneous behaviors of skipjack, bigeye, and yellowfin tunas within large multi-species aggregations associated with FADs. The researchers documented spatial and temporal differences in the schooling behavior of the three species of tunas, including depth distributions, and found that the differences did not appear sufficient such that modifications in purse seine fishing practices could effectively avoid the capture of small bigeye and yellowfin, while optimizing the capture of skipjack. The second study assessed a fishing raptain's ability to predict species composition, sizes, and quantities of tunas associated with drifting FADs, before encirclement with a purse-seine. The captain's predictions were significantly related to the actual total catch and catch by species, but not to size categories by species. Predictions of species composition were most accurate when estimates of bigeye and yellowfin tuna were combined, indicating the captain was overestimating one species while underestimating the other.

2.3. Billfishes

Information on the effects of the tuna fisheries on swordfish, blue marlin, striped marlin, and sailfish is presented in Sections G-J.

2.3.1. Black marlin and shortbill spearfish

No recent stock assessments have been made for these species, although there are some data published jointly by scientists of the National Research Institute of Far Seas Fisheries (NRIFSF) of Japan and the IATTC in the IATTC Bulletin series that show trends in catches, effort, and catches per unit of effort (CPUEs).
2.4. Summary

Preliminary estimates of the catches (including purse-seine discards), in metric tons, of tunas, bonitos, and billfishes during 2014 in the EPO are found in Tables A-2a and A-2b of Document <u>SAC-06-03</u>.

2.5. Marine mammals

Marine mammals, especially spotted dolphins (*Stenella attenuata*), spinner dolphins (*S. longirostris*), and common dolphins (*Delphinus delphis*), are frequently found associated with yellowfin tuna in the size range of about 10 to 40 kg in the EPO. Purse-seine fishermen have found that their catches of yellowfin in the EPO can be maximized by setting their nets around herds of dolphins and the associated schools of tunas, and then releasing the dolphins while retaining the tunas. The estimated incidental mortality of dolphins in this operation was high during the early years of the fishery, and the populations of dolphins were reduced from their unexploited levels during the 1960s and 1970s. After the late 1980s the incidental mortality decreased precipitously, and there is now evidence that the populations are recovering. Preliminary mortality estimates of dolphins in the fishery in 2014 are shown in Table 1. The IATTC staff is responsible for the assessment of dolphin populations associated with the purse-seine fishery for tunas, as a basis for the dolphin mortality limits established by the Agreement on the International Dolphin Conservation Program (AIDCP).

Studies of the association of tunas with dolphins have been an important component of the staff's longterm approach to understanding key interactions in the ecosystem. The extent to which yellowfin tuna and dolphins compete for resources, whether either or both of them benefits from the interaction, why the tuna are most often found with spotted dolphins versus other dolphins, and why the species associate most strongly in the eastern tropical Pacific, remain critical pieces of information, given the large biomasses of both groups and their high rates of prey consumption. Three studies were conducted to address these hypotheses: a simultaneous tracking study of spotted dolphins and yellowfin tuna, a trophic interactions study comparing their prey and daily foraging patterns, and a spatial study of oceanographic features correlated with the tuna dolphin association. These studies demonstrated that the association is neither permanent nor obligatory, and that the benefits of the association are not based on feeding advantages. The studies support the hypothesis that one or both species reduce the risk of predation by forming large,

mixed-species groups. The association is most prevalent where the habitat of the tuna is compressed to the warm, shallow, surface waters of the mixed layer by the oxygen minimum zone, a thick layer of oxygen-poor waters underlying the mixed layer. The association has been observed in areas with similar oceanographic conditions in other oceans, but it is most prevalent and consistent in the eastern tropical Pacific, where the oxygen minimum zone is the most hypoxic and extensive in the world.

During August-December 2006, scientists of the U.S. National Marine Fisheries Service (NMFS) conducted the latest in a series of research cruises under the *Stenella* Abundance Research (STAR) project. The primary objective of the multi-year

TABLE 1. Mortality of dolphins and other marine mammals
caused by the fishery in the EPO during 2014

Spacing and stack	Incidenta	al mortality
Species and stock	Number	Metric tons
Offshore spotted dolphin		
Northeastern	181	11.8
Western-southern	168	11.0
Spinner dolphin		
Eastern	356	15.8
Whitebelly	183	11.0
Common dolphin		
Northern	49	3.5
Central	13	0.9
Southern	9	0.6
Other mammals*	16	1.1
Tota	l 975	55.7

*"Other mammals" includes the following species and stocks, whose observed mortalities were as follows: striped dolphin (*Stenella coeruleoalba*) 2 (0.1 t), rough-toothed dolphin (*Steno bredanensis*) 1 (0.1 t); bottlenose dolphin (*Tursiops truncatus*) 3 (0.3 t); unidentified dolphins 10 (0.6 t).

study is to investigate trends in population size of the dolphins that have been taken as incidental catch by the purse-seine fishery in the EPO. Data on cetacean distribution, herd size, and herd composition were collected from the large-scale line-transect surveys to estimate dolphin abundance. Oceanographic data are collected to characterize habitat and its variation over time. Data on distribution and abundance of prey fishes and squids, seabirds, and sea turtles further characterize the ecosystem in which these dolphins live. The 2006 survey covered the same areas and used the same methods as past surveys. Data from the 2006 survey produced new abundance estimates, and previous data were re-analyzed to produce revised estimates for 10 dolphin species and/or stocks in the EPO between 1986 and 2006. The 2006 estimates for northeastern offshore spotted dolphins were somewhat greater, and for eastern spinner dolphins substantially greater, than the estimates for 1998-2000. Estimates of population growth for these two depleted stocks and the depleted coastal spotted dolphin stock may indicate they are recovering, but the western-southern offshore spotted dolphin stock may be declining. The 1998-2006 abundance estimates for coastal spotted, whitebelly spinner, and rough-toothed (Steno bredanensis) dolphins showed an increasing trend, while those for the striped (S. coeruleoalba), short-beaked common (Delphinus delphis), bottlenose (Tursiops truncatus), and Risso's (Grampus griseus) dolphins were generally similar to previous estimates obtained with the same methods. Because there have been no NMFS surveys since 2006, new modelling was conducted over the past year on trends in dolphin relative abundance using purse-seine observer data. That research concluded that indices of relative abundance from purse-seine observer data for species such as dolphins in the EPO that are directly associated with the fishing process are unlikely to be reliable indicators. Not only are such indices susceptible to the usual problems of changes in fishing behavior, but there is not a clear distinction between indexing the dolphin-tuna association and indexing dolphin abundance. This research, as well as alternative means of monitoring dolphin stocks, are discussed in Documents SAC-05-11d and MOP-30-INF-A.

Scientists of the NMFS have made estimates of the abundances of several other species of marine mammals based on data from research cruises made between 1986 and 2000 in the EPO. Of the species not significantly affected by the tuna fishery, short-finned pilot whales (*Globicephala macrorhynchus*) and three stocks of common dolphins showed increasing trends in abundance during that 15-year period. The apparent increased abundance of these mammals may have caused a decrease in the carrying capacity of the EPO for other predators that overlap in diet, including spotted dolphins. Bryde's whales (*Balaenoptera edeni*) also increased in estimated abundance, but there is very little diet overlap between these baleen whales and the upper-level predators impacted by the fisheries. The abundance estimates for sperm whales (*Physeter macrocephalus*) tended to decrease during 1986-2000.

Some marine mammals are adversely affected by reduced food availability during El Niño events, especially in coastal ecosystems. Examples that have been documented include dolphins, pinnipeds, and Bryde's whales off Peru, and pinnipeds around the Galapagos Islands. Large whales are able to move in response to changes in prey productivity and distribution.

2.6. Sea turtles

Sea turtles are caught on longlines when they take the bait on hooks, are snagged accidentally by hooks, or are entangled in the lines. Estimates of incidental mortality of turtles due to longline and gillnet fishing are few. At the <u>4th meeting of the IATTC Working Group on Bycatch</u> in January 2004, it was reported that 166 leatherback (*Dermochelys coriacea*) and 6,000 other turtle species, mostly olive Ridley (*Lepidochelys olivacea*), were incidentally caught by Japan's longline fishery in the EPO during 2000, and that, of these, 25 and 3,000, respectively, were dead. At the <u>6th meeting of the Working Group</u> in February 2007, it was reported that the Spanish longline fleet targeting swordfish in the EPO averaged 65 interactions and 8 mortalities per million hooks during 1990-2005. The mortality rates due to longlining in the EPO are likely to be similar for other fleets targeting bigeye tuna, and possibly greater for those that set their lines at shallower depths for albacore and swordfish. About 23 million of the 200 million hooks set each year in the EPO by distant-water longline vessels target swordfish with shallow longlines.

In addition, there is a sizeable fleet of artisanal longline vessels that fish for tunas, billfishes, sharks, and dorado (*Coryphaena* spp.) in the EPO. Since 2005, staff members of the IATTC and some other organizations, together with the governments of several coastal Latin American nations, have been engaged in a program to reduce the hooking rates and mortalities of sea turtles in these fisheries. Additional information on this program can be found in Section 9.2.

Sea turtles are occasionally caught in purse seines in the EPO tuna fishery. Most interactions occur when the turtles associate with floating objects, and are captured when the object is encircled. In other cases, nets set around unassociated schools of tunas or schools associated with dolphins may capture sea turtles that happen to be at those locations. The olive Ridley turtle is, by far, the species of sea turtle taken most often by purse seiners. It is followed by green sea turtles (Chelonia mydas), and, very occasionally, by loggerhead (Caretta *caretta*) and

TABLE 2. Numbers of turtle mortalities caused by large	ge
purse-seine vessels in the EPO during 2014	

		Tatal	
OBJ	NOA	DEL	Total
3	-	-	3
-	-	-	-
1	-	-	1
-	-	1	1
-	-	-	-
1	-	-	1
5	0	1	6
	OBJ 3 - 1 - 1 5	Set type OBJ NOA 3 - - - 1 - - - 1 - - - 1 - - - 1 - 5 0	Set type OBJ NOA DEL 3 - - - - - 1 - - - - 1 - - 1 - - - 1 - - 1 - - 1 - - 1 - - 1 - - 5 0 1

hawksbill (*Eretmochelys imbricata*) turtles. From 1990, when IATTC observers began recording this information, through 2014, only three mortalities of leatherback turtles have been recorded. Some of the turtles are unidentified because they were too far from the vessel or it was too dark for the observer to identify them. Sea turtles, at times, become entangled in the webbing under fish-aggregating devices (FADs) and drown. In some cases, they are entangled by the fishing gear and may be injured or killed. Preliminary estimates of the mortalities (in numbers) of turtles caused by large purse-seine vessels during 2014, by set type (on floating objects (OBJ), unassociated schools (NOA), and dolphins (DEL)), are shown in Table 2.

The mortalities of sea turtles due to purse seining for tunas are probably less than those due to other types of human activity, which include exploitation of eggs and adults, beach development, pollution, entanglement in and ingestion of marine debris, and impacts of other fisheries.

The populations of olive Ridley turtles are designated as vulnerable, those of green and loggerhead turtles are designated as endangered, and those of hawksbill and leatherback turtles as critically endangered, by the International Union for the Conservation of Nature (IUCN).

2.7. Sharks and other large fishes

Sharks and other large fishes are taken by both purse-seine and longline vessels. Silky sharks (*Carcharhinus falciformis*) are the most commonly-caught species of shark in the purse-seine fishery, followed by oceanic whitetip sharks (*C. longimanus*). The longline fisheries also take silky sharks. An analysis of longline and purse-seine fishing is necessary to estimate the impact of fishing on the stock(s). Estimated indices of relative abundance of silky sharks, based on data for purse-seine sets on floating objects, showed decreasing trends for large (>150 cm total length) and medium-sized sharks (90-150 cm total length) during 1994-2004, and remained relatively constant for large sharks and increased slightly for medium sharks between 2005 and 2009. The trends in unstandardized bycatch per set were similar for the other two types of purse-seine sets (standardized trends are not yet available). The unstandardized average bycatches per set of oceanic whitetip sharks also showed decreasing trends for all three set types during the same period. It is not known whether these decreasing trends were due to incidental capture by the fisheries, changes in the environment (perhaps associated with the 1997-1998 El Niño event), or other factors. The decreasing trends do not appear to be due to changes in the density of floating objects.

Apart from blue and silky sharks, there are no stock assessments available for shark species in the EPO,

and hence the impacts of the bycatches on the stocks are unknown. A stock assessment for silky sharks covering the 1993-2010 period was attempted using the Stock Synthesis model. Unfortunately, the model was unable to fit the main index of abundance adequately, and therefore the results were not reliable since relative trends and absolute scale are compromised in the assessment. Results are presented in Document <u>SAC-05 INF-F</u>. The majority of the catches of silky sharks in the EPO is estimated to be taken by longliners, some of them targeting sharks. As an alternative to conventional stock assessment models, a suite of possible stock status (or stability) indicators (SSIs), which could be considered for managing the northern and southern stocks of silky sharks in the EPO, are provided in Document <u>SAC-05-11a</u>.

A <u>new stock assessment</u> of blue sharks (*Prionace glauca*) in the North Pacific Ocean was conducted by scientists of the ISC Shark Working Group in 2014. The <u>report</u> states, "Results of the reference case model showed that the stock biomass was near a time-series high in 1971, fell to its lowest level between the late 1980s and early 1990s, and subsequently increased gradually and has leveled off at a biomass similar to that at the beginning of the time-series."

A project was conducted during May 2007-June 2008 by scientists of the IATTC and the NMFS to collect and archive tissue samples of sharks, rays, and other large fishes for genetics analysis. Data from the archived samples are being used in studies of large-scale stock structure of these taxa in the EPO, information that is vital for stock assessments and is generally lacking throughout the Pacific Ocean. The preliminary results of an analysis for silky sharks showed that for management purposes, silky sharks in the EPO should be divided into two stocks, one north and one south of the equator. In addition, the results of a mitochondrial-DNA study from 2013 show a slight genetic divergence between silky sharks in the western and eastern Pacific, which supports assessing and managing these two populations separately.

Preliminary estimates of the catches (including purse-seine discards), in metric tons, of sharks and other large fishes in the EPO during 2014, other than those mentioned above, by large purse-seine vessels are shown in <u>Table 3</u>. Complete data are not available for small purse-seine, longline, and other types of vessels.

The catch rates of species other than tunas in the purse-seine fishery are different for each type of set. With a few exceptions, the bycatch rates are greatest in sets on floating objects, followed by unassociated sets and, at a much lower level, dolphin sets. Dolphin bycatch rates are greatest for dolphin sets, followed by unassociated sets and, at a much lower level, floating-object sets. In general, the bycatch rates of manta rays (Mobulidae), and stingrays (Dasyatidae) are greatest in unassociated sets, followed by dolphin sets, and lowest in floating-object sets, although 2014 is an exception. Because of these differences, it is

		Total		
	OBJ	NOA	DEL	Total
Silky shark (Carcharhinus falciformis)	423	68	45	536
Oceanic whitetip shark (C. longimanus)	2	0	0	2
Hammerhead sharks (Sphyrna spp.)	79	3	1	84
Thresher sharks (Alopias spp.)	2	5	4	11
Other sharks	35	2	5	42
Manta rays (Mobulidae)	19	17	10	47
Pelagic sting rays (Dasyatidae)	<1	<1	<1	<1
Dorado (Coryphaena spp.)	2099	37	<1	2137
Wahoo (Acanthocybium solandri)	783	7	<1	791
Rainbow runner (Elagatis bipinnulata) and yellowtail	27	4	<1	31
(Seriola lalandi)				
Other large fishes	5	749	1	755

TABLE 3. Catches, in tons, of sharks and other large fishes by large purse-seine vessels with observers aboard in the EPO, 2014

necessary to follow the changes in frequency of the different types of sets to interpret the changes in bycatch data. The estimated numbers of purse-seine sets of each type in the EPO during 1999-2014 are shown in Table A-7 of Document <u>SAC-06-03</u>.

The reduction of bycatches is a goal of ecosystem-based fisheries management. A recently-published study analyzed the ratio of bycatch to target catch across a range of set size-classes (in tons). The study demonstrated that the ratios of total bycatch to tuna catch and silky shark bycatch to tuna catch decreased as set size increased. The greatest bycatch ratios occurred in sets catching ≤ 20 t.

In October 2006, the NMFS hosted a workshop on bycatch reduction in the EPO purse-seine fishery. The attendees supported a proposal for research on methods to reduce bycatches of sharks by attracting them away from floating objects prior to setting the purse seine. They also supported a suite of field experiments on bycatch reduction devices and techniques; these would include FAD modifications and manipulations, assessing behavioral and physiological indicators of stress, and removing living animals from the seine and deck (*e.g.* sorting grids, bubble gates, and vacuum pumps). A third idea was to use IATTC data to determine if spatial, temporal, and environmental factors can be used to predict bycatches in FAD sets and to determine to what extent time/area closures would be effective in reducing bycatches.

Scientists at the University of Washington have conducted an analysis of the temporal frequency of areas of high bycatches of silky sharks in purse-seine sets on floating objects, which will be useful for determining the effectiveness of area-time closures as a means of reducing shark bycatch. Results show that both model predictions and observed data tend to indicate that these bycatches occurred most frequently north of 4°N and west of 100-105°W. However, due to large tuna catches south of 5°N, the greatest reduction in bycatch from sets on floating objects with the least loss of tuna catch would be achieved north of approximately 6°N.

Dorado (*Coryphaena hippurus*) is one of the most important species caught in the artisanal fisheries of the coastal nations in the EPO. Dorado are also caught incidentally in the purse-seine tuna fishery in the EPO. Under the Antigua Convention and its ecosystem approach to fisheries, it is therefore appropriate that the IATTC staff study the species, with a view to determining the impact of fishing, and to recommend appropriate conservation measures of this important resource if required. In this context, some Members of the IATTC with coastlines in the region have requested that collaborative research on dorado be carried out with the IATTC staff so that solid scientific information is available for this purpose.

The IATTC held its <u>first technical meeting on dorado</u> in 2014. That meeting had three objectives: 1) to promote synergy among the Members of the IATTC for a regional investigation of dorado in the EPO; 2) to review the current state of knowledge of dorado and identify available data sets across fisheries/regions in the EPO); and 3) to plan a future collaborative research plan. This collaborative effort thus far includes: analysis of available catch statistics and trade records, improvement of field data collection programs, investigation of seasonal trends, and identification of fishery units. In addition, available fishery data on dorado from IATTC Members and other nations are being analyzed to develop stock status indicators (SSIs) which could potentially provide a basis for advice for managing the species in the EPO (see <u>SAC-05-11b</u>). The work will be continued in 2015.

3. OTHER FAUNA

3.1. Seabirds

There are approximately 100 species of seabirds in the tropical EPO. Some seabirds associate with epipelagic predators near the sea surface, such as fishes (especially tunas) and marine mammals. Subsurface predators often drive prey to the surface to trap them against the air-water interface, where the prey becomes available to the birds. Most species of seabirds take prey within a half meter of the sea surface or in the air (flyingfishes (Exocoetidae) and squids (primarily Ommastrephidae)). In addition to driving the prey to the surface, subsurface predators make prey available to the birds by injuring or

disorienting the prey, and by leaving scraps after feeding on large prey. Feeding opportunities for some seabird species are dependent on the presence of tuna schools feeding near the surface.

Seabirds are affected by the variability of the ocean environment. During the 1982-1983 El Niño event, seabird populations throughout the tropical and northeastern Pacific Ocean experienced breeding failures and mass mortalities, or migrated elsewhere in search of food. Some species, however, are apparently not affected by El Niño episodes. In general, seabirds that forage in upwelling areas of the tropical EPO and Peru Current suffer reproductive failures and mortalities due to food shortage during El Niño events, while seabirds that forage in areas less affected by El Niño episodes may be relatively unaffected.

According to the *Report of the Scientific Research Program under the U.S. International Dolphin Conservation Program Act*, prepared by the NMFS in September 2002, there were no significant temporal trends in abundance estimates over the 1986-2000 period for any species of seabird, except for a downward trend for the Tahiti petrel (*Pseudobulweria rostrata*), in the tropical EPO. Population status and trends are currently under review for waved (*Phoebastria irrorata*), black-footed (*P. nigripes*), and Laysan (*P. immutabilis*) albatrosses.

Some seabirds, especially albatrosses and petrels, are susceptible to being caught on baited hooks in pelagic longline fisheries. Satellite tracking and at-sea observation data have identified the importance of the IATTC area for waved, black-footed, Laysan, and black-browed (*Thalassarche melanophrys*) albatrosses, plus several other species that breed in New Zealand, yet forage off the coast of South America. There is particular concern for the waved albatross because it is endemic to the EPO and nests only in the Galapagos Islands. Observer data from artisanal vessels show no interactions with waved albatross during these vessels' fishing operations. Data from the US pelagic longline fishery in the northeastern Pacific Ocean indicate that bycatches of black-footed and Laysan albatrosses occur. Few comparable data for the longline fisheries in the central and southeastern Pacific Ocean are available. At the 6th meeting of the IATTC Working Group on Bycatch in February 2007, it was reported that the Spanish surface longline fleet targeting swordfish in the EPO averaged 40 seabird interactions per million hooks, virtually all resulting in mortality, during 1990-2005. In 2007, the IATTC Stock Assessment Working Group identified areas of vulnerability to industrial longline fishing for several species of albatross and proposed mitigation measures. See also section 9.3.

3.2. Forage

The forage taxa occupying the middle trophic levels in the EPO are obviously important components of the ecosystem, providing a link between primary producers at the base of the food web and the upper-trophic-level predators, such as tunas and billfishes. Indirect effects on those predators caused by environmental variability are transmitted to the upper trophic levels through the forage taxa. Little is known, however, about fluctuations in abundance of the large variety of prey species in the EPO. Scientists from the NMFS have recorded data on the distributions and abundances of common prey groups, including lantern fishes (Myctophidae), flyingfishes, and some squids, in the tropical EPO during 1986-1990 and 1998-2000. Mean abundance estimates for all fish taxa and, to a lesser extent, for squids increased from 1986 through 1990. The estimates were low again in 1998, and then increased through 2000. Their interpretation of this pattern was that El Niño events in 1986-1987 and 1997-1998 had negative effects on these prey populations. More data on these taxa were collected during the NMFS STAR 2003 and 2006 cruises.

Cephalopods, especially squids, play a central role in many, if not most, marine pelagic food webs by linking the massive biomasses of micronekton, particularly myctophid fishes, to many oceanic predators. Given the high trophic flux passing through the squid community, a concerted research effort on squids is thought to be important for understanding their role as key prey and predators. In 2013, a special volume of the journal Deep Sea Research II, Topical Studies in Oceanography (Vol. 5) was focused on The Role of Squids in Pelagic Ecosystems. The volume covers six main research areas: squids as prey, squids as predators, the role of squids in marine ecosystems, physiology, climate change, and the Humboldt or

jumbo squid (Dosidicus gigas) as a recent example of ecological plasticity in a cephalopod species.

Humboldt squid populations in the EPO have increased in size and geographic range in recent years. For example, the Humboldt squid expanded its range to the north into waters off central California, USA from 2002 to mid-2010. In addition, in 2002 observers on tuna purse-seine vessels reported increased incidental catches of Humboldt squid taken with tunas, primarily skipjack, off Peru. Juvenile stages of these squid are common prey for yellowfin and bigeye tunas, and other predatory fishes, and Humboldt squid are also voracious predators of small fishes and cephalopods throughout their range. Large Humboldt squid have been observed attacking skipjack and yellowfin inside a purse seine. Not only have these squid impacted the ecosystems that they have expanded into, but they are also thought to have the capacity to affect the trophic structure in pelagic regions. Changes in the abundance and geographic range of Humboldt squid could affect the foraging behavior of the tunas and other predators, perhaps changing their vulnerability to capture.

Some small fishes, many of which are forage for the larger predators, are incidentally caught by purseseine vessels in the EPO. Frigate and bullet tunas (*Auxis* spp.), for example, are a common prey of many of the animals that occupy the upper trophic levels in the tropical EPO. In the tropical EPO ecosystem model (Section 8), frigate and bullet tunas comprise 10% or more of the diet of eight predator species or groups. Small quantities of frigate and bullet tunas are captured by purse-seine vessels on the high seas and by artisanal fisheries in some coastal regions of Central and South America. The vast majority of frigate and bullet tunas captured by tuna purse-seine vessels is discarded at sea. Preliminary estimates of the catches (including purse-seine discards), in metric tons, of small fishes by large purse-seine vessels with observers aboard in the EPO during 2014 are shown in Table 4.

TABLE 4. Catches of small fishes, in tons, by large purse-seine vessels with observers aboard in the EPO, 2014

		Set type			
	OBJ	NOA	DEL	Total	
Triggerfishes (Balistidae) and filefishes (Monacanthidae)	326	<1	<1	326	
Other small fishes	22	<1	<1	22	
Frigate and bullet tunas (Auxis spp.)	297	30	1	328	

3.3. Larval fishes and plankton

Larval fishes have been collected by manta (surface) net tows in the EPO for many years by personnel of the NMFS Southwest Fisheries Science Center. Of the 314 taxonomic categories identified, 17 were found to be most likely to show the effects of environmental change. The occurrence, abundance, and distribution of these key taxa revealed no consistent temporal trends. Recent research has shown a longitudinal gradient in community structure of the ichthyoplankton assemblages in the eastern Pacific warm pool, with abundance, species richness, and species diversity high in the east (where the thermocline is shallow and primary productivity is high) and low but variable in the west (where the thermocline is deep and primary productivity is low).

The phytoplankton and zooplankton populations in the tropical EPO are variable. For example, chlorophyll concentrations on the sea surface (an indicator of phytoplankton blooms) and the abundance of copepods were markedly reduced during the El Niño event of 1982-1983, especially west of 120°W. Similarly, surface concentrations of chlorophyll decreased during the 1986-1987 El Niño episode and increased during the 1988 La Niña event due to changes in nutrient availability.

The species and size composition of zooplankton is often more variable than the zooplankton biomass. When the water temperatures increase, warm-water species often replace cold-water species at particular locations. The relative abundance of small copepods off northern Chile, for example, increased during the 1997-1998 El Nino event, while the zooplankton biomass did not change.

Copepods often comprise the dominant component of secondary production in marine ecosystems. An analysis of the trophic structure among the community of pelagic copepods in the EPO was conducted by a student of the Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, La Paz, Mexico, using samples collected by scientists of the NMFS STAR project. The stable nitrogen isotope values of omnivorous copepods were used in a separate analysis of the trophic position of yellowfin tuna, by treating the copepods as a proxy for the isotopic variability at the base of the food web (see next section).

4. TROPHIC INTERACTIONS

Tunas and billfishes are wide-ranging, generalist predators with high energy requirements, and, as such, are key components of pelagic ecosystems. The ecological relationships among large pelagic predators, and between them and animals at lower trophic levels, are not well understood. Given the need to evaluate the implications of fishing activities on the underlying ecosystems, it is essential to acquire accurate information on the trophic links and biomass flows through the food web in open-ocean ecosystems, and a basic understanding of the natural variability forced by the environment.

Knowledge of the trophic ecology of predatory fishes has historically been derived from stomach contents analysis, and more recently from chemical indicators. Large pelagic predators are considered efficient biological samplers of micronekton organisms, which are poorly sampled by nets and trawls. Diet studies have revealed many of the key trophic connections in the pelagic EPO, and have formed the basis for representing food-web interactions in an ecosystem model (<u>IATTC Bulletin, Vol. 22, No. 3</u>) to explore indirect ecosystem effects of fishing. For example, studies in the 1990s and 2000s revealed that the most common prey items of yellowfin tuna caught by purse seines offshore were frigate and bullet tunas, red crabs (*Pleuroncodes planipes*), Humboldt squid, a mesopelagic fish (*Vinciguerria lucetia*), and several epipelagic fishes. Bigeye tuna feed at greater depths than do yellowfin and skipjack, and consume primarily cephalopods and mesopelagic fishes. The most important prey of skipjack overall were reported to be euphausiid crustaceans during the late 1950s, whereas the small mesopelagic fish *V. lucetia* appeared dominant in the diet during the early 1990s. Tunas that feed inshore often utilize different prey than those caught offshore.

Historical studies of tuna diets in the EPO were based on qualitative data from few samples, with little or no indication of relative prey importance. Contemporary studies, however, have used diet indices, typically volume or weight importance, numeric importance, and frequency of occurrence of prey items to quantify diet composition, often in conjunction with chemical indicators, such as stable-isotope and fatty-acid analyses. Recently, information about tuna bioenergetics, diets, niche separation, daily ration, chemical indicators of diet, and inter-annual variability and potential effects of climate change on the trophic ecology of tunas in all oceans was summarized by species in a book chapter entitled "Bioenergetics, trophic ecology, and niche separation of tunas." The chapter will be published in 2015 in a book entitled "Tunas and their Fisheries: Safeguarding Sustainability in the 21st Century." Each species of tuna appears to have a generalized feeding strategy, in the sense that their diets were characterized by high prey diversity and overall low abundance of individual prey types.

New statistical methods for analyzing complex, multivariate stomach-contents data have been developed through an international collaboration, Climate Impacts on Oceanic Top Predators-Integrated Marine Biogeochemistry and Ecosystem Research (CLIOTOP-IMBER), <u>Working Group 3</u> (Trophic pathways in open-ocean ecosystems), to assess the trophodynamics of marine top predators. This methodology shows promise for analyzing broad-scale spatial, temporal, environmental, and biological relationships in a classification-tree modeling framework that predicts the prey compositions of predators. Two recent studies of yellowfin tuna and silky sharks in the EPO, discussed below, used the approach to infer changes in prey populations over space (yellowfin and silky sharks) and time (yellowfin) based on stomach contents data.

Stomach samples of ubiquitous generalist predators, such as the tunas, can be used to infer changes in prey populations by identifying changes in foraging habits over time. Prey populations that support upperlevel predators vary over time (see <u>3.2 Forage</u>), and some prey impart considerable predation pressure on animals that occupy the lower trophic levels (including the early life stages of large fishes). A comprehensive analysis of predation by yellowfin tuna on a decadal scale in the EPO was completed in 2013. Samples from 6,810 fish were taken from 433 purse-seine sets during two 2-year periods separated by a decade. Simultaneously, widespread reductions in biological production, changes in phytoplankton community composition, and a vertical expansion and intensification of the oxygen minimum zone appeared to alter the food webs in tropical and subtropical oceans (see 5. Physical environment). A modified classification tree approach, mentioned above, was used to analyze spatial, temporal, environmental, and biological covariates explaining the predation patterns of the yellowfin during 1992-1994 and 2003-2005. For the majority of the yellowfin stock in the EPO, a major diet shift was apparent during the decade. Fishes were more abundant (by weight) during the early 1990s, while cephalopods and crustaceans predominated a decade later. As a group, epipelagic fishes declined from 82% to 31% of the diet, while mesopelagic species increased from 9% to 29% over the decade. Spatial partial dependence plots revealed range expansions by Vinciguerria lucetia, Humboldt squid (Dosidicus gigas), and Pleuroncodes planipes, range contractions by Auxis spp. and a boxfish (Lactoria diaphana), and a near disappearance of driftfish (*Cubiceps* spp.) from the diet. Evidence from predation rates suggests that biomasses of V. lucetia and D. gigas have increased in the first half of the 2000s and that the distribution of *D. gigas* apparently expanded offshore as well as poleward (see 3.2 Forage).

The food-web representations that form the basis of ecosystem models are usually highly generalized, and do not account for variability in space and time. To gain insight into the role of the silky shark in the ecosystem, in 2014 an analysis of spatial variability was carried out, based on the stomach contents of 289 silky sharks captured as bycatch in sets on floating objects, primarily drifting fish-aggregating devices (FADs), by the tuna purse-seine fishery of the EPO. The dataset is novel because biological data for openocean carcharhinid sharks are difficult to collect, and it includes data for silky sharks caught over a broad region of the tropical EPO. Results from classification tree and quantile regression methodologies suggest that the silky shark is an opportunistic predator that forages on a variety of prey. Broad-scale spatial and shark size covariates explained the feeding habits of the silky sharks. A strong spatial shift in diet was revealed, with different foraging patterns in the eastern (inshore) and western (offshore) regions. Greater proportions of FAD-associated prey than non-FAD-associated prey were observed in the diet throughout the EPO, but especially in the offshore region. Yellowfin tuna and silky sharks shared some of the same prey resources during these same two 2-year periods separated by a decade, e.g., Humboldt squid, flyingfishes, jacks and pompanos, and Tetraodontiformes. As was the case for vellowfin tuna, spatial and temporal factors likely both have a role in determining silky shark predation habits, but the samples were inadequate to test whether the diet of the sharks had changed over time. The analysis provided a comprehensive description of silky shark predation in the EPO, while demonstrating the need for increased sampling coverage over space and time, and presents important information on the dynamic component of trophic interactions of silky sharks. This information can be used to improve future ecosystem models.

Trophic-ecology studies have become focused on understanding entire food webs, initially by describing the inter-specific connections among the predator communities, comprising tunas, sharks, billfishes, dorado, wahoo, rainbow runner, and others. In general, considerable resource partitioning is evident among the components of these communities, and researchers seek to understand the spatial scale of the observable trophic patterns, and also the role of climate variability in influencing the patterns. In 2012, an analysis of predation by a suite of apex predators (including sharks, billfishes, tunas, and other fishes and mammals) on yellowfin and skipjack tunas in the EPO was published. Predation rates on yellowfin and skipjack were high for sharks and billfishes, and those animals consumed a wide size range of tunas, including subadults capable of making a notable contribution to the reproductive output of tuna populations. The tropical tunas in the EPO act as mesopredators more than apex predators.

While diet studies have yielded many insights, stable isotope analysis is a useful complement to stomach contents for delineating the complex structure of marine food webs. Stomach contents represent a sample of only the most-recent several hours of feeding at the time of day an animal is captured, and under the conditions required for its capture. Stable carbon and nitrogen isotopes, however, integrate information on all components of the entire diet into the animal's tissues, providing a recent history of trophic interactions and information on the structure and dynamics of ecological communities. More insight is provided by compound-specific isotope analysis of amino acids (AA-CSIA). In samples of consumer tissues, "source" amino acids (e.g. phenylalanine, glycine) retained the isotopic values at the base of the food web, and "trophic" amino acids (e.g. glutamic acid) became enriched in ¹⁵N by about 7.6% relative to the baseline. In AA-CSIA, predator tissues alone are adequate for trophic-position estimates, and separate analysis of the isotopic composition of organisms at the base of the food web is not necessary. An analysis of the spatial distribution of stable isotope values of yellowfin tuna in relation to those of copepods showed that the trophic position of yellowfin tuna increased from inshore to offshore in the EPO, a characteristic of the food web never detected in diet data. This is likely a result of differences in food-chain length due to phytoplankton species composition (species with small cell size) in offshore oligotrophic waters versus larger diatom species in the more productive eastern waters.

CSIA was recently utilized in the EPO and other regions through a research grant from the Comparative Analysis of Marine Ecosystem Organization (CAMEO) program, which is implemented as a partnership between the NMFS and the U.S. National Science Foundation, Division of Ocean Sciences. The research collaboration among the IATTC, the University of Hawaii, Scripps Institution of Oceanography, and the Oceanic Institute, Hawaii, seeks to develop amino acid compound-specific isotopic analysis as a tool that can provide an unbiased evaluation of trophic position for a wide variety of marine organisms and to use this information to validate output from trophic mass-balance ecosystem models. To accomplish this goal, the research combines laboratory experiments and field collections in contrasting ecosystems that have important fisheries. The field component was undertaken in varying biogeochemical environments, including the equatorial EPO, to examine trophic position of a range of individual species, from macrozooplankton to large fishes, and to compare trophic position estimates derived from AA-CSIA for these species with ecosystem model output. The project began in 2010 and was extended into 2014.

Most of the samples for the EPO portion of the study were collected and stored frozen by personnel of the NMFS, Protected Resources Division, Southwest Fisheries Science Center (SWFSC), aboard the research vessels *David Starr Jordan* and *McArthur II* during the *Stenella* Abundance Research Project (STAR) in 2006. The samples for the study nearly span the food web in the EPO, and all were taken along an east-to-southwest transect that appeared to span a productivity gradient. The components include macroplankton (two euphausiid crustaceans, *Euphausia distinguenda* and *E. tenera*), mesopelagic-micronekton (two myctophid fishes, *Myctophum nitidulum* and *Symbolophorus reversus*), cephalopods (two species of pelagic squids, *Dosidicus gigas* and *Sthenoteuthis oualaniensis*), and small and large micronektonivores and nektonivores (skipjack, yellowfin, and bigeye tunas collected aboard commercial purse-seine vessels fishing in the EPO during 2003-2005).

Stable isotope analyses of bulk tissues and amino acids were conducted on several specimens each of the species listed above. Bulk δ^{15} N values varied markedly across the longitude and latitude gradients. There were no distinct longitudinal trends, but the δ^{15} N values increased consistently with increasing latitude. Trophic position estimates based on the amino-acid δ^{15} N values, however, varied little intra-specifically across the sample transect. These two results suggest that the isotopic variability in the food web was likely due to biogeochemical variability at the base of the food web rather than differences in diets within the food web. Increasing δ^{15} N values with latitude correspond to high rates of denitrification associated with the large oxygen minimum zone in the ETP. Among-species comparisons of absolute trophic positions based on AA-CSIA estimates with estimates based on diet from the EPO ecosystem model (<u>IATTC Bulletin, Vol. 22, No. 3</u>) showed underestimates for the predators occupying higher trophic levels, *i.e.* the three tunas and two squids. These underestimates are likely because the previously-

accepted trophic enrichment factor of 7.6 ‰ for phenylalanine and glutamic acid, which was derived from laboratory experiments with primary producers and invertebrate consumers, is inadequate for higher-level predators. This issue is also being addressed by collaborators on the CAMEO project.

5. PHYSICAL ENVIRONMENT²

Environmental conditions affect marine ecosystems, the dynamics and catchability of tunas and billfishes, and the activities of fishermen. Tunas and billfishes are pelagic during all stages of their lives, and the physical factors that affect the tropical and sub-tropical Pacific Ocean can have important effects on their distribution and abundance. Environmental conditions are thought to cause considerable variability in the recruitment of tunas and billfishes. Stock assessments by the IATTC have often incorporated the assumption that oceanographic conditions might influence recruitment in the EPO.

Different types of climate perturbations may impact fisheries differently. It is thought that a shallow thermocline in the EPO contributes to the success of purse-seine fishing for tunas, perhaps by acting as a thermal barrier to schools of small tunas, keeping them near the sea surface. When the thermocline is deep, as during an El Niño event, tunas seem to be less vulnerable to capture, and the catch rates have declined. Warmer- or cooler-than-average sea-surface temperatures (SSTs) can also cause these mobile fishes to move to more favorable habitats.

The ocean environment varies on a variety of time scales, from seasonal to inter-annual, decadal, and longer (e.g. climate phases or regimes). The dominant source of variability in the upper layers of the EPO is known as the El Niño-Southern Oscillation (ENSO). The ENSO is an irregular fluctuation involving the entire tropical Pacific Ocean and global atmosphere. It results in variations of the winds, rainfall, thermocline depth, circulation, biological productivity, and the feeding and reproduction of fishes, birds, and marine mammals. El Niño events occur at 2- to 7-year intervals, and are characterized by weaker trade winds, deeper thermoclines, and abnormally-high SSTs in the equatorial EPO. El Niño's opposite phase, often called La Niña (or anti-El Niño), is characterized by stronger trade winds, shallower thermoclines, and lower SSTs. Research has documented a connection between the ENSO and the rate of primary production, phytoplankton biomass, and phytoplankton species composition. Upwelling of nutrient-rich subsurface water is reduced during El Niño episodes, leading to a marked reduction in primary and secondary production. ENSO also directly affects animals at middle and upper trophic levels. Researchers have concluded that the 1982-1983 El Niño event, for example, deepened the thermocline and nutricline, decreased primary production, reduced zooplankton abundance, and ultimately reduced the growth rates, reproductive successes, and survival of various birds, mammals, and fishes in the EPO. In general, however, the ocean inhabitants recover within short periods because their life histories are adapted to respond to a variable habitat.

The IATTC staff issues quarterly reports of the monthly average oceanographic and meteorological data for the EPO, including a summary of current ENSO conditions. In January 2014, the SSTs were very close to normal throughout the entire tropical EPO. In February, a band of cool water appeared, extending along the equator from the coast of South America to about 145°W, but by April it had disappeared. There were also patches of cool water along the coasts of Ecuador and Peru from March to May. Patches of warm water that appeared off Mexico and Central America in February were still present in June, and in May and June there was a band of warm water along the equator from the coast of South America to west of 180°. In May, June, and July there was a band of cool water along 10°S from the coast of South America to about 125°W, but it was less pronounced during August and September. Meanwhile, extensive areas of warm water appeared north of about 10°S, apparently the early onset of the El Niño event that had been predicted by the U.S. National Weather Service. However, the warm water was confined mostly to the area north of the equator through December, and a small area of cool water that

² Some of the information in this section is from Fiedler, P.C. 2002. Environmental change in the eastern tropical Pacific Ocean: review of ENSO and decadal variability. Mar. Ecol. Prog. Ser. 244: 265-283.

appeared well south of the equator grew larger in December. The SSTs were mostly below normal from October 2013 through March 2014, but during April-December 2014 they were almost all above normal. According to the Climate Diagnostics Bulletin of the U.S. National Weather Service for December 2014, "Most models predict the SST anomalies to remain weak El Niño levels (3-month values of the Niño-3.4 index between 0.5°C and 0.9°C) during December-February 2014-15, and lasting into the Northern Hemisphere spring 2015. If El Niño were to emerge, the forecaster consensus favors a weak event that ends in early Northern Hemisphere spring. In summary, there is an approximately 50-60 percent chance of El Niño conditions during the next two months, with ENSO-neutral favored thereafter."

Variability on a decadal scale (*i.e.* 10 to 30 years) also affects the EPO. During the late 1970s there was a major shift in physical and biological states in the North Pacific Ocean. This climate shift was also detected in the tropical EPO by small increases in SSTs, weakening of the trade winds, and a moderate change in surface chlorophyll levels. Some researchers have reported another major shift in the North Pacific in 1989. Climate-induced variability in the ocean has often been described in terms of "regimes," characterized by relatively stable means and patterns in the physical and biological variables. Analyses by the IATTC staff have indicated that yellowfin tuna in the EPO have experienced regimes of lower (1975-1982) and higher (1983-2001) recruitment, and possibly intermediate (2002-2012) recruitment. The increased recruitment during 1983-2001 is thought to be due to a shift to a higher productivity regime in the Pacific Ocean. Decadal fluctuations in upwelling and water transport are simultaneous to the higher-frequency ENSO pattern, and have basin-wide effects on the SSTs and thermocline slope that are similar to those caused by ENSO, but on longer time scales.

Recent peer-reviewed literature provides strong evidence that large-scale changes in biological production and habitat have resulted from physical forcing in the subtropical and tropical Pacific Ocean. These changes are thought to be capable of affecting prev communities. Primary production has declined over vast oceanic regions in the recent decade(s). A study published in 2008, using "Sea-viewing Wide Field-of-view Sensor" (SeaWiFS) remote-sensed ocean color data, showed that, in the North and South Pacific, the most oligotrophic surface waters have increased in area by 2.2 and 1.4 % per year, respectively, between 1998 and 2006. These statistically-significant increases in the oligotrophic gyres occurred concurrently with significant increases in mean SSTs. In the North Pacific, the direction of expansion was northeast, reaching well into the eastern Pacific to about 120°W and as far south as about 15°N. Net primary productivity also has declined in the tropical and subtropical oceans since 1999. The mechanism is recognized as increased upper-ocean temperature and vertical stratification, influencing the availability of nutrients for phytoplankton growth. Evidence is also strong that primary producers have changed in community composition and size structure in recent decades. Phytoplankton cell size is relevant to predation dynamics of tunas because food webs that have small picophytoplankton at their base require more trophic steps to reach predators of a given size than do food webs that begin with larger nanophytoplankton (e.g. diatoms). Energy transfer efficiency is lower for picophytoplankton-based food webs than for nanophytoplankton-based food webs, *i.e.* for a given amount of primary production less energy will reach a yellowfin of a given size in the former than in the latter because mean annual trophic transfer efficiency at each step is relatively constant. A study published in 2012 used satellite remotelysensed SSTs and chlorophyll-a concentrations to estimate the monthly size composition of phytoplankton communities during 1998-2007. With the seasonal component removed, the median phytoplankton cell size estimated for the subtropical 10°-30°N and 10°-30°S Pacific declined by 2.2% and 2.3%, respectively, over the 9-year period. Expansion of the oxygen minimum zone (OMZ) is a third factor that demonstrates ecosystem change on a scale capable of affecting prey communities. The OMZ is a thick low-oxygen layer at intermediate depths, which is largely suboxic (<~10 µmol kg⁻¹) in the tropical EPO. Time series of dissolved oxygen concentration at depth from 1960 to 2008 revealed a vertical expansion and intensification of the OMZ in the central and eastern tropical Pacific and Atlantic Oceans, and in other regions of the world's oceans. Potential biological consequences of an expanding OMZ are numerous, but for the epipelagic tunas habitat compression can have profound implications. Shoaling of the OMZ restricts the depth distribution of tunas and other pelagic fishes into a narrower surface layer,

compressing their foraging habitat and altering forage communities. Enhanced foraging opportunities for all epipelagic predators could alter trophic pathways and affect prey species composition. In addition, with a shoaled OMZ, mesopelagic vertically-migrating prey, such as the phosichthyid fish *Vinciguerria lucetia*, myctophid fishes, and ommastrephid squids, would likely occur at shallower daytime depths and become more vulnerable to epipelagic predators. These are some of the taxa that increased most in the yellowfin diet in the tropical EPO between 1992-1994 and 2003-2005 (see <u>4</u>, Trophic interactions).

6. AGGREGATE INDICATORS

Recognition of the consequences of fishing for marine ecosystems has stimulated considerable research in recent years. Numerous objectives have been proposed to evaluate fishery impacts on ecosystems and to define over-fishing from an ecosystem perspective. Whereas reference points have been used primarily for single-species management of target species, applying performance measures and reference points to non-target species is believed to be a tractable first step. Current examples include incidental mortality limits for dolphins in the EPO purse-seine fishery under the AIDCP. Another area of interest is whether useful performance indicators based on ecosystem-level properties might be developed. Several ecosystem metrics or indicators, including community size structure, diversity indices, species or group, and numerous environmental indicators, have been proposed. Whereas there is general agreement that multiple system-level indicators should be used, there is concern over whether there is sufficient practical knowledge of the dynamics of such metrics and whether a theoretical basis for identifying precautionary or limit reference points based on ecosystem properties exists. Ecosystem-level metrics are not yet commonly used for managing fisheries.

Ecological Metrics. Relationships between indices of species associations in the catch and environmental characteristics are viewed as potentially valuable information for bycatch mitigation. Preliminary work in 2007-2008, based on novel methods of ordination developed by scientists at the Institute of Statistical Mathematics in Tokyo, Japan, showed clear large-scale spatial patterns in different groupings of target and bycatch species for floating-object sets in the EPO purse-seine fishery and relationships to environmental variables, such as SST, chlorophyll-a density, and mixed layer depth. More work is needed on this or similar approaches.

A variety of ecological metrics were employed in a study published in 2012³ to evaluate the ecological effects of purse-seine fishing in the EPO during 1993-2008. Comparisons of the catch of target and non-target (bycatch) species, both retained and discarded, by types of purse-seine set (on dolphins, floating objects, and unassociated tunas) were made on the basis of replacement time, diversity, biomass (weight), number of individuals, and trophic level. Previous comparisons considered only numbers of individuals and only discarded animals, without regard to body size, life-history characteristics, or position in the food web. During 1993-2008, the mean biomass removed was 17.0, 41.1 and 12.8 t/set for dolphin sets, floating-object sets, and unassociated sets, respectively. Of these amounts, bycatch was 0.3% for dolphin sets, 3.8% for floating-object sets, 1.4% for unassociated sets, and 2.1% for all methods combined. The discard rate was 0.7% for dolphin sets, 10.5% for floating-object sets, 2.2% for unassociated sets, and 5.4% for all methods combined. With the addition of 0.7% estimated for smaller vessels, the overall discard rate was 4.8%. This rate is low compared with global estimates of 7.5% for tuna longlines, 30.0% for tuna mid-water trawls, and 8.0% for all fisheries combined.

Replacement time is a measure of the length of time required for replacement of biomass removed by the fishery. Unsustainable levels of harvest may lead to greater decreases in probabilities of persistence of long-lived animals with low fecundity and late age of maturity than of fast-growing, highly fecund species. In contrast to trophic-level metrics, replacement-time metrics were sensitive to categories of

³ Gerrodette, T., R. Olson, S. Reilly, G. Watters, and W. Perrin. 2012. Ecological metrics of biomass removed by three methods of purse-seine fishing for tunas in the eastern tropical Pacific Ocean. Conservation Biology. 26 (2): 248-256

animals with relatively high biomass to production-of-biomass (B/P) ratios, such as bigeye tunas, sharks, and cetaceans. Mean replacement time for total removals averaged over years was lowest for dolphin sets (mean 0.48 years), intermediate for unassociated sets (0.57 years), and highest for floating-object sets (0.74 years). There were no temporal trends in mean replacement time for landings, and mean replacement times for discards were more variable than those for landings. Mean replacement times for dolphin-set discards were approximately 7 times the mean replacement times for floating-object or unassociated-set discards because dolphins have a low reproductive rate.

Diversity. Fishing alters diversity by selectively removing target species. The relationship between diversity of species removed and effects on the diversity and stability of the ecosystem from which they were removed may be complex. Higher diversity of catch may be associated with fewer undesirable effects on the ecosystem, although the complexity of competitive and trophic interactions among species makes the relationship between diversity of catch and diversity and stability of the ecosystem difficult to determine. The Shannon diversity index for total removals was lowest for dolphin sets (mean 0.62), intermediate for unassociated sets (1.22), and highest for floating-object sets (1.38). The diversity of dolphin-set landings increased by 0.023/year, on average, from 0.45 to 0.79, due primarily to an increase of the percentage of skipjack tuna in the catch from <1% to >7% and a concurrent decrease in the percentage of yellowfin tuna. The diversity of unassociated-set landings and discards both decreased, and diversity of total removals decreased by a mean of 0.024/year, from 1.40 to 1.04.

Biomass. The relative amounts and characteristics of the biomass removed by each of the fishing methods varied as a function of how removal was measured. Landings from floating-object sets were greatest by all four measures of removal, but were particularly high when removal was measured on the basis of number of individuals or replacement time. The amount and composition of discards varied among the fishing methods. Discards of the target tuna species were the greatest proportion of removed animals whether measured in biomass, number of individuals, or trophic-level units. Discards of cetaceans in dolphin sets and sharks in floating-object and unassociated sets were greater when measured in replacement-time units than when measured in other units because of the low reproductive rates of these animals.

Trophic structure and trophic levels of catches. Ecologically-based approaches to fisheries management place renewed emphasis on achieving accurate depictions of trophic links and biomass flows through the food web in exploited systems. The structure of the food web and the interactions among its components have a demonstrable role in determining the dynamics and productivity of ecosystems. Trophic levels (TLs) are used in food-web ecology to characterize the functional role of organisms, to facilitate estimates of energy or mass flow through communities, and for elucidating trophodynamics aspects of ecosystem functioning. A simplified food-web diagram, with approximate TLs, of the pelagic tropical EPO, is shown in Figure L-1. Toothed whales (Odontoceti, average TL 5.2), large squid predators (large bigeye tuna and swordfish, average TL 5.2), and sharks (average TL 5.0) are top-level predators. Other tunas, large piscivores, dolphins (average TL 4.8), and seabirds (average TL 4.5) occupy slightly lower TLs. Smaller epipelagic fishes (*e.g. Auxis* spp. and flyingfishes, average TL 3.2), cephalopods (average TL 4.4), and mesopelagic fishes (average TL 3.4) are the principal forage of many of the upper-level predators in the ecosystem. Small fishes and crustaceans prey on two zooplankton groups, and the herbivorous micro-zooplankton (TL 2) feed on the producers, phytoplankton and bacteria (TL 1).

In exploited pelagic ecosystems, fisheries that target large piscivorous fishes act as the system's apex predators. Over time, fishing can cause the overall size composition of the catch to decrease, and, in general, the TLs of smaller organisms are lower than those of larger organisms. The mean TL of the organisms taken by a fishery is a useful metric of ecosystem change and sustainability because it integrates an array of biological information about the components of the system. There has been increasing attention to analyzing the mean TL of fisheries catches since a study demonstrated that, according to FAO landings statistics, the mean TL of the fishes and invertebrates landed globally had declined between 1950 and 1994, which was hypothesized by the authors of that study to be detrimental

to the ecosystems. Some ecosystems, however, have changed in the other direction, from lower to higher TL communities. Given the potential utility of this approach, mean TLs were estimated for a time series of annual catches and discards by species from 1993 to 2013 for three purse-seine fishing modes and the pole-and-line fishery in the EPO. The estimates were made by applying the TL values from the EPO ecosystem model (see Section 8), weighted by the catch data by fishery and year for all model groups from the IATTC tuna, bycatch, and discard data bases. The TLs from the ecosystem model were based on diet data for all species groups and mass balance among groups. The weighted mean TLs of the summed catches of all purse-seine and pole-and-line fisheries were similar and fairly constant from year to year (Figure L-2: Average PS+LP). A slight downward trend for the unassociated sets, amounting to 0.05 TL over the 20-year period, resulted from increasing proportions of skipjack and decreasing proportions of vellowfin tuna in the catch, not from increasing catches of low trophic-level species. It is not, therefore, considered an ecologically-detrimental decline. In general, the TLs of the unassociated sets and the poleand-line fishery were below average and those of the dolphin sets were above average for most years (Figure L-2). The TLs of the floating-object sets varied more than those of the other set types and fisheries, primarily due to the inter-annual variability in the amounts of bigeve and skipjack caught in those sets. The TLs of floating-object sets were positively related to the percentage of the total catch comprised of large bigeye and negatively related to the percentage of the catch comprised of skipjack.

Mean TLs were also estimated separately for the time series of retained and discarded catches of the purse-seine fishery each year from 1993 to 2013 (Figure L-3). The discarded catches were much less than the retained catches, and thus the TL patterns of the total (retained plus discarded) catches (Figure L-2) were determined primarily by the TLs of the retained catches (Figure L-3). The TLs of the discarded catches varied more year-to-year than those of the retained catches, due to the species diversity of the incidental catches. The considerable reduction in the mean TLs of the dolphin-set discards over the 20-year period (Figure L-3), was largely due to an increase in the proportions of discarded prey fishes (bullet and frigate tunas (*Auxis* spp.) and miscellaneous epipelagic fishes) and rays (Rajiformes, mostly manta rays, Mobulidae) with lower trophic levels. For unassociated sets, marked inter-annual reductions in TL were due to increased bycatches of rays (TL 3.68), which feed on plankton and other small animals that occupy low TLs, a reduction in the bycatch. For floating-object sets, the discards of bigeye were related to higher mean TLs of the discarded catches.

7. ECOLOGICAL RISK ASSESSMENT

Long-term ecological sustainability is a requirement of ecosystem-based fisheries management. Fishing directly impacts the populations of not only target species, but also the species incidentally caught as bycatch. The vulnerability to overfishing of many of the stocks incidentally caught in the EPO tuna fisheries is unknown, and biological and fisheries data are severely limited for most of those stocks. Many fisheries managers and scientists are turning to risk assessments to evaluate vulnerability to fishing. Vulnerability is defined here as the potential for the productivity of a stock to be diminished by direct and indirect fishing pressure. The IATTC staff has applied a version of productivity and susceptibility analysis (PSA⁴), used to evaluate fisheries in other ocean regions in recent years, to estimate the vulnerability of data-poor, non-target species caught by the purse-seine fishery in the EPO. PSA considers a stock's vulnerability as a combination of its productivity and its susceptibility to the fishery. Stock productivity is the capacity of a stock to recover if it is depleted, and is a function of the species' life history traits. Stock susceptibility is the degree to which a fishery can negatively impact a stock, i.e. the propensity of a species to be captured by, and incur mortality from, a fishery. Productivity and susceptibility indices of a stock are determined by deriving a score ranging from 1 (low) to 3 (high) for a

⁴ Patrick, W.S., P. Spencer, J. Link, J. Cope, J. Field, D. Kobayashi, P. Lawson, T. Gedamke, E. Cortés, O. Ormseth, K. Bigelow, and W. Overholtz. 2010. Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing. Fish. Bull. U.S. 108: 305-322.

standardized set of attributes related to each index. The individual attribute scores are then averaged for each factor and graphically displayed on an x-y scatter plot. The scale of the x-axis on the scatter plot is reversed because species/stocks with a high productivity score and a low susceptibility score (i.e. at the origin of the plots) are considered to be the least vulnerable. When scoring the attributes, the data quality associated with each attribute score is assessed, and the attributes are weighted by the data-quality score. Stocks that receive a low productivity score (p) and high susceptibility score (s) are considered to be at a high risk of becoming depleted, while stocks with a high productivity score and low susceptibility score are considered to be at low risk. Vulnerability scores (v) are calculated from the p and s scores as the Euclidean distance from the origin of the x-y scatter plot and the datum point:

$$v = \sqrt{(p-3)^2 + (s-1)^2}$$

To examine the utility of productivity and susceptibility indices for assessing the vulnerability of incidentally-caught fishes, mammals, and turtles to overfishing in the EPO, a preliminary evaluation of three purse-seine "fisheries" in the EPO was made in 2010, using 26 species that comprise the majority of the biomass removed by Class-6 purse-seine vessels (carrying capacity greater than 363 metric tons) during 2005-2009. Nine productivity and eight susceptibility attributes, based on established PSA methodology⁴, were used in the preliminary PSA, and some were modified for greater consistency with data from the tuna fisheries in the EPO. Information corresponding to the productivity attributes for each species was compiled from a variety of published and unpublished sources and EPO fisheries data (*i.e.* not adopted from previous PSAs) to better approximate the distribution of life history characteristics observed in the species found in the EPO. Scoring thresholds for productivity attributes were taken from the example PSA⁴ and modified where appropriate to better fit the EPO fisheries. However, problems arose when trying to compare susceptibility estimates for species across the different fisheries (Fishery Status Report 8). In 2012, the PSA was revised to include seven additional species, based on data from 2005-2011 (Fishery Status Report 10).

The staff of the Biology and Ecosystem Program had planned to finalize and publish the PSA analysis during 2014, but the retirement of one staff member and budget constraints have prevented the work from being finished. However, three modifications of the analysis have been made since it was reviewed at the SAC meeting in May 2014: 1) the procedures for determining which species to include in the analysis were modified; 2) the susceptibility values for each fishery were combined to produce one overall susceptibility value for each species; and 3) the use of bycatch and catch information in the formulation of *s* was modified. The list of productivity attributes remains unchanged (Table L-1) while the list of susceptibility attributes has been revised due to this 3^{rd} modification (Table L-2). These three modifications are described briefly below. For the remainder of this section, the term "catch" will be used to refer to bycatch for non-tuna species and catch for tuna species.

The first modification was to establish a two-step procedure to identify and exclude rare species, based on the biomass caught per fishery. However, as a precautionary measure, rare species classified as "vulnerable," "endangered," or "near threatened" on the IUCN Red List were retained, or are now included, in the analysis. Currently, the PSA includes 32 species (<u>Table L-3a</u>); an additional eight sensitive species, two rays and six sharks, will be included in the future.

The second modification was to combine the susceptibility values for each species across fisheries to produce one overall species-specific purse-seine susceptibility. A preliminary combined susceptibility score for a species, s_j^1 , was calculated as the weighted sum of the individual fishery susceptibility values for that species (Table L-3a), with weights equal to the proportion of sets in each fishery:

$$s_j^1 = \sum_k s_{jk} p_k$$

where

- s_i^1 is the combined susceptibility for species j
- s_{jk} is the susceptibility for species *j* in set type *k*, computed using only the attributes in Table L-2. s_{jk} ranges from 1 (lowest) to 3 (highest). For a species with catches < 5% in set type *k*, $s_{jk} \equiv 1$, unless a s_{jk} was computed for one of the previous PSAs (Fishery Status Reports 8 and 10), in which case this s_{jk} was used; otherwise it was assumed that if catches were less than 5% in a fishery, the species was only minimally susceptible to that fishery. A previous PSA (Fishery Status Report 10) used catch trend information as an additional attribute to calculate the s_{jk} , however, the catch trend information was removed from the s_{jk} here because, following the established PSA⁴ methodology, the other susceptibility attributes are time-invariant (but see below).
- $p_k = \left(\frac{N_k}{\sum_k N_k}\right)$ and N_k is the total number of sets (class-6) of set type k in 2013

 s_j^1 takes into account fishing effort by set type, even for set types with little or no catch of a species. A preliminary PSA plot using s_j^1 is shown in Figure L-4a, and the values of s_{jk} , s_j^1 and v_1 are shown in Table L-3a. A concern with regard to s_j^1 for some species is that the variation in the s_{jk} computed from the attributes in Table L-2 does not correlate well with differences observed among catch rates by set type, suggesting the attributes in Table L-2 do not capture the full susceptibility of species *j*; in general it is assumed that higher catch rates should reflect higher overall susceptibility. In addition, the s_{jk} do not account for long-term trends.

The third modification, the use of catch information in the formulation of *s*, was made to try to account for differences in observed catch rates among set types, by species, and to account for long-term trends in abundance. Two preliminary alternate susceptibility formulations were computed as "proof of concept" for these ideas. The first, s_j^2 , modifies s_j^1 to take into consideration current catch rates, which are assumed to be an alternate proxy for susceptibility and to reflect the actual integrated effects of the susceptibility attributes in <u>Table L-2</u>:

$$s_j^2 = \sum_k s_{jk}^* p_k$$

where

 s_i^2 is the combined susceptibility for species j, adjusted for recent catch rates

- s_{jk}^* is the average of s_{jk} and of the catch rate susceptibility: $s_{jk}^* = \frac{1}{2}(s_{jk} + s_{cps_jk})$
- s_{ik} is as defined for s_i^1

 s_{cps_jk} is the catch rate susceptibility and takes a value of 1, 2 or 3, assigned as follows. If the species is not a target tuna species, catch-per set, in number of animals per set, is used to assign a value to s_{cps_jk} :

 $\begin{cases} 1 & \text{for } \operatorname{cps}_{jk} = 0 \\ 2 & \text{for } 0 < \operatorname{cps}_{jk} < 1.0 \\ 3 & \text{for } \operatorname{cps}_{jk} \ge 1.0 \end{cases}$

	Dolphin sets	Unassociated sets	Floating-object sets
Bigeye	- 1	2	3
Yellowfin	3	3	3
Skipjack	2	3	3

 cps_{jk} is the catch-per-set for species *j* in set type *k* (= class-6 catch (in numbers of animals) divided by number of class-6 sets), for the most recent year (2013). Catch-per-set was used instead of total catch in order to control for differences in effort among set types.

$$p_k$$
 is as defined for s_i^1

A preliminary PSA plot using s_j^2 is shown in Figure L-4b and the values of s_{jk}^* , s_j^2 and v_2 are shown in Table L-3b. s_j^2 could be affected by differences in abundance among species because catch-per-set is affected by abundance. Ranking cps_{jk} may help to minimize this problem. The present rules for ranking cps_{jk} for non-target tuna species were based on the idea that no catch equates to minimal susceptibility, catch that increases at a rate of less than one animal per set equates to moderate susceptibility, and catch that increases at an effort rate of one or more animals per set equates to high susceptibility. However, these rules are a "proof of concept" and could be modified.

The second alternate susceptibility formulation, computed for species other than target tunas and dolphins, s_i^3 , adjusts for long-term trends:

$$s_j^3 = \sum_k s_{jk}^{**} p_k$$

where

 s_i^3 is the combined susceptibility for species *j*, adjusted for long-term trends

 s_{jk}^{**} is the average of s_{jk} and the trend susceptibility: $s_{jk}^{**} = \frac{1}{2} (s_{jk} + s_{trend_jk})$;

 S_{trend_jk} is the trend susceptibility for species j in set type k, obtained as follows:

((1.0	if species <i>j</i> does not occur in set type <i>k</i>
ł	1.5	if <i>trend_{jk}</i> is not significant or is significant but increasing
	3.0	if <i>trend_{jk}</i> is significant and decreasing

*trend*_{*jk*} is the slope of the regression of $cps_{jk,y}$ and year *y*, from the start of the data collection (which may vary by species). *trend*_{*jk*} was computed for species for which full assessments (or management indicators) do not exist and for which the fishery data have not been determined to be unsuitable for trend estimation; *i.e.*, for species other than the three target tuna species and the dolphin species (but see below). A significant trend was any slope with a *p*-value < 0.05.

 $cps_{,jk,y}$ is the catch-per-set of species j of set type k in year y

A preliminary PSA plot using s_j^3 for species other than the three target tuna species and dolphin species is shown in <u>Figure L-4c</u>, and the values of s_{jk}^{**} , s_j^3 and v_3 are shown in <u>Table L-3c</u>. For the future, s_j^3 could be expanded to include the three target tuna species by estimating trends from spawning biomass, and could be expanded to dolphin species by using trends estimated from historical line-transect abundance estimates. A concern with regards to s_j^3 is that trends estimated from catch-per-set may not reliably track changes in abundance (as was shown for dolphins in <u>Document SAC-05-11d</u>).

The three susceptibility measures, s_i^1 , s_i^2 , and s_i^3 , are considered preliminary and represent "proof of

 s_{ik} is as defined for s_i^1

concept" ideas to illustrate several options for computing susceptibility tailored to the EPO purse-seine fishery. The IATTC staff will continue working to improve and refine the productivity and susceptibility analysis during 2015. Future work will focus on evaluation of which of the three susceptibility measures is preferable, and whether further modifications should be made. In addition, a full literature review is in progress to determine if susceptibility attributes in <u>Table L-2</u> and corresponding scores and productivity scores should be updated as a result of new research.

8. ECOSYSTEM MODELING

It is clear that the different components of an ecosystem interact. Ecosystem-based fisheries management is facilitated through the development of multi-species ecosystem models that represent ecological interactions among species or guilds. Our understanding of the complex maze of connections in open-ocean ecosystems is at an early stage, and, consequently, the current ecosystem models are most useful as descriptive devices for exploring the effects of a mix of hypotheses and established connections among the ecosystem components. Ecosystem models must be compromises between simplistic representations on the one hand and unmanageable complexity on the other.

The IATTC staff has developed a model of the pelagic ecosystem in the tropical EPO (IATTC Bulletin, Vol. 22, No. 3) to explore how fishing and climate variation might affect the animals at middle and upper trophic levels. The ecosystem model has 38 components, including the principal exploited species (*e.g.* tunas), functional groups (*e.g.* sharks and flyingfishes), and sensitive species (*e.g.* sea turtles). Some taxa are further separated into size categories (*e.g.* large and small marlins). The model has finer taxonomic resolution at the upper trophic levels, but most of the system's biomass is contained in the middle and lower trophic levels. Fisheries landings and discards were estimated for five fishing "gears": pole-and-line, longline, and purse-seine sets on tunas associated with dolphins, with floating objects, and in unassociated schools. The model focuses on the pelagic regions; localized, coastal ecosystems are not adequately described by the model.

Most of the information describing inter-specific interactions in the model came from a joint IATTC-NMFS project, which included studies of the food habits of co-occurring yellowfin, skipjack, and bigeye tuna, dolphins, pelagic sharks, billfishes, dorado, wahoo, rainbow runner, and others. The impetus of the project was to contribute to the understanding of the tuna-dolphin association, and a community-level sampling design was adopted.

The ecosystem model has been used to evaluate the possible effects of variability in bottom-up forcing by the environment on the middle and upper trophic levels of the pelagic ecosystem. Predetermined time series of producer biomasses were put into the model as proxies for changes in primary production that have been documented during El Niño and La Niña events, and the dynamics of the remaining components of the ecosystem were simulated. The model was also used to evaluate the relative contributions of fishing and the environment in shaping ecosystem structure in the tropical pelagic EPO. This was done by using the model to predict which components of the ecosystem might be susceptible to top-down effects of fishing, given the apparent importance of environmental variability in structuring the ecosystem. In general, animals with relatively low turnover rates were influenced more by fishing than by the environment, and animals with relatively high turnover rates more by the environment than by fishing.

The structure of marine ecosystems is generally thought to be controlled by one of two mechanisms: 'bottom-up' control (resource-driven) where the dynamics of primary producers (e.g. phytoplankton) controls the production and biomass at higher trophic levels, or 'top-down' control (consumer-driven) where predation by high trophic-level predators controls the abundance and composition of prey at lower trophic levels. In relatively recent years, 'wasp-waist' control of marine ecosystems has also been recognized. 'Wasp-waist' control is a combination of bottom-up and top-down forcing by a small number of abundant, highly productive, and short-lived species at intermediate trophic levels (*e.g.* sardines and anchovies) that form a narrow 'waist' through which energy flow in the system is regulated. These species exert top-down predatory control of energy flows from zooplankton, but also have bottom-up

control by providing energy for high trophic-level predators. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor coastal systems (e.g. upwelling regions), which can be highly unstable and undergo rapid natural regime shifts in short periods of time. The ecosystem model for the tropical EPO was used in conjunction with a model for a region off the east coast of Australia where tunas and billfishes are caught to examine possible forcing dynamics of these systems. These two large species-rich pelagic ecosystems also showed wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes in intermediate trophic levels comprise the vast majority of the biomass. The largest forcing effects were seen when altering the biomasses of mid trophic-level epipelagic and mesopelagic fishes in the models, whereby dramatic trophic cascades occurred both upward and downward in the system. These tropical pelagic ecosystems appear to possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species.

9. ACTIONS BY THE IATTC AND THE AIDCP ADDRESSING ECOSYSTEM CONSIDERATIONS

Both the IATTC convention and the AIDCP have objectives that address the incorporation of ecosystem considerations into the management of the tuna fisheries in the EPO. Actions taken in the past include:

9.1. Dolphins

- a. For many years, the impact of the fishery on the dolphin populations has been assessed, and programs to reduce or eliminate that impact have met with considerable success.
- b. The incidental mortalities of all stocks of dolphins have been limited to levels that are insignificant relative to stock sizes.

9.2. Sea turtles

- a. A data base on all sea turtle sightings, captures, and mortalities reported by observers has been compiled.
- b. In June 2003 the IATTC adopted a Recommendation on Sea Turtles, which contemplates "the development of a three-year program that could include mitigation of sea turtle bycatch, biological research on sea turtles, improvement of fishing gears, industry education and other techniques to improve sea turtle conservation." In January 2004, the Working Group on Bycatch drew up a detailed program that includes all these elements, and urges all nations with vessels fishing for tunas in the EPO to provide the IATTC with information on interactions with sea turtles in the EPO, including both incidental and direct catches and other impacts on sea turtle populations. <u>Resolution C-04-07</u> on a three-year program to mitigate the impact of tuna fishing on sea turtles was adopted by the IATTC in June 2004; it includes requirements for data collection, mitigation measures, industry education, capacity building, and reporting.
- c. <u>Resolution C-04-05 REV 2</u>, adopted by the IATTC in June 2006, contains provisions on releasing and handling of sea turtles captured in purse seines. The resolution also prohibits vessels from disposing of plastic containers and other debris at sea, and instructs the Director to study and formulate recommendations regarding the design of FADs, particularly the use of netting attached underwater to FADs.
- d. <u>Resolution C-07-03</u>, adopted by the IATTC in June 2007, contains provisions on implementing observer programs for fisheries under the purview of the Commission that may have impacts on sea turtles and are not currently being observed. The resolution requires fishermen to foster recovery and resuscitation of comatose or inactive hard-shell sea turtles before returning them to the water. CPCs with purse-seine and longline vessels fishing for species covered by the IATTC Convention in the EPO

are directed to avoid encounters with sea turtles, to reduce mortalities using a variety of techniques, and to conduct research on modifications of FAD designs and longline gear and fishing practices.

e. In response to a request made by the Subsecretaría de Recursos Pesqueros of Ecuador, a program was established by the World Wildlife Fund, the IATTC, and the government of the United States to mitigate the incidental capture and reduce the mortality of sea turtles due to longline fishing. A key element of this program is the comparison of catch rates of tunas, billfishes, sharks, and dorado caught with J hooks to the catch rates using circle hooks. Circle hooks do not hook as many turtles as the J hooks, which are traditionally used in the longline fishery, and the chance of serious injury to the sea turtles that bite the circle hooks is reduced because the hooks are wider and they tend to hook the lower jaw, rather than the more dangerous deep hookings in the esophagus and other areas, which are more common with the J hooks. Improved procedures and instruments to release hooked and entangled sea turtles have also been disseminated to the longline fleets of the region.

By the end of 2008 the hook-exchange and observer program, which began in Ecuador in 2003, was active in Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Mexico, Nicaragua, Panama, and Peru and under development in Chile, with workshops taking place in many ports. The program in Ecuador is being carried out in partnership with the government and the Overseas Fishery Cooperation Foundation of Japan, while those in other countries are currently funded by U.S. agencies. Initial results show that, in the fisheries that target tunas, billfishes, and sharks, there was a significant reduction in the hooking rates of sea turtles with the circle hooks, and fewer hooks lodged in the esophagus or other areas detrimental to the turtles. The catch rates of the target species are, in general, similar to the catch rates with the J-hooks. An experiment was also carried out in the dorado fishery using smaller circle hooks. There were reductions in turtle hooking rates, but the reductions were not as great as for the fisheries that target tunas, billfishes, and sharks. In addition, workshops and presentations were conducted by IATTC staff members and others in all of the countries participating in the program.

9.3. Seabirds

- a. <u>Recommendation C-10-02</u> adopted by the IATTC in October 2010, reaffirmed the importance that IATTC Parties and cooperating non-Parties, fishing entities, and regional economic integration organizations implement, if appropriate, the FAO International Plan of Action for Reducing the Incidental Catch of Seabirds in Longline Fisheries ("IPOA-Seabirds"). The governments listed on the Recommendation agreed to report to the IATTC on their implementation of the IPOA-Seabirds, including, as appropriate, the status of their National Plans of Action for reducing incidental catches of seabirds in longline fisheries. It was also agreed that the governments would require their longline vessels that fish for species covered by the IATTC in specific areas (specified in Annex 1 of the Recommendation) to use at least two of a set of eight mitigation measures listed. In addition, members and cooperating non-members of the IATTC were encouraged to establish national programs to place observers aboard longline vessels flying their flags or fishing in their waters, and to adopt measures aimed at ensuring that seabirds captured alive during longline fishing operations are released alive and in the best condition possible.
- b. <u>Resolution C-11-02</u>, adopted by the IATTC in July 2011, reaffirmed the importance of implementing the IPOA-Seabirds (see 9.3.a) and provides that Members and cooperating non-Members (CPCs) shall require their longline vessels of more than 20 meters length overall and that fish for species covered by the IATTC in the EPO to use at least two of the specified mitigation measures, and establishes minimum technical standards for the measures. CPCs are encouraged to work, jointly and individually, to undertake research to further develop and refine methods for mitigating seabird bycatch, and to submit to the IATTC any information derived from such efforts. Also, CPCs are encouraged to establish national programs to place observers aboard longline vessels flying their flags or fishing in their waters, for the purpose of, *inter alia*, gathering information on the interactions of

seabirds with the longline fisheries.

9.4. Other species

- a. In June 2000, the IATTC adopted a resolution on live release of sharks, rays, billfishes, dorado, wahoo, and other non-target species.
- b. <u>Resolution C-04-05</u>, adopted by the IATTC in June 2006, instructs the Director to seek funds for reduction of incidental mortality of juvenile tunas, for developing techniques and equipment to facilitate release of billfishes, sharks, and rays from the deck or the net, and to carry out experiments to estimate the survival rates of released billfishes, sharks, and rays.
- c. <u>Resolution C-11-10</u>, adopted by the IATTC in July 2011, prohibits retaining onboard, transhipping, landing, storing, selling, or offering for sale any part or whole carcass of oceanic whitetip sharks in the fisheries covered by the Antigua Convention, and to promptly release unharmed, to the extent practicable, oceanic whitetip sharks when brought alongside the vessel.

9.5. Fish-aggregating devices (FADs)

a. <u>Resolution C-13-04</u>, adopted by the IATTC in June 2013, requires all purse-seine vessels fishing on FADs to collect and report FAD information, includingan inventory of the FADs present on the vessel, specifying, for each FAD, identification, type, and design characteristics. For every FAD activity, the position, date, hour, FAD identification, and FAD type must be reported. The IATTC staff will analyze the data collected to identify any additional elements for data collection and reporting formats necessary to evaluate the effects of FAD use on the ecosystem, and provide initial recommendations for the management of FADs in the EPO. The Commission will consider adopting management measures based on those recommendations, including a region-wide FAD management plan. Purse-seine vessels are also required to identify all FADs deployed or modified, in accordance with an identification scheme developed by the Director. To reduce entanglement of sharks, sea turtles, or any other species, principles for the design and deployment of FADs are specified. Setting a purse seine on tuna associated with a live whale shark is prohibited, if the animal is sighted prior to the set.

9.6. All species

- a. Data on the bycatches of large purse-seine vessels are being collected, and governments are urged to provide bycatch information for other vessels.
- b. Data on the spatial distributions of the bycatches and the bycatch/catch ratios have been collected for analyses of policy options to reduce bycatches.
- c. Information to evaluate measures to reduce the bycatches, such as closures, effort limits, *etc.*, has been collected.
- d. Assessments of habitat preferences and the effect of environmental changes have been made.
- e. Requirements have been adopted for the CPCs to ensure that, from 1 January 2013, at least 5% of the fishing effort made by its longline vessels greater than 20 m length overall carry a scientific observer.

10. FUTURE DEVELOPMENTS

It is unlikely, in the near future at least, that there will be stock assessments for most of the bycatch species. In lieu of formal assessments, it may be possible to develop indices to assess trends in the status of these species. The IATTC staff's experience with dolphins suggests that the task is not trivial if relatively high precision is required.

An array of measures has been proposed to study changes in ecosystem properties. This could include studies of average trophic level, size spectra, dominance, diversity, *etc.*, to describe the ecosystem in an aggregate way.

The distributions of the fisheries for tunas and billfishes in the EPO are such that several regions with different ecological characteristics may be included. Within them, water masses, oceanographic or topographic features, influences from the continent, *etc.*, may generate heterogeneity that affects the distributions of the different species and their relative abundances in the catches. It would be desirable to increase our understanding of these ecological strata so that they can be used in our analyses.

It is important to continue studies of the ecosystems in the EPO. The power to resolve issues related to fisheries and the ecosystem will increase with the number of habitat variables, taxa, and trophic levels studied and with longer time series of data.

FIGURE L-1. Simplified food-web diagram of the pelagic ecosystem in the tropical EPO. The numbers inside the boxes indicate the approximate trophic level of each group.

FIGURA L-1. Diagrama simplificado de la red trófica del ecosistema pelágico en el OPO tropical. Los números en los recuadros indican el nivel trófico aproximado de cada grupo.

FIGURE L-2. Yearly mean trophic level estimates of the catches (retained and discarded) by the purseseine and pole-and-line fisheries in the tropical EPO, 1993-2013.

FIGURA L-2. Estimaciones anuales del nivel trófico de las capturas (retenidas y descartadas) de las pesquerías cerquera y cañera en el OPO tropical, 1993-2013.

FIGURE L-3. Trophic level estimates of the retained catches and discarded catches by purse-seine fisheries in the tropical EPO, 1993-2013.

FIGURA L-3. Estimaciones del nivel trófico de las capturas retenidas y descartadas por las pesquerías cerqueras en el OPO tropical, 1993-2013.

bycatch or catch $\geq 5\%$ for the species. The 3-alpha species codes next to each pie chart are defined in Table L-3a. **FIGURA L-4a.** Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental capturadas por la pesquería de cerco del OPO durante 2005-2013, basada en s_j^1 . Las gráficas de sectores ilustran la proporción de captura incidental (especies aparte de los atunes) o proporción de la captura (especies de atunes), por tipo de lance, en aquellos tipos de lance con captura incidental o captura $\geq 5\%$ de esa especie. En la Tabla L-3a se definen los códigos de tres letras al lado de cada gráfica de sectores.

FIGURE L-4a. Productivity and susceptibility x-y plot for target and bycatch species caught by the purse-seine fishery of the EPO during 2005-2013, based on s_j^1 . The pie charts show the proportion of bycatch (non-tuna species) or proportion of catch (tuna species), by set type, for those set types with

2.0

Productivity-Productividad

1.5

1.0

2.5

1.0 🗳 3.0

FIGURE L-4b. Productivity and susceptibility x-y plot for target and bycatch species caught by the purse-seine fishery of the EPO during 2005-2013, based on s_j^2 . The pie charts show the proportion of bycatch (non-tuna species) or proportion of catch (tuna species), by set type, for those set types with bycatch or catch \geq 5% for the species. The 3-alpha species codes next to each pie chart are defined in Table L-3b.

FIGURA L-4b. Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental capturadas por la pesquería de cerco del OPO durante 2005-2013, basada en s_j^2 . Las gráficas de sectores ilustran la proporción de captura incidental (especies aparte de los atunes) o proporción de la captura (especies de atunes), por tipo de lance, en aquellos tipos de lance con captura incidental o captura $\geq 5\%$ de esa especie. En la Tabla L-3b se definen los códigos de tres letras al lado de cada gráfica de sectores.

FIGURE L-4c. Productivity and susceptibility x-y plot for bycatch species caught by the purse-seine fishery of the EPO during 2005-2013, based on s_j^3 . s_j^3 was not computed for species for which full assessments (or management indicators) exist or for which the fishery data have been determined to be unsuitable for trend estimation; *i.e.*, for the three target tuna species and the dolphin species. The pie charts show the proportion of bycatch (non-tuna species), by set type, for those set types with bycatch \geq 5% for the species. The 3-alpha species codes next to each pie chart are defined in Table L-3c.

FIGURA L-4c. Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental capturadas por la pesquería de cerco del OPO durante 2005-2013, basada en s_j^3 . No se computó s_j^3 para especies para las cuales existen evaluaciones completas (o indicadores de ordenación), o para las cuales se determinó que los datos de pesca no son adecuados para la estimación de tendencias; es decir, para las tres especies de atunes objetivo y las especies de delfines. Las gráficas de sectores ilustran la proporción de captura incidental (especies aparte de los atunes), por tipo de lance, en aquellos tipos de lance con captura incidental $\geq 5\%$ de esa especie. En la Tabla L-3c se definen los códigos de tres letras al lado de cada gráfica de sectores.

	Ra	Ranking – Clasificación					
Productivity attribute	Low – Moderate – High						
Atributo de productividad	Bajo (1)	Moderado (2)	Alto (3)				
Intrinsic rate of population growth (<i>r</i>)							
Tasa intrínseca de crecimiento de la población (r)	≤ 0.1	$> 0.1, \le 1.3$	>1.3				
Maximum age (years)							
Edad máxima (años)	≥ 20	> 11, < 20	≤11				
Maximum size (cm)							
Talla máxima (cm)	> 350	$> 200, \le 350$	\leq 200				
von Bertalanffy growth coefficient (k)							
Coeficiente de crecimiento de von Bertalanffy (<i>k</i>)	< 0.095	0.095 - 0.21	> 0.21				
Natural mortality (<i>M</i>)							
Mortalidad natural (<i>M</i>)	< 0.25	0.25 - 0.48	> 0.48				
Fecundity (measured)							
Fecundidad (medida)	< 10	10 - 200,000	> 200,000				
Breeding strategy							
Estrategia de reproducción	\geq 4	1 to-a 3	0				
Age at maturity (years)							
Edad de madurez (años)	≥ 7.0	\geq 2.7, < 7.0	< 2.7				
Mean trophic level							
Nivel trófico medio	> 5.1	4.5 - 5.1	< 4.5				

TABLE L-1. Productivity attributes and scoring thresholds used in the IATTC PSA. **TABLA L-1.** Atributos de productividad y umbrales de puntuación usados en el APS de la CIAT.

Suggestibility attribute		Ranking	
Susceptionity attribute	Low (1)	Moderate (2)	High (3)
Management strategy	Management and proactive accountability measures in place	Stocks specifically named in conservation resolutions; closely monitored	No management measures; stocks closely monitored
Areal overlap - geographical concentration index	Greatest bycatches outside areas with the most sets <u>and</u> stock not concentrated (or not rare)	Greatest bycatches outside areas with the most sets <u>and</u> stock concentrated (or rare), OR Greatest bycatches in areas with the most sets <u>and</u> stock not concentrated (or not rare)	Greatest bycatches in areas with the most sets <u>and</u> stock concentrated (or rare)
Vertical overlap with gear	< 25% of stock occurs at the depths fished	Between 25% and 50% of the stock occurs at the depths fished	> 50% of the stock occurs in the depths fished
Seasonal migrations	Seasonal migrations decrease overlap with the fishery	Seasonal migrations do not substantially affect the overlap with the fishery	Seasonal migrations increase overlap with the fishery
Schooling/Aggregation and other behavioral responses to gear	Behavioral responses decrease the catchability of the gear	Behavioral responses do not substantially affect the catchability of the gear	Behavioral responses increase the catchability of the gear
Potential survival after capture and release under current fishing practices	Probability of survival > 67%	$33\% < \text{probability of survival} \le 67\%$	Probability of survival < 33%
Desirability/value of catch (percent retention)	Stock is not highly valued or desired by the fishery (< 33% retention)	Stock is moderately valued or desired by the fishery (33-66% retention)	Stock is highly valued or desired by the fishery (> 66% retention)

TABLE L-2. Susceptibility attributes and scoring thresholds used in the IATTC PSA.

TABLE L-3a. Preliminary productivity and susceptibility scores used to compute the overall vulnerability measure v_1 . Dolphin=DEL, unassociated=NOA, and floating-object sets=OBJ. Individual susceptibility scores, s_{jk} , are shown for each fishery and as a weighted combination of the individual fishery values, s_j^1 ; see text for details. Productivity, p, and vulnerability, v_1 , scores are provided. These values are preliminary as this year's PSA is considered a proof of concept.

*IUCN listings are defined as: EN=endangered, NT=near threatened, VU=vulnerable, LC=least concern, DD=data deficient, NA=not assessed

		· · · · · · · · · · · · · · · · · · ·		s _{ik} sc	ores by fisl	nery					
GROUP	Scientific name	Common name	3-alpha species code	IUCN*	DEL	NOA	OBJ	р	s_j^1	v_1	
Tunas	Thunnus albacares	Yellowfin tuna	YFT	NT	2.38	2.38	2.38	2.78	2.38	1.40	
	Thunnus obesus	Bigeye tuna	BET	VU	1.00	2.23	2.38	2.33	1.70	0.97	
	Katsuwonus pelamis	Skipjack tuna	SKJ	LC	1.00	2.38	2.38	2.78	1.73	0.76	
Billfishes	Makaira nigricans	Blue marlin	BUM	VU	2.23	2.23	2.69	2.00	2.39	1.71	
	Istiompax indica	Black marlin	BLM	DD	2.23	2.23	2.69	2.00	2.39	1.71	
	Kajikia audax	Striped marlin	MLS	NT	2.54	2.54	2.54	2.33	2.54	1.68	
	Istiophorus platypterus	Indo-Pacific sailfish	SFA	LC	2.54	2.54	2.54	2.44	2.54	1.64	
Dolphins	Stenella longirostris	Unidentified spinner dolphin	DSI	DD	1.77	1.00	1.00	1.22	1.36	1.82	
	Stenella attenuata	Unidentified spotted dolphin	DPN	LC	1.77	1.00	1.00	1.33	1.36	1.71	
	Delphinus delphis	Common dolphin	DCO	LC	1.62	1.00	1.00	1.33	1.29	1.70	
Large fishes	Coryphaena hippurus	Common dolphinfish	DOL	LC	1.00	2.00	2.31	2.78	1.64	0.68	
C	Coryphaena equiselis	Pompano dolphinfish	CFW	LC	1.00	1.00	2.38	2.89	1.48	0.50	
	Acanthocybium solandri	Wahoo	WAH	LC	1.00	1.00	2.62	2.67	1.57	0.66	
	Elagatis bipinnulata	Rainbow runner	RRU	NA	1.00	1.00	2.31	2.78	1.46	0.51	
	Mola mola	Ocean sunfish, Mola	MOX	NA	1.00	1.92	1.92	1.78	1.49	1.31	
	Caranx sexfasciatus	Bigeye trevally	CXS	LC	1.00	2.38	1.00	2.56	1.25	0.51	
	Seriola lalandi	Yellowtail amberjack	YTC	NA	1.00	2.08	1.85	2.44	1.49	0.75	
Rays	Manta birostris	Giant manta	RMB	VU	1.92	2.08	1.77	1.22	1.90	1.99	
2	Mobula japanica	Spinetail manta	RMJ	NT	1.92	2.08	1.77	1.78	1.90	1.51	
	Mobula thurstoni	Smoothtail manta	RMO	NT	1.92	2.08	1.77	1.67	1.90	1.60	
Sharks	Carcharhinus falciformis	Silky shark	FAL	NT	2.08	2.08	2.15	1.44	2.10	1.91	
	Carcharhinus longimanus	Oceanic whitetip shark	OCS	VU	1.69	1.00	2.08	1.67	1.70	1.50	
	Sphyrna zygaena	Smooth hammerhead shark	SPZ	VU	1.77	1.92	2.08	1.33	1.91	1.90	
	Sphyrna lewini	Scalloped hammerhead shark	SPL	EN	1.77	1.92	2.08	1.33	1.91	1.90	
	Sphyrna mokarran	Great hammerhead shark	SPK	EN	2.08	1.77	1.92	1.33	1.97	1.93	
	Alopias pelagicus	Pelagic thresher shark	PTH	VU	1.92	1.92	1.77	1.22	1.87	1.98	
	Alopias superciliosus	Bigeye thresher shark	BTH	VU	1.77	2.08	1.46	1.11	1.72	2.02	
	Alopias vulpinus	Common thresher shark	ALV	VU	1.92	1.92	1.77	1.67	1.87	1.59	
	Isurus oxyrinchus	Short fin mako shark	SMA	VU	2.23	2.23	1.92	1.22	2.12	2.10	
Small fishes	Canthidermis maculatus	Ocean triggerfish	CNT	NA	1.00	1.00	2.00	2.33	1.35	0.76	
	Sectator ocyurus	Bluestriped chub	ECO	NA	1.00	1.00	2.08	2.22	1.38	0.87	
Turtles	Lepidochelys olivacea	Olive ridley turtle	LKV	VU	1.62	2.23	1.62	1.89	1.73	1.33	

TABLE L-3b. Preliminary productivity and susceptibility scores used to compute the overall vulnerability measure v_2 . Dolphin=DEL, unassociated=NOA, and floating-object sets=OBJ. Individual susceptibility scores, s_{jk}^* are shown for each fishery and as a weighted combination of the individual fishery values, s_j^2 ; see text for details. Productivity, p, and vulnerability, v_2 , scores are provided. These values are preliminary as this year's PSA is considered a proof of concept.

*IUCN listings are defined as: EN=endangered, NT=near threatened, VU=vulnerable, LC=least concern, DD=data deficient, NA=not assessed

						ores by fis	hery	1		
GROUP	Scientific name	Common name	3-alpha species code	IUCN*	DEL	NOA	OBJ	р	s_j^2	v_2
Tunas	Thunnus albacares	Yellowfin tuna	YFT	NT	2.38	2.38	2.38	2.78	2.69	1.70
	Thunnus obesus	Bigeye tuna	BET	VU	1.00	2.23	2.38	2.33	1.79	1.04
	Katsuwonus pelamis	Skipjack tuna	SKJ	LC	1.00	2.38	2.38	2.78	2.13	1.15
Billfishes	Makaira nigricans	Blue marlin	BUM	VU	2.23	2.23	2.69	2.00	2.20	1.56
	Istiompax indica	Black marlin	BLM	DD	2.23	2.23	2.69	2.00	2.20	1.56
	Kajikia audax	Striped marlin	MLS	NT	2.54	2.54	2.54	2.33	2.27	1.44
	Istiophorus platypterus	Indo-Pacific sailfish	SFA	LC	2.54	2.54	2.54	2.44	2.27	1.39
Dolphins	Stenella longirostris	Unidentified spinner dolphin	DSI	DD	1.77	1.00	1.00	1.22	1.42	1.83
-	Stenella attenuata	Unidentified spotted dolphin	DPN	LC	1.77	1.00	1.00	1.33	1.42	1.72
	Delphinus delphis	Common dolphin	DCO	LC	1.62	1.00	1.00	1.33	1.38	1.71
Large fishes	Coryphaena hippurus	Common dolphinfish	DOL	LC	1.00	2.00	2.31	2.78	1.99	1.02
C C	Coryphaena equiselis	Pompano dolphinfish	CFW	LC	1.00	1.00	2.38	2.89	1.92	0.92
	Acanthocybium solandri	Wahoo	WAH	LC	1.00	1.00	2.62	2.67	1.96	1.01
	Elagatis bipinnulata	Rainbow runner	RRU	NA	1.00	1.00	2.31	2.78	1.67	0.70
	Mola mola	Ocean sunfish, Mola	MOX	NA	1.00	1.92	1.92	1.78	1.74	1.43
	Caranx sexfasciatus	Bigeye trevally	CXS	LC	1.00	2.38	1.00	2.56	1.56	0.72
	Seriola lalandi	Yellowtail amberjack	YTC	NA	1.00	2.08	1.85	2.44	1.51	0.76
Rays	Manta birostris	Giant manta	RMB	VU	1.92	2.08	1.77	1.22	1.95	2.02
	Mobula japanica	Spinetail manta	RMJ	NT	1.92	2.08	1.77	1.78	1.95	1.55
	Mobula thurstoni	Smoothtail manta	RMO	NT	1.92	2.08	1.77	1.67	1.95	1.63
Sharks	Carcharhinus falciformis	Silky shark	FAL	NT	2.08	2.08	2.15	1.44	2.23	1.98
	Carcharhinus longimanus	Oceanic whitetip shark	OCS	VU	1.69	1.00	2.08	1.67	1.62	1.47
	Sphyrna zygaena	Smooth hammerhead shark	SPZ	VU	1.77	1.92	2.08	1.33	1.95	1.92
	Sphyrna lewini	Scalloped hammerhead shark	SPL	EN	1.77	1.92	2.08	1.33	1.95	1.92
	Sphyrna mokarran	Great hammerhead shark	SPK	EN	2.08	1.77	1.92	1.33	1.98	1.94
	Alopias pelagicus	Pelagic thresher shark	PTH	VU	1.92	1.92	1.77	1.22	1.93	2.01
	Alopias superciliosus	Bigeye thresher shark	BTH	VU	1.77	2.08	1.46	1.11	1.86	2.08
	Alopias vulpinus	Common thresher shark	ALV	VU	1.92	1.92	1.77	1.67	1.93	1.63
	Isurus oxyrinchus	Short fin mako shark	SMA	VU	2.23	2.23	1.92	1.22	2.06	2.07
Small fishes	Canthidermis maculatus	Ocean triggerfish	CNT	NA	1.00	1.00	2.00	2.33	1.18	0.69
	Sectator ocyurus	Bluestriped chub	ECO	NA	1.00	1.00	2.08	2.22	1.19	0.80
Turtles	Lepidochelys olivacea	Olive ridley turtle	LKV	VU	1.62	2.23	1.62	1.89	1.63	1.28

174

TABLE L-3c. Preliminary productivity and susceptibility scores used to compute the overall vulnerability measure v_3 . Dolphin=DEL, unassociated=NOA, and floating-object sets=OBJ. Individual susceptibility scores, s_{jk}^{**} are shown for each fishery and as a weighted combination of the individual fishery values, s_j^3 ; see text for details. Productivity, p, and vulnerability, v_3 , scores are provided. These values are preliminary as this year's PSA is considered a proof of concept.

*IUCN listings are defined as: EN=endangered, NT=near threatened, VU=vulnerable, LC=least concern, DD=data deficient, NA=not assessed

					<i>s</i> ^{**} _{<i>jk</i>} scores by fishery]		
GROUP	Scientific name	Common name	3-alpha species code	IUCN*	DEL	NOA	OBJ	р	s_j^3	V ₃
Tunas	Thunnus albacares	Yellowfin tuna	YFT	NT	2.38	2.38	2.38	2.78		
	Thunnus obesus	Bigeye tuna	BET	VU	1.00	2.23	2.38	2.33		
	Katsuwonus pelamis	Skipjack tuna	SKJ	LC	1.00	2.38	2.38	2.78		
Billfishes	Makaira nigricans	Blue marlin	BUM	VU	2.23	2.23	2.69	2.00	1.95	1.38
	Istiompax indica	Black marlin	BLM	DD	2.23	2.23	2.69	2.00	2.34	1.67
	Kajikia audax	Striped marlin	MLS	NT	2.54	2.54	2.54	2.33	2.28	1.45
	Istiophorus platypterus	Indo-Pacific sailfish	SFA	LC	2.54	2.54	2.54	2.44	2.16	1.28
Dolphins	Stenella longirostris	Unidentified spinner dolphin	DSI	DD	1.77	1.00	1.00	1.22		
-	Stenella attenuata	Unidentified spotted dolphin	DPN	LC	1.77	1.00	1.00	1.33		
	Delphinus delphis	Common dolphin	DCO	LC	1.62	1.00	1.00	1.33		
Large fishes	Coryphaena hippurus	Common dolphinfish	DOL	LC	1.00	2.00	2.31	2.78	1.67	0.70
e	Coryphaena equiselis	Pompano dolphinfish	CFW	LC	1.00	1.00	2.38	2.89	1.33	0.35
	Acanthocybium solandri	Wahoo	WAH	LC	1.00	1.00	2.62	2.67	1.63	0.71
	Elagatis bipinnulata	Rainbow runner	RRU	NA	1.00	1.00	2.31	2.78	1.32	0.39
	Mola mola	Ocean sunfish, Mola	MOX	NA	1.00	1.92	1.92	1.78	1.38	1.28
	Caranx sexfasciatus	Bigeye trevally	CXS	LC	1.00	2.38	1.00	2.56	1.26	0.51
	Seriola lalandi	Yellowtail amberjack	YTC	NA	1.00	2.08	1.85	2.44	1.64	0.85
Rays	Manta birostris	Giant manta	RMB	VU	1.92	2.08	1.77	1.22	1.70	1.91
-	Mobula japanica	Spinetail manta	RMJ	NT	1.92	2.08	1.77	1.78	1.70	1.41
	Mobula thurstoni	Smoothtail manta	RMO	NT	1.92	2.08	1.77	1.67	1.70	1.50
Sharks	Carcharhinus falciformis	Silky shark	FAL	NT	2.08	2.08	2.15	1.44	2.55	2.20
	Carcharhinus longimanus	Oceanic whitetip shark	OCS	VU	1.69	1.00	2.08	1.67	2.35	1.90
	Sphyrna zygaena	Smooth hammerhead shark	SPZ	VU	1.77	1.92	2.08	1.33	1.70	1.81
	Sphyrna lewini	Scalloped hammerhead shark	SPL	EN	1.77	1.92	2.08	1.33	1.70	1.81
	Sphyrna mokarran	Great hammerhead shark	SPK	EN	2.08	1.77	1.92	1.33	2.00	1.94
	Alopias pelagicus	Pelagic thresher shark	PTH	VU	1.92	1.92	1.77	1.22	1.68	1.91
	Alopias superciliosus	Bigeye thresher shark	BTH	VU	1.77	2.08	1.46	1.11	1.61	1.99
	Alopias vulpinus	Common thresher shark	ALV	VU	1.92	1.92	1.77	1.67	1.68	1.50
	Isurus oxyrinchus	Short fin mako shark	SMA	VU	2.23	2.23	1.92	1.22	1.81	1.96
Small fishes	Canthidermis maculatus	Ocean triggerfish	CNT	NA	1.00	1.00	2.00	2.33	1.26	0.72
	Sectator ocyurus	Bluestriped chub	ECO	NA	1.00	1.00	2.08	2.22	1.28	0.83
Turtles	Lepidochelys olivacea	Olive ridley turtle	LKV	VU	1.62	2.23	1.62	1.89	2.36	1.76

1.	Introducción	
2.	Impacto de las capturas	
3.	Otra fauna	
4.	Interacciones tróficas	
5.	Ambiente físico	
6.	Indicadores agregados	
7.	Evaluación de riesgos ecológicos	
8.	Modelado de ecosistemas	
9.	Acciones de la CIAT y el APICD relativas a consideraciones de ecosistema	
10.	Acontecimientos futuros	

1. INTRODUCCIÓN

El Código de Conducta para la Pesca Responsable de la FAO (1995) estipula que los Estados y los usuarios de los recursos acuáticos vivos deberían conservar los ecosistemas acuáticos y establece que. las medidas de ordenación deberían asegurar la conservación no sólo de las especies objetivo, sino también de aquellas especies pertenecientes al mismo ecosistema¹. En 2001, la Declaración de Reikiavik sobre Pesca Responsable en el Ecosistema Marino elaboró esos principios con un compromiso de incorporar un enfoque ecosistémico en la ordenación de la pesca.

En consonancia con esos instrumentos, una de las funciones de la CIAT de acuerdo a la Convención de Antigua de 2003 es "adoptar, en caso necesario, medidas y recomendaciones para la conservación y administración de las especies que pertenecen al mismo ecosistema y que son afectadas por la pesca de especies de peces abarcadas por la presente Convención, o que son dependientes de estas especies o están asociadas con ellas, con miras a mantener o restablecer las poblaciones de dichas especies por encima de los niveles en que su reproducción pueda verse gravemente amenazada".

Por consiguiente, la CIAT ha tomado cuestiones de ecosistema en cuenta en muchas de sus decisiones, y el presente informe sobre el ecosistema pelágico de alta mar del Océano Pacífico tropical y subtropical, que constituye el hábitat de los atunes y peces picudos, ha estado disponible desde 2003 para ayudar en la toma de decisiones de ordenación. Esta sección brinda un panorama coherente, resumiendo los conocimientos del impacto directo de la pesca sobre varias especies y grupos de especies en el ecosistema, y presenta los conocimientos del medio ambiente y de otras especies que no son afectadas directamente por la pesca, pero podrían ser afectadas indirectamente mediante interacciones depredador-preso en la red alimenticia.

Este análisis no sugiere objetivos para la incorporación de consideraciones de ecosistema en la ordenación de las pesquerías de atunes o peces picudos ni nuevas medidas de ordenación. Su propósito principal es más bien brindar a la Comisión la oportunidad de asegurar que dichas consideraciones formen parte de su agenda.

Es importante tener en cuenta que la perspectiva que tenemos del ecosistema se basa en el pasado reciente; disponemos de muy poca información sobre el ecosistema antes de que comenzara la explotación. Además, el medio ambiente está sujeto a cambios en varias escalas temporales, entre ellas las conocidas fluctuaciones de El Niño y cambios a mayor plazo recientemente reconocidos, tales como la Oscilación Decadal del Pacífico y otros cambios climáticos.

Además de reportar las capturas de las especies principales de atunes y peces picudos, el personal reporta

¹ El Código también dispone que las medidas de ordenación deberían asegurar que se mantenga la biodiversidad de los ecosistemas acuáticos y se protejan las especies en peligro y que los Estados deberían evaluar los impactos de factores ambientales sobre las poblaciones y especies objetivo que pertenecen al mismo ecosistema o estén asociados a las poblaciones objetivo, o sean dependientes de las mismas, y evaluar la relación entre las poblaciones en el ecosistema.

las capturas incidentales de especies no objetivo que son o retenidas o descartadas. En la presente sección, se presentan datos sobre dichas capturas incidentales en el contexto del efecto de la pesca sobre el ecosistema. Desgraciadamente, mientras que se cuenta con información relativamente buena para los atunes y peces picudos, no se dispone de información para la pesquería entera. La información es completa para los buques cerqueros grandes (de más de 363 toneladas de capacidad de acarreo) que llevan observadores bajo el Acuerdo sobre el Programa Internacional para la Conservación de los Delfines (APICD), y se registra información sobre capturas retenidas también para otros buques cerqueros, barcos cañeros, y gran parte de la flota palangrera. Se dispone de cierta información sobre tiburones retenidas y descartadas en el caso de los cerqueros grandes, y se cuenta con esta información para unos pocos viajes por buques de menor tamaño. Se dispone de poca información sobre las capturas incidentales y descartes de otros buques pesqueros.

2. IMPACTO DE LAS CAPTURAS

2.1. Evaluaciones de especies individuales

En otros documentos preparados para esta reunión se presenta información sobre el efecto de la pesca atunera sobre las poblaciones de especies individuales en el Océano Pacífico oriental (OPO) y evaluaciones detalladas. Una perspectiva ecosistémica requiere un enfoque en cómo la pesca puede haber cambiado varios componentes del ecosistema. Las secciones 2.2 y 2.3 del presente informe presentan información sobre la biomasa actual de cada población considerada comparada con lo que hubiera sido en ausencia de la pesca. Además, la sección 2.2 incluye un resumen de investigaciones recientes de comunidades asociadas a dispositivos agregadores de peces (plantados), incluyendo métodos que podrían conducir a soluciones acerca de cómo reducir la mortalidad por pesca de atunes aleta amarilla y patudo de tamaños no deseados. No hay medidas directas del tamaño de la población antes de que comenzara la pesca y, en todo caso, las poblaciones hubiesen variado entre años. Además, el tamaño de la población sin explotación podría ser afectado por la abundancia de los depredadores y las presas, la cual no es incluida en los análisis de las especies individuales.

2.2. Atunes

En los Documentos <u>SAC-06-05</u>, <u>06</u>, y <u>07</u> se presenta información sobre los efectos de la pesca sobre los atunes aleta amarilla, patudo, y barrilete, respectivamente, y en el <u>informe del Grupo de Trabajo</u> del ISC se trata el atún aleta azul del Pacífico. Se tratará el atún albacora en esta reunión. El Grupo de Trabajo sobre el atún albacora del norte del ISC terminó su <u>evaluación completa de la población</u> en 2014.

El personal de la CIAT publicó recientemente dos estudios enfocados en la reducción potencial de la mortalidad por pesca en la pesquería cerquera de atunes patudo y aleta amarilla de tamaños no deseados y otras especies motivo de preocupación, pero al mismo tiempo seguir capturando los cardúmenes asociados de atún barrilete. El primer estudio evaluó el comportamiento simultáneo de barrilete, patudo, y aleta amarilla en grandes agrupaciones multiespecíficas asociadas a plantados. En el primer estudio, los investigadores documentaron diferencias espaciales y temporales en el comportamiento de la agrupación de cada una de las tres especies de atunes, incluyendo la distribución de profundidades, pero las diferencias no parecen ser suficientes para que modificaciones de las prácticas de pesca con red de cerco puedan evitar de forma efectiva la captura de atunes patudo y aleta amarilla pequeños y optimizar simultáneamente la captura de barrilete en los lances sobre plantados. El segundo evaluó la capacidad de un capitán de pesca de predecir la composición por especies, los tamaños, y las cantidades de atunes asociados a plantados flotando a la deriva, antes de encerrarlos con la red de cerco. Las predicciones del capitán estaban relacionadas de forma significativa con la captura real total y por especies, pero no con las categorías de tamaño por especie, indicando que estaba sobreestimando una especie y subestimando la otra.

2.3. Peces picudos

En las secciones G a J del <u>Informe de la situación de la pesquería 12</u> de la CIAT se presenta información sobre los efectos de la pesca atunera sobre el pez espada, el marlín azul, el marlín rayado, y el pez vela.

2.3.1. Marlín negro y marlín trompa corta

No se han realizado recientemente evaluaciones de las poblaciones de estas especies, pero existen ciertos datos, publicados conjuntamente por científicos del Instituto Nacional de Investigación de Pesquerías de Ultramar (NRIFSF) del Japón y la CIAT en la serie de Boletines de la CIAT, que indican tendencias en las capturas, el esfuerzo, y la captura por unidad de esfuerzo (CPUE).

2.4. Resumen

En las Tablas A-2a y A-2b del Documento <u>SAC-06-03</u> se presentan las estimaciones preliminares de las capturas (incluyendo descartes de la pesca de cerco), en toneladas, de atunes, bonitos, y peces picudos en el OPO durante 2014.

2.5. Mamíferos marinos

En el OPO, se encuentran frecuentemente mamíferos marinos, especialmente delfines manchados (*Stenella attenuata*), tornillo (*S. longirostris*), y comunes (*Delphinus delphis*), asociados con atunes aleta amarilla de entre unos 10 y 40 kg. Los pescadores con red de cerco descubrieron que podían lograr las capturas máximas de aleta amarilla en el OPO si cercaran manadas de delfines asociadas con atunes, y luego liberaran los delfines sin dejar al pescado escapar. La mortalidad incidental de delfines en esta operación fue alta en los primeros años de la pesquería, y las poblaciones de delfines fueron reducidas de sus niveles sin explotación durante las décadas de 1960 y 1970. A partir de fines de la década de los 1980 la mortalidad incidental disminuyó precipitadamente, y ahora hay evidencias de una recuperación de las poblaciones. En la <u>Tabla 1</u> se detallan las estimaciones preliminares de la mortalidad de delfines ocasionada por la pesca en 2014. El personal de la CIAT es responsable de la evaluación de las poblaciones de delfines asociadas a la pesquería atunera de cerco, como base para los límites de mortalidad de delfines establecidos por el Acuerdo sobre el Programa Internacional para la Conservación de los Delfines (APICD).

Los estudios de la asociación de atunes con delfines forman un componente importante del enfoque a largo plazo del personal para comprender las interacciones clave en el ecosistema. El grado al cual los atunes aleta amarilla y los delfines compiten por recursos, o si uno u otro se beneficia de la interacción, por qué los atunes se encuentran con mayor frecuencia asociados a delfines manchados y no con otros delfines, y por qué las especies se asocian más fuertemente en el Pacífico oriental tropical, constituyen información crítica, en vista de la gran biomasa de ambos grupos, y su altas tasas de consumo de presas. Se realizaron tres estudios para tratar estas hipótesis: un estudio de rastreo simultáneo de delfines manchados y atunes aleta amarilla, un estudio de interacciones tróficas que compara sus presas y patrones diarios de alimentación, y un estudio espacial de las características oceanográficas correlacionadas con la asociación atún-delfín. Estos estudios demostraron que la asociación no es ni permanente ni obligatoria, y que los beneficios de la asociación no se basan en ventajas alimenticias. Apoyan la hipótesis que una especie, o ambas, reducen el riesgo de depredación mediante la formación de grupos grandes de especies mixtas. La asociación es más prevalente donde el hábitat de los atunes se encuentra comprimido a las aguas superficiales someras y cálidas de la capa de mezcla por la zona de oxígeno mínimo, una capa gruesa de aguas pobres en oxígeno debajo de la capa de mezcla. La asociación ha sido observada en áreas con condiciones oceanográficas similares en otros océanos, pero es más prevalente y consistente en el Pacífico oriental tropical, donde la zona de oxígeno mínimo es la más hipóxica y extensa del mundo.

Durante agosto-diciembre de 2006, científicos del Servicio Nacional de Pesquerías Marinas (NMFS) de EE.UU. realizaron un crucero de investigación como parte del proyecto STAR (*Stenella Abundance Research*). La meta principal de este estudio plurianual es investigar tendencias en el tamaño de las poblaciones de delfines que son capturadas incidentalmente en la pesquería de cerco en el OPO. Se
tomaron datos de los estudios de transectos lineales a gran escala sobre la distribución y el tamaño y composición de manadas de cetáceos para estimar la abundancia de los delfines. Los datos oceanográficos son recolectados para caracterizar el hábitat y su variación a lo largo del tiempo. Los datos de la distribución y abundancia de los peces presa y los calamares, las aves marinas, y las tortugas marinas caracterizan todavía más el ecosistema en el que viven estos delfines. El estudio de 2006 cubrió las mismas zonas y usó los mismos métodos que los estudios anteriores. Los datos del estudio de 2006 produjeron nuevas estimaciones de abundancia, y se analizaron de nuevo los datos previos para producir estimaciones revisadas, para 10 especies y/o poblaciones de delfines en el OPO entre 1986 y 2006. Las estimaciones de 2006 para el delfín manchado nordeste de altamar fueron algo mayores, y para el delfín tornillo oriental sustancialmente mayores, que aquéllas de los estudios previos en 1998-2000. Las estimaciones de incremento de estas dos poblaciones mermadas, y del delfín manchado costero mermado, podrían indicar que se están recuperando, pero la población del delfín manchado de altamar occidentalsureño podría estar disminuyendo. Las estimaciones de abundancia de 1998-2006 de los delfines manchado costero, tornillo panza blanca, y de dientes rugosos (Steno bredanensis) mostraron una tendencia creciente, mientras que aquéllas de los delfines listado (S. coeruleoalba), común de hocico corto (Delphinus delphis), tonina (Tursiops truncatus), y de Risso (Grampus griseus), fueron generalmente similares a estimaciones previas obtenidas con los mismos métodos. Ya que NMFS no ha realizado más estudios desde 2006, durante el último año se realizó un modelado de las tendencias de la abundancia relativa de delfines usando datos de observadores a bordo de buques cerqueros. Se concluyó que es poco probable que los índices de abundancia relativa derivados de estos datos sean fiables para especies directamente asociadas al proceso de pesca (como los delfines en el OPO). Son no sólo susceptibles a los problemas usuales de cambios en el comportamiento de pesca, sino que también no existe una distinción clara entre un índice de la asociación atún-delfín y de la abundancia de delfines. En los Documentos SAC-05-11d y MOP-30-INF-A se describe esta investigación, así como formas alternativas de dar seguimiento a las poblaciones de delfines.

Científicos del NMFS han calculado estimaciones de la abundancia de varias otras especies de mamíferos marinos a partir de datos de cruceros de investigación realizados entre 1986 y 2000 en el OPO. De las especies no afectadas significativamente por la pesquería atunera, las ballenas piloto de aletas cortas (*Globicephala macrorhynchus*) y tres poblaciones de delfines comunes presentaron tendencias crecientes en abundancia durante esos 15 años. La mayor abundancia aparente de estos mamíferos podría haber

causado una disminución en la capacidad de carga del OPO para otros depredadores que comparten su dieta, entre ellos el delfín manchado. La abundancia estimada de la ballena de Bryde (Balaenoptera edeni) también aumentó, pero coinciden muy poco las dietas de estas ballenas barbadas y de los depredadores de alto nivel afectados por las pesquerías. La abundancia estimada del delfín listado (Stenella coeruleoalba) no demostró ninguna tendencia clara a lo largo del tiempo, y las estimaciones de abundancia del cachalote (Physeter macrocephalus) tendieron a disminuir durante 1986-2000.

Ciertos mamíferos marinos son afectados adversamente por la reducción en la disponibilidad de **TABLA 1.** Mortalidad de delfines y otros mamíferos marinos ocasionada por la pesca en el OPO en 2014.

	Mortalidad incidental			
Especie y población	número	toneladas		
Delfín manchado de altamar				
Nororiental	181	11.8		
Occidental/sureño	168	11.0		
Delfín tornillo				
Oriental	356	15.8		
Panza blanca	183	11.0		
Delfín común				
Norteño	49	3.5		
Central	13	0.9		
Sureño	9	0.6		
Otros mamíferos*	16	1.1		
Total	975	55.7		

*"Otros mamíferos" incluye las siguientes especies y poblaciones, con las mortalidades observadas correspondientes: delfin listado (*Stenella coeruleoalba*) 2 (0.1 t), delfin de dientes rugosos (*Steno bredanensis*) 1 (0.1 t); tonina (*Tursiops truncatus*) 3 (0.3 t); delfines no identificados 10 (0.6 t) alimento durante eventos de El Niño, especialmente en ecosistemas costeros. Ejemplos documentados incluyen delfines y pinnípedos frente a Perú, pinnípedos en las Islas Galápagos, y ballenas de Bryde frente a Perú. Las ballenas grandes pueden desplazarse en reacción a cambios en la productividad y distribución de sus presas.

2.6. Tortugas marinas

Las tortugas marinas son capturadas en los palangres cuando toman el cebo en los anzuelos, se traban al dar accidentalmente con un anzuelo, o se enredan en una línea. Hay pocas estimaciones de la mortalidad incidental de tortugas causada por la pesca con palangre o red de trasmalle. En la <u>cuarta reunión del</u> <u>Grupo de Trabajo sobre Captura Incidental de la CIAT</u> en enero de 2004 se informó que la captura incidental de tortugas en la pesquería palangrera japonesa en el OPO en 2000 consistió de 166 tortugas laúd (*Dermochelys coriacea*), de las cuales 25 estaban muertas, y unas 6,000 tortugas de todas las otras especies, principalmente golfinas (*Lepidochelys olivacea*), de las cuales aproximadamente la mitad estaba muerta. En la <u>sexta reunión del Grupo de Trabajo en febrero de 2007</u>, se informó que la flota española de palangre de superficie que pesca pez espada en el OPO tuvo en promedio 65 interacciones y 8 mortalidades por millón de anzuelos durante 1990-2005. Es probable que las tasas de mortalidad sean similares para otras flotas que pescan atún patudo, y posiblemente mayores que aquéllas flotas que pescan albacora y pez espada a menor profundidad. Unos 23 millones de los 200 millones de anzuelos calados cada año en el OPO por buques palangreros de aguas lejanas están dirigidos hacia el pez espada en palangres poco profundos.

Además, hay una flota considerable de buques palangreros artesanales que pescan atunes, peces picudos, tiburones y dorado (*Coryphaena* spp.) en el OPO. Desde 2005, miembros del personal de la CIAT y de otras organizaciones, junto con los gobiernos de varias naciones costeras de Latinoamérica, han participado en un programa para reducir las tasas de enganche y la mortalidad de tortugas marinas en estas pesquerías. En la sección 8.2 se presenta información adicional sobre este programa.

Las tortugas marinas son capturadas ocasionalmente en redes de cerco en la pesquería atunera del OPO. La mayoría de las interacciones ocurren cuando las tortugas se asocian con objetos flotantes, y son capturados cuando el objeto es cercado; en otros casos, una red calada alrededor de un cardumen de atunes no asociados, o un cardumen asociado con delfines, captura tortugas marinas que están presentes. La tortuga golfina es, por mucho, la especie de tortuga marina capturada con mayor frecuencia por buques cerqueros; la siguen la tortuga verde (*Chelonia mydas*), y, muy ocasionalmente, las tortugas caguama (*Caretta caretta*) y carey (*Eretmochelys imbricata*). Desde 1990, cuando los observadores de la CIAT comenzaron a registrar esta información, hasta 2014, inclusive, se ha registrado mortalidad de solamente tres tortugas laúd. Algunas tortugas no son identificadas por estar demasiado lejos del buque o porque no había suficiente luz para permitir al observador identificarla. A veces las tortugas marinas se enredan en malla debajo de dispositivos agregadores de peces (plantados) y se ahogan. En unos pocos casos, son sacadas del agua por el aparejo de pesca mientras están enmalladas, y pueden caer de la red de alturas considerables y ser heridas, o ser pasadas por la pasteca hidráulica. En la Tabla 2 se presentan las estimaciones preliminares de la mortalidad de tortugas, en número, causada por buques cerqueros grandes

durante 2014, por tipo de lance (sobre objetos flotantes (OBJ), atunes no asociados (NOA), y delfines (DEL)).

La pesca atunera de cerco es probablemente una causa de mortalidad de tortugas marinas **TABLA 2**. Mortalidades de tortugas ocasionadas por buques cerqueros grandes en el OPO en 2014.

	ſ	Tipo de lance		Total	
	OBJ	NOA	DEL	Total	
Golfina	3	-	-	3	
Verde del Pacífico oriental	-	-	-	-	
Caguama	1	-	-	1	
Carey	-	-	1	1	
Laúd	-	-	-	-	
No identificada	1	-	-	1	
Total	5	0	1	6	

menos importante que otros tipos de actividad humana, entre ellas el aprovechamiento de huevos y adultos, utilización de playas, contaminación, enmalle en detritos en el mar, ingestión de los mismos, y los impactos de otras pesquerías.

Las poblaciones de tortugas golfina son clasificadas como vulnerables, las de las tortugas verde y caguama están designadas como en peligro, y las de carey y laúd como en peligro crítico, por la Unión Mundial para la Conservación de la Naturaleza (IUCN).

2.7. Tiburones y otros peces grandes

Los tiburones y otros peces grandes son capturados por buques cerqueros y palangreros. El tiburón sedoso o jaquetón (Carcharhinus falciformis) es la especie de tiburón capturada con mayor frecuencia en la pesquería de cerco, seguido por el tiburón oceánico punta blanca (C. longimanus). Las pesquerías palangreras capturan también tiburones sedosos, y es necesario un análisis de la pesca palangrera y cerquera en el Pacífico entero para estimar el impacto de la pesca sobre la población. Los índices estimados de abundancia relativa de tiburones sedosos grandes, basadas en datos de lances cerqueros sobre objetos flotantes, señalan tendencias decrecientes para los tiburones grandes (>150 de talla total) y medianos (90-150 cm de talla total) durante 1994-2004, y entre 2005 y 2009 permanecieron relativamente constantes en el caso de los tiburones grandes y aumentaron ligeramente en el caso de los medianos. Las tendencias fueron similares en los datos no estandarizados de captura incidental por lance en los dos otros tipos de lance cerquero (no se dispone todavía de datos estandarizados). Las capturas incidentales por lance medias no estandarizadas de tiburones oceánicos también mostraron tendencias descendentes para los tres tipos de lance durante el mismo período. Se ignora si dicha tendencia se debió a la captura incidental en las pesquerías, a cambios en el medio ambiente (quizá asociados con el Niño de 1997-1998), o a otros factores. Las tendencias decrecientes no parecen ser debidas a cambios en la densidad de los objetos flotantes.

Aparte de los tiburones azul y sedoso, no existen evaluaciones de las poblaciones de especies de tiburones en el OPO, y por lo tanto se ignoran los impactos de las capturas incidentales sobre las mismas. Se intentó realizar una evaluación de la población del tiburón sedoso durante el período de 1993-2010 usando el modelo Stock Synthesis. Desgraciadamente, el modelo no pudo ajustar el índice principal de abundancia adecuadamente, y por lo tanto los resultados no fueron fiables, ya que las tendencias relativas y la escala absoluta están comprometidas en la evaluación. Se presentan los resultados en el Documento SAC-05 INF-F. Se estima que la mayoría de las capturas de tiburones sedosos en el OPO son realizadas por palangreros, algunos de los cuales dirigen su esfuerzo hacia los tiburones. Como alternativa a los modelos convencionales de evaluación de poblaciones, en el Documento SAC-05-11a se presenta una serie de posibles indicadores de condición (o estabilidad) de población (SSI) que podrían ser considerados para la ordenación de las poblaciones del norte y del sur del tiburón sedoso en el OPO. Una nueva evaluación de la población del tiburón azul (Prionace glauca) en el Océano Pacífico norte fue realizada por científicos del grupo de trabajo sobre tiburones del ISC en 2014. El informe manifiesta que "Los resultados del modelo de caso de referencia señalaron que la biomasa de la población estaba cerca de la máxima de la serie de tiempo en 1971. disminuyó a su nivel mínimo entre fines de los años 1980 y principios de los 1990, y subsecuentemente aumentó paulatinamente y se estabilizó en una biomasa similar a aquella del principio de la serie de tiempo." Entre mayo de 2007 y junio de 2008 científicos de la CIAT y del NMFS realizaron un proyecto para obtener y archivar muestras de tejido de tiburones, rayas y otros peces grandes, para análisis genéticos. Se están usando los datos de las muestras archivadas en estudios de la estructura de las poblaciones de estos grupos a gran escala, información esencial para las evaluaciones de las poblaciones y que falta generalmente en todo el Océano Pacífico. Los resultados preliminares de un análisis del tiburón sedoso indicaron que, para los fines de la ordenación, los tiburones sedosos en el OPO deberían ser divididos en dos poblaciones, una al norte y la otra al sur de la línea ecuatorial. Además, los resultados de un estudio de ADN mitocondrial en 2013 señalan una ligera divergencia genética entre los tiburones sedosos del Pacífico occidental y

oriental, lo cual apoya una ordenación separada de estas dos poblaciones.

En la <u>Tabla 3</u> se presentan las estimaciones preliminares de las capturas (incluidos los descartes de la pesquería de cerco), en toneladas, de tiburones y otros peces grandes en el OPO durante 2014 (aparte de aquéllos mencionados en lo anterior) por buques cerqueros grandes. No se dispone de datos completos de buques cerqueros pequeños, palangreros y otros.

Las tasas de captura de especies aparte de los atunes en la pesquería cerquera son diferentes para cada tipo de lance. Con unas pocas excepciones, las tasas de captura incidental son máximas en lances sobre objetos flotantes, seguidos por lances no asociados y, en un nivel mucho más bajo, lances sobre delfines. Las tasas de captura incidental de delfines son máximas en lances sobre delfines, seguidos por lances no asociados y, en un nivel mucho más bajo, lances no asociados y, en un nivel mucho más bajo, lances no asociados y, en un nivel mucho más bajo, lances no asociados y, en un nivel mucho más bajo, lances sobre objetos flotantes. En general, las tasas de captura incidental de rayas (Mobulidae), y mantarrayas (Dasyatidae) son máximas en lances no asociados, seguidos por lances sobre delfines, y mínimas en lances sobre objetos flotantes, aunque 2014 es una excepción. Debido a estas diferencias, es necesario seguir los cambios en la frecuencia de los distintos tipos de lance para poder interpretar los cambios en los datos de captura incidental. En la Tabla A-7 del Documento <u>SAC-06-03 se</u> detalla el número estimado de lances cerqueros de cada tipo realizados durante 1999-2014 en el OPO.

La reducción de la captura incidental es una meta de la ordenación pesquera ecosistémica. Un estudio publicado recientemente analizó la proporción de captura incidental a captura objetivo, en una gama de tamaños de lance. El estudio demostró que la proporción de captura incidental total a captura de atún y captura incidental de tiburón sedoso disminuyó a medida que aumentó el tamaño de lance. La proporción de captura incidental fue máxima en lances que capturan menos de 20 t.

En octubre de 2006, el NMFS convocó una reunión técnica sobre la reducción de la captura incidental en la pesquería de cerco en el OPO. Los asistentes apoyaron una propuesta de investigación de métodos para reducir la captura incidental de los tiburones, alejándolos de los objetos flotantes antes de calar la red. Apoyaron también una serie de experimentos de campo sobre aparejos y técnicas para reducir la captura incidental; incluirían modificación y manipulación de los plantados, una evaluación de indicadores de comportamiento y fisiológicos de estrés, y sacar los animales vivos de la red y de la cubierta (por ejemplo, rejas clasificadoras, puertas de burbujas, y bombas de vacío). Una tercera idea fue usar los datos de la CIAT para determinar si los factores espaciales, temporales, y ambientales pueden ser usados para predecir las capturas incidentales en los lances sobre plantados y para determinar en cuál grado las vedas de temporada o zona serían eficaces para reducir dichas capturas incidentales.

Científicos en la Universidad de Washington realizaron un análisis de la frecuencia temporal de zonas de captura incidental elevada del tiburón sedoso en los lances cerqueros sobre objetos flotantes, el cual será

	Tipo de lance		Tatal	
	OBJ	NOA	DEL	Total
Tiburón sedoso o jaquetón (Carcharhinus falciformis)	212	55	38	305
Tiburón oceánico punta blanca (C. longimanus)	<1	<1	0	<1
Cornudas (Sphyrna spp.)	79	6	1	86
Tiburones zorro (Alopias spp.)	2	2	6	10
Otros tiburones	58	5	4	67
Mantarayas (Mobulidae)	5	35	28	69
Raya látigo del Pacífico (Dasyatidae)	<1	<1	<1	1
Dorado (<i>Coryphaena</i> spp.)	1912	26	<1	1939
Peto (Acanthocybium solandri)	786	2	<1	787
Salmón (Elagatis bipinnulata) y jurel (Seriola lalandi)	31	2	<1	34
Otros peces grandes	35	685	3	723

TABLA 3. Capturas, en toneladas, de tiburones y otros peces grandes, por buques cerqueros grandes con observador a bordo en el OPO, 2014

útil para determinar la eficacia de las vedas de tiempo y zona como método de reducción de la captura incidental de tiburones. Los resultados señalan que tanto las predicciones del modelo como los datos observados suelen indicar que la frecuencia de estas capturas incidentales fue máxima al norte de 4°N y al oeste de 100-105°O. Sin embargo, debido a las grandes capturas de atún al sur de 5°N, se lograría la mayor reducción de esta captura incidental con la menor pérdida de captura de atún al norte de aproximadamente 6°N.

El dorado (*Coryphaena hippurus*) es una de las especies más importantes capturadas en las pesquerías artesanales de las naciones costeras del OPO. Es también capturado incidentalmente en la pesquería atunera de cerco en el OPO. Bajo la Convención de Antigua y su enfoque ecosistémico a la pesca, es por lo tanto apropiado que el personal de la CIAT estudie la especie, con miras a determinar el impacto de la pesca, y recomendar medidas de conservación apropiadas para este importante recurso en caso necesario. En este contexto, algunos Miembros de la CIAT costeros de la región han solicitado que se realice una investigación colaborativa con el personal de la CIAT para poder contar con información científica sólida para este propósito.

La CIAT celebró su <u>primera reunión técnica</u> sobre el dorado en 2014. La reunión tuvo tres objetivos: 1) promover la sinergia en los Miembros de la CIAT para una investigación regional del dorado en el OPO; 2) revisar la situación actual con respecto a los conocimientos del dorado e identificar los conjuntos de datos disponibles en las pesquerías/regiones del OPO; y 3) formular un plan de investigación colaborativa futura. Hasta la fecha, este esfuerzo colaborativo incluye: análisis de las estadísticas de captura comerciales disponibles, mejora de los programas de recolección de datos de campo, investigación de tendencias estacionales, e identificación de unidades de pesca. Además, se está analizando los datos de pesca de dorado disponibles de los Miembros de la CIAT y otras naciones a fin de desarrollar indicadores de condición de población (SSI) que potencialmente podrían formar una base para un asesoramiento sobre la ordenación de la especie en el OPO (ver <u>SAC-05-11b</u>). El trabajo continuará en 2015.

3. OTRA FAUNA

3.1. Aves marinas

Hay aproximadamente 100 especies de aves marinas en el OPO tropical. Algunas aves marinas se asocian con depredadores epipelágicos cerca de la superficie del agua, tales como peces (especialmente atunes) y mamíferos marinos. Estos depredadores arrean a las presas a la superficie para atraparles en la interfaz entre el agua y el aire, donde las aves las pueden alcanzar. La mayoría de las especies de aves marinas capturan sus presas a menos de medio metro de la superficie del mar o en el aire (peces voladores (Exocoetidae) y calamares (principalmente Ommastrephidae)). Los depredadores subsuperficiales causan que las aves puedan conseguir las presas más fácilmente no sólo al arrearlas a la superficie, sino también al herirlas o desorientarlas y al dejar restos después de alimentarse de presas grandes. Las oportunidades de alimentación de algunas especies de aves marinas dependen de la presencia de cardúmenes de atunes alimentándose cerca de la superficie.

Las aves marinas son afectadas por la variabilidad del ambiente oceánico. Durante el Niño de 1982-1983, las poblaciones de aves marinas en todo el Océano Pacífico tropical y noreste padecieron fracasos de reproducción y mortalidades masivas, o migraron a otros lugares en busca de alimento. Algunas especies, empero, aparentemente no son afectadas por eventos de El Niño. En general, las aves marinas que se alimentan en las zonas de afloramiento del OPO tropical y la Corriente de Perú padecen fracasos de reproducción y mortalidades debido a falta de alimento durante eventos de El Niño, mientras que aquéllas que se alimentan en zonas menos afectadas por El Niño podrían resultar relativamente ilesas.

Según el *Report of the Scientific Research Program under the U.S. International Dolphin Conservation Program Act* (Informe del Programa de Investigación Científica bajo la Ley sobre el Programa Internacional para la Conservación de los Delfines de EE.UU.), preparado por el NMFS en septiembre de 2002, no hubo tendencias temporales significativas en las estimaciones de abundancia del período de 1986-2000 de ninguna

especie de ave marina en el OPO tropical, excepto una tendencia decreciente en caso del petrel de Tahití (*Pseudobulweria rostrata*). Se están revisando la condición y las tendencias de las poblaciones de albatros de las Galápagos (*Phoebastria irrorata*), patinegro (*P. nigripes*), y de Laysan (*P. immutabilis*).

Algunas aves marinas, especialmente los albatros y petreles, son susceptibles a la captura en los anzuelos cebados en las pesquerías palangreras pelágicas. Datos de rastreo por satélite y de observaciones en el mar han identificado la importancia del Área de la CIAT para los albatros de las Galápagos, de Laysan, y ojeroso (*Thalassarche melanophrys*), más varias especies que se crían en Nueva Zelanda pero que se alimentan frente a Sudamérica. El albatros de las Galápagos es motivo de preocupación especial, por ser endémico del OPO y anidar únicamente en Galápagos. Los datos de observadores en buques artesanales no indicaron interacciones del albatros de Galápagos con las faenas de pesca de estos buques. Los datos de la pesquería palangrera pelágica de EE.UU. in el Pacífico nordeste indican que ocurren capturas incidentales de albatros patinegro y de Laysan. Se dispone de pocos datos comparables de las pesquerías palangreras en el Pacífico central y sudeste. En la sexta reunión del Grupo de Trabajo en febrero de 2007, se informó que la flota española de palangre de superficie que pesca pez espada en el OPO tuvo en promedio 40 interacciones con aves marinas por millón de anzuelos durante 1990-2005, casi todas de las cuales resultaron en mortalidad. En 2007, el Grupo de Trabajo sobre Evaluaciones de Poblaciones de la CIAT identificó áreas de vulnerabilidad a la pesca industrial de palangre para varias especies de albatros, y propuso medidas de mitigación. Ver también la <u>sección 9.3</u>.

3.2. Alimento

Los grupos taxonómicos de alimento que ocupan los niveles tróficos medios en el OPO son obviamente componentes importantes del ecosistema, formando un vínculo entre los productores primarios en la base de la red trófica y los depredadores de nivel trófico superior, como los atunes y peces picudos. Los efectos indirectos sobre estos depredadores causados por la variabilidad ambiental son transmitidos a los niveles tróficos superiores por medio de los grupos taxonómicos de alimento. Sin embargo, se sabe poco acerca de las fluctuaciones en abundancia de la gran variedad de especies de presas en el OPO. Científicos del NMFS registraron datos sobre la distribución y abundancia de grupos de presas comunes, entre ellos peces linterna (Myctophidae), peces voladores, y ciertos calamares, en el OPO tropical durante 1986-1990 y 1998-2000. Las estimaciones de abundancia media de todos los grupos taxonómicos de peces, y en menor grado los calamares, aumentaron durante 1986-1990; fueron bajas de nuevo en 1998, y luego aumentaron hasta 2000. Su interpretación de este patrón fue que los eventos de El Niño en 1986-1987 y 1997-1998 ejercieron efectos negativos sobre estas poblaciones de presas. Durante los cruceros STAR de NMFS en 2003 y 2006 se obtuvieron más datos sobre estos grupos taxonómicos.

Los cefalópodos, especialmente los calamares, desempeñan un papel central en la mayoría de las redes alimenticias pelágicas marinas al conectar las biomasas masivas de micronecton, particularmente los peces mictófidos, con muchos depredadores oceánicos. En vista del alto flujo trófico que pasa por la comunidad de calamares, se cree importante un esfuerzo investigativo concertado sobre los calamares para comprender su papel como presa y depredador clave. En 2013, se dedicó un volumen especial de la revista *Deep Sea Research II, Topical Studies in Oceanography* (Vol. 5) al papel de los calamares en los ecosistemas pelágicos. El volumen cubre cinco áreas principales de investigación: calamares como presas, calamares como depredadores, el papel de los calamares en los ecosistemas marinos, fisiología, cambio climático, y el calamar de Humboldt o gigante (*Dosidicus gigas*) como ejemplo reciente de plasticidad ecológica en una especie de cefalópodo.

El tamaño y la distribución geográfica de las poblaciones del calamar de Humboldt en el OPO han aumentado en los últimos años. Por ejemplo, extendió su distribución geográfica al norte a las aguas frente a Alta California central desde 2002 hasta mediados de 2010. Además, en 2002 los observadores en buques atuneros de cerco reportaron incrementos de las capturas incidentales de la especie con los atunes, principalmente el barrilete, frente al Perú. Las etapas juveniles de este calamar constituyen una presa común de los atunes aleta amarilla y patudo, y de otros peces depredadores, y el calamar de Humboldt es

	Tipo de lance		Tatal	
	OBJ	NOA	DEL	Total
Peces ballesta (Balistidae) y cachúas (Monacanthidae)	326	<1	<1	326
Otros peces pequeños	22	<1	<1	22
Melvas (Auxis spp.)	297	30	1	328

TABLA 4. Capturas de peces pequeños, en toneladas, por buques cerqueros grandes con observador a bordo en el OPO, 2014

también un depredador voraz de peces pequeños y de cefalópodos en toda su zona de distribución. Han sido observados atacando a los atunes aleta amarilla y barrilete en una red de cerco. Estos calamares no sólo han afectado los ecosistemas a los cuales se han expandido, sino que se piensa que son capaces de afectar la estructura trófica en las regiones pelágicas. Cambios en la abundancia y distribución geográfica del calamar de Humboldt podrían afectar el comportamiento de alimentación de los atunes y otros depredadores, cambiando quizá su vulnerabilidad a la captura.

Algunos peces pequeños, muchos de los cuales son alimento para los depredadores más grandes, son capturados por buques cerqueros en el OPO. Las melvas (Auxis spp.), por ejemplo, son presas comunes de muchos de los animales que ocupan los niveles tróficos superiores en el OPO tropical. En el modelo del ecosistema del OPO tropical (Sección 7), las melvas forman el 10% a más de la dieta de ocho especies o grupos de depredadores. Pequeñas cantidades de melvas son capturadas por buques cerqueros en alta mar, y por pesquerías artesanales locales en algunas regiones costeras de América Central y del Sur. La gran mayoría de las melvas capturadas por buques atuneros de cerco es descartada en el mar. En la Tabla 4 se presentan las estimaciones preliminares de las capturas (incluidos los descartes de la pesca de cerco), en toneladas, de peces pequeños, por buques cerqueros grandes con observadores a bordo en el OPO durante 2013.

3.3. Peces larvales y plancton

Desde hace muchos años, el personal del Southwest Fisheries Science Center del NMFS captura peces larvales en el OPO con redes de arrastre de superficie. De las 314 categorías taxonómicas identificadas, se descubrió que 17 tenían la mayor probabilidad de mostrar los efectos de cambios ambientales. La frecuencia, abundancia, y distribución de estos grupos clave no mostró ninguna tendencia temporal consistente. Investigaciones recientes demuestran una pendiente longitudinal en la estructura comunal de los conjuntos de ictioplanctón la charca cálida, con la abundancia, riqueza de especies, y diversidad de especies altas en el este (donde la termoclina es poco profunda y la productividad primaria es alta) y bajas pero variables en el oeste (donde la termoclina es profunda y la productividad primaria es baja).

Las poblaciones de fitoplancton y zooplancton en el OPO tropical son variables. Por ejemplo, las concentraciones de clorofila en la superficie del mar (un indicador de afloramientos de fitoplancton) y la abundancia de copépodos fueron reducidas marcadamente durante el Niño de 1982-1983, especialmente al oeste de 120°O. Similarmente, las concentraciones de clorofila en la superficie disminuyeron durante el Niño de 1986-1987 y aumentaron durante la Niña de 1988 debido a cambios en la disponibilidad de nutrientes.

La composición por especies y tamaños del zooplancton es a menudo más variable que la biomasa de zooplancton. Cuando aumenta la temperatura del agua, las especies de agua cálida a menudo reemplazan las especies de agua fría en lugares particulares. La abundancia relativa de copépodos pequeños frente al norte de Chile, por ejemplo, aumentó durante el Niño de 1997-1998, mientras que la biomasa de zooplancton no cambió.

Los copépodos forman a menudo el componente predominante de la producción secundaria en los ecosistemas marinos. Un estudiante del Centro Interdisciplinario de Ciencias Marinas del Instituto

Politécnico Nacional en La Paz (México), realizó un análisis de la estructura trófica entre la comunidad de copépodos pelágicos en el OPO, usando muestras recolectadas por científicos del proyecto STAR del NMFS. Se usaron los valores del isótopo estable de nitrógeno de copépodos omnívoros en un análisis separado de la posición trófica del atún aleta amarilla, tratando los copépodos como sustituto de la variabilidad isotópica en la base de la red alimenticia (ver la sección siguiente).

4. INTERACCIONES TRÓFICAS

Los atunes y peces picudos son depredadores generalistas de gran alcance con requisitos energéticos elevados, y como tal, son componentes clave de los ecosistemas pelágicos. No se entienden bien las relaciones ecológicas entre estos grandes depredadores pelágicos, y entre ellos y los animales de niveles tróficos más bajos. A la luz de la necesidad de evaluar las implicaciones de las actividades de pesca sobre los ecosistemas subyacentes, es esencial adquirir información exacta sobre los vínculos tróficos y los flujos de la biomasa por la red de alimentación en los ecosistemas del océano abierto, así como conocimientos básicos de la variabilidad natural impuesta por el medio ambiente.

Históricamente, los conocimientos de la ecología trófica de los peces depredadores se basaron en análisis del contenido de los estómagos y, más recientemente, en indicadores químicos. Los depredadores pelágicos grandes son considerados muestreadores eficaces de los organismos micronécticos, que son mal muestreados por redes y arrastres. Los estudios de las dietas han descubierto muchos de los vínculos tróficos clave en el OPO pelágico, y han formado la base para la representación de las interacciones de las red de alimentación en un modelo de ecosistema (Boletín de la CIAT, Vol. 22, No. 3) para explorar los efectos indirectos de la pesca sobre el ecosistema. Por ejemplo, estudios en las décadas de 1990 y 2000 descubrieron que la presa más común de los atunes aleta amarilla capturados por buques cerqueros en alta mar fue las melvas (*Auxis* spp.), el cangrejo rojo (*Pleuroncodes planipes*), calamares de Humboldt, un pez mesopelágico (*Vinciguerria lucetia*), y varios peces epipelágicos. El atún patudo se alimenta a mayor profundidad que el aleta amarilla y barrilete, y consume principalmente cefalópodos y peces mesopelágicos. Se informó, a fines de los años 1950, que la presa más importante del barrilete fue, en general, los crustáceos eufásidos mientras que a principios de los 1990 el pequeño pez mesopelágico *Vinciguerria lucetia* pareció predominar en la dieta. Los atunes que se alimentan cerca de la costa utilizan a menudo presas diferentes a aquéllos capturados mar afuera.

Los estudios históricos de la dieta de los atunes en el OPO se basaban en datos cualitativos de pocas muestras, con poca o ninguna indicación de la importancia relativa de las presas. Los estudios contemporáneos, en cambio, usan índices de dieta, típicamente importancia por volumen o peso, importancia numérica, y frecuencia de presencia de presas, para cuantificar la composición de la dieta, a menudo en conjunto con indicadores químicos, tales como análisis de isótopos estables y ácidos grasos. Recientemente, se resumió la información sobre la bioenergética, dietas, separación en nichos, raciones diarias, indicadores químicos de dieta, y variabilidad climática y efectos potenciales del cambio climático sobre la ecología trófica de los atunes en todos los océanos en un capítulo titulado "Bioenergética, ecología trófica, y separación por nichos de los atunes" de un libro, titulado "Los atunes y sus pesquerías: salvaguardando la sustentabilidad en el siglo 21", que será publicado en 2015. Cada especie de atún parece tener una estrategia de alimentación generalizada, en el sentido que sus dietas fueron caracterizadas por una alta diversidad de presas y una baja abundancia general de tipos de presa individual.

Se han desarrollado nuevos métodos estadísticos para analizar datos complejos y multivariables de contenido de estómagos mediante una colaboración internacional, *Climate Impacts on Oceanic Top Predators-Integrated Marine Biogeochemistry and Ecosystem Research* (CLIOTOP-IMBER), grupo de trabajo 3 (Rutas tróficas en ecosistemas del océano abierto), para evaluar la trofodinámica de los depredadores ápice marinos. Esta metodología parece prometedora para el análisis de relaciones biológicas, medioambientales, temporales, y espaciales en un marco de modelado de árbol de clasificación que predice la composición de las presas de los depredadores. Dos estudios recientes del

atún aleta amarilla y el tiburón sedoso en el OPO, comentados a continuación, usaron esta metodología para inferir cambios espaciales (aleta amarilla y tiburón sedoso) y temporales (aleta amarilla) basados en datos de contenido de estómagos.

Las muestras de estómago de un depredador generalista ubicuo, como el atún aleta amarilla, pueden ser usadas para inferir cambios en las poblaciones de presas mediante la identificación de cambios en el comportamiento de alimentación a lo largo del tiempo. Las poblaciones de presas que soportan depredadores de alto nivel varían a lo largo del tiempo (ver 3.2 Alimento), y algunas presas ejercen una presión de depredación considerable sobre los animales que ocupan los niveles tróficos más bajos (incluyendo las primeras etapas de vida de peces grandes). Un análisis exhaustivo de la depredación por el atún aleta amarilla a escala decadal en el OPO fue completado en 2013. Se tomaron muestras de 6,810 peces capturados en 433 lances cerqueros durante dos periodos de dos años separados por una década. Simultáneamente, reducciones generalizadas de la producción biológica, cambios en la composición de las comunidades de fitoplancton, y una expansión vertical e intensificación de la zona de oxígeno mínimo parecieron modificar las redes alimenticias en los océanos tropicales y subtropicales (ver 5. Ambiente físico). Se usó un enfoque de árbol de clasificación modificado, antes mencionado, para analizar covariables espaciales, temporales, ambientales, y biológicas que explican los patrones de depredación del aleta amarilla durante 1992-1994 y 2003-2005. En el caso de la mayoría de la población de aleta amarilla en el OPO fue aparente un cambio importante en la dieta durante la década. Los peces fueron más abundantes (en peso) a principios de los años 1990, mientras que los cefalópodos y crustáceos predominaron una década más tarde. Como grupo, los peces epipelágicos disminuyeron del 82% de la dieta en 31%, mientras que las especies mesopelágicas aumentaron de 9% a 29% durante la década. Gráficas espaciales de dependencia parcial señalaron expansiones de la distribución de Vinciguerria lucetia, el calamar de Humboldt (Dosidicus gigas), y el cangrejo Pleuroncodes planipes, reducciones de la distribución de melvas (Auxis spp.) y Lactoria diaphana, y una desaparición casi completa de Cubiceps spp. de la dieta. Los datos de las tasas de depredación sugiere que las biomasas de V. lucetia y D. gigas aumentaron en la primera mitad de la década de 2000 y que la distribución de D. gigas aparentemente se extendió mar afuera además de hacia el norte y el sur (ver 3.2 Alimento).

Las representaciones de la red alimenticia que forman la base de los modelos ecosistémicos son generalmente altamente generalizados, y no toman en cuenta la variabilidad espacial y temporal. A fin de mejorar los conocimientos del papel del tiburón sedoso en el ecosistema, se realizó en 2014 un análisis de la variabilidad especial, basado en el contenido de los estómagos de 289 tiburones sedosos capturados incidentalmente en lances sobre objetos flotantes, principalmente dispositivos agregadores de peces (plantados) flotando a la deriva, en la pesquería atunera de cerco en el OPO. El conjunto de datos es novedoso porque es difícil obtener datos biológicos de tiburones carcarínidos del océano abierto, y porque incluye datos de tiburones sedosos capturados en una región amplia del OPO tropical. Los resultados de las metodologías de árbol de clasificación y la regresión de cuantiles sugieren que el tiburón sedoso es un depredador oportunista que se alimenta de una variedad de presas. Las covariables a escala amplia espaciales y de tamaño de tiburón explicaron los hábitos alimenticios del tiburón sedoso. Se descubrió un cambio espacial fuerte en la dieta, con patrones de alimentación distintos en las regiones oriental (costera) y occidental (alta mar). Se observaron proporciones mayores de presas asociadas a plantados que de presas no asociadas a plantados en la dieta en todo el OPO, pero especialmente en la región de alta mar. Los atunes aleta amarilla y tiburones sedosos compartieron algunos de los mismos recursos de presas durante los dos bienios separados por una década, por ejemplo, calamar de Humboldt, peces voladores, Jacques y pampanos, y tetraodontiformes. Al igual que en el caso del aleta amarilla, es probable que los factores espaciales y temporales jueguen un papel en la determinación de los hábitos de depredación del tiburón sedoso, pero las muestras fueron insuficientes para comprobar si la dieta de los tiburones ha cambiado a lo largo del tiempo. El análisis produjo una descripción exhaustiva de la depredación por el tiburón sedoso en el OPO, al mismo tiempo que demostró la necesidad de una mayor cobertura de muestreo espacial y temporal, y presente información importante sobre el componente dinámico de las interacciones tróficas del tiburón sedoso, que puede ser usada para mejorar los modelos ecosistémicos en

el futuro.

Los estudios de ecología trófica se han enfocado en entender redes de alimentación enteras, inicialmente con descripciones de las conexiones interespecíficas entre las comunidades de depredadores, formadas por los atunes, tiburones, peces picudos, el dorado, peto, salmón, y otros. En general, es evidente una repartición considerable de recursos entre los componentes de estas comunidades, y los investigadores buscan comprender la escala espacial de los patrones tróficos que se pueden observar, así como la influencia de la variabilidad climática sobre estos patrones. En 2012 se publicó un análisis de la depredación por un grupo de depredadores ápice (incluyendo tiburones, peces picudos, atunes, y otros peces y mamíferos) sobre los atunes aleta amarilla y barrilete en el OPO. Las tasas de depredación sobre el aleta amarilla y barrilete fueron altas para los tiburones y peces picudos, y esos animales consumieron atunes de una amplia gama de tamaños, incluyendo subadultos capaces de hacer una contribución importante a la producción reproductora de las poblaciones de atunes. Los atunes tropicales en el OPO actúan más como mesodepredadores que no depredadores ápice.

Mientras que los estudios de la dieta han contribuido mucho a los conocimientos de la materia, los análisis de isótopos estables son un complemento útil al contenido de los estómagos para delinear la estructura compleja de las redes de alimentación marinas. El contenido de los estómagos representa una muestra de solamente las horas más recientes de alimentación en el momento en el que fue capturado el animal, y bajo las condiciones necesarias para su captura. Los isótopos estables de carbono y nitrógeno, en cambio, integran información sobre todos los componentes de la dieta entera en el tejido del animal, brindando así un historial reciente de las interacciones tróficas e información sobre la estructura y dinámica de las comunidades ecológicas. AA-CSIA (compound-specific stable isotope analysis, o análisis de isótopos estables por compuesto) de los aminoácidos brinda una mayor comprensión. En muestras de tejido de consumidores, los aminoácidos "fuente" (por ejemplo, fenilalanina, glicina) retuvieron los valores isotópicos en la base de la red de alimentación, y los aminoácidos "tróficos" (por ejemplo, ácido glutámico) fueron enriquecidos en ¹⁵N aproximadamente un 7.6‰ con respecto a la línea de referencia. En AA-CSIA, el tejido de los depredadores por sí mismo es suficiente para estimaciones de la posición trófica, y no es necesario un análisis separado de la composición isotópica de la base de la red de alimentación. Un análisis reciente de la distribución espacial de los valores de los isótopos estables del atún aleta amarilla en relación con aquéllos de los copépodos indicó que la posición trófica del atún aleta amarilla aumentó con distancia de la costa en el OPO, una característica de la red de alimentación nunca detectada en la dieta. Esto es probablemente resultado de diferencias en la longitud de la cadena alimentaria debidas a la composición por especies del fitoplancton (especies de tamaño de célula pequeño) en las aguas oligotróficas de alta mar comparada con las especies de diátomas más grandes en las aguas orientales más productivas.

CSIA fue utilizado recientemente en el OPO y otras regiones mediante una beca de investigación del programa CAMEO (*Comparative Analysis of Marine Ecosystem Organization*), implementado conjuntamente por NMFS y la División del Ciencias Oceánicas de la Fundación Nacional para la Ciencia de EE.UU. La investigación colaborativa entre la CIAT, la Universidad de Hawai, la Institución Scripps de Oceanografía, y el Instituto Oceánico de Hawai busca desarrollar el análisis isotópico de aminoácidos por compuesto como herramienta capaz de producir una evaluación insesgada de posición trófica para una amplia variedad de organismos marinos, y usar esta información para validar los resultados de modelos ecosistémicos de balance de masas trófico. Y para lograr este objetivo, la investigación combina experimentos de laboratorio y recolecciones de campo en ecosistemas contrastantes con pesquerías importantes. El componente de campo fue realizado en distintos ambientes biogeoquímicos, incluyendo el OPO ecuatorial, a fin de examinar la posición trófica de una variedad de especies individuales, desde macrozooplancton hasta peces grandes, y comparar las estimaciones de posición trófica derivadas de AA-CSIA para esas especies con los resultados del modelo ecosistémico. El proyecto comenzó en 2010 y fue extendido hasta 2014.

La mayor parte de las muestras de la porción del OPO del estudio fueron obtenidas y almacenadas

congeladas por el personal de la División de Recursos Protegidos del Centro Sudoeste de Ciencia Pesquera de NMFS, a bordo de los buques de investigación *David Starr Jordan y McArthur II* durante el proyecto STAR (*Stenella Abundance Research Project*) en 2006. Las muestras para el estudio abarcan casi la red alimentaria en el OPO, y todas fueron tomadas a lo largo de un transecto este-sudoeste que aparentemente abarcaba una pendiente de productividad. Los componentes incluyen macroplancton (dos crustáceos eufásidos, *Euphausia distinguenda y E. tenera*), micronectón mesopelágico (dos peces myctófidos, *Myctophum nitidulum y Symbolophorus reversus*), cefalópodos (dos especies de calamares pelágicos, *Dosidicus gigas y Sthenoteuthis oualaniensis*), y micronectonívoros y nectonívoros pequeños y grandes (atunes barrilete, aleta amarilla, y patudo capturados a bordo de buques cerqueros comerciales que pescaron en el OPO durante 2003-2005).

Se realizaron análisis de isótopos estables de tejidos inertes y aminoácidos en varios especímenes de cada una de las especies arriba detalladas. Los valores δ^{15} N del tejido inerte variaron marcadamente en función de las pendientes de longitud y latitud. No hubo tendencias longitudinales marcadas, pero los valores δ^{15} N aumentaron consistentemente con aumentos de latitud. En cambio, las estimaciones de posición trófica basadas en los valores δ^{15} N de los aminoácidos variaron poco intraespecíficamente a través del transecto muestreado. Estos dos resultados sugieren que la variabilidad en la red alimentaria se debe probablemente a variabilidad biogeoquímica en la base de la red alimentaria más que a diferencias en las dietas dentro de la red alimentaria. Valores de δ^{15} N crecientes con latitud corresponden a altas tasas de denitrificación asociadas a la gran zona de oxígeno minimo en el OPO. Comparaciones entre especies de posición trófica absoluta basadas en estimaciones de AA-CSIA con estimaciones basadas en dieta del modelo del ecosistema del OPO (Boletín de la CIAT, Vol. 22, No. 3) señalaron subestimaciones para los depredadores que ocupan los niveles trófico más altos, es decir, los tres atunes y dos calamares. Estas subestimaciones se deben probablemente a que el enriquecimiento trófico previamente aceptado de 7.6 ‰ para fenilalanina y ácido glutámico, derivado de experimentos de laboratorio con productores primarios y consumidores inverterbrados, no es adecuado para los depredadores de niveles más altos. Esta cuestión está también siendo tratada por colaboradores en el proyecto CAMEO.

5. AMBIENTE FÍSICO²

Las condiciones ambientales afectan a los ecosistemas marinos, la dinámica y capturabilidad de los atunes y peces picudos, y las actividades de los pescadores. Los atunes y peces picudos son pelágicos durante todas las etapas de la vida, y los factores físicos que afectan al Océano Pacífico tropical y subtropical pueden ejercer efectos importantes sobre su distribución y abundancia. Se cree que las condiciones ambientales causan una variabilidad considerable en el reclutamiento de los atunes y peces picudos. Las evaluaciones de las poblaciones realizadas por la CIAT a menudo han incorporado el supuesto que las condiciones oceanográficas podrían afectar el reclutamiento en el OPO.

Distintos tipos de perturbaciones climáticas podrían afectar la pesca de distintas formas. Se cree que una termoclina poco profunda en el OPO contribuye al éxito de la pesca atunera de cerco, actuando tal vez de barrera térmica para los cardúmenes de atunes pequeños, manteniéndolos cerca de la superficie del agua. Cuando la termoclina se hunde, como durante un evento de El Niño, los atunes parecen ser menos vulnerables a la captura, y las tasas de captura disminuyen. Temperaturas superficiales del mar (TSM) cálidas o frías pueden asimismo causar que estos peces móviles se desplacen a un hábitat más favorable.

El ambiente oceánico varía en una variedad de escalas temporales, de estacional a interanual, decadal, y mayores (por ejemplo, fases o regímenes climáticos). La causa dominante de variabilidad en las capas superiores del OPO es conocida como El Niño-Oscilación del Sur (ENOS). El ENOS es una fluctuación irregular que afecta al Océano Pacífico tropical entero y la atmósfera global. Resulta en variaciones de los vientos, la precipitación, profundidad de la termoclina, circulación, productividad biológica, y la

² Parte de la información en esta sección proviene de Fiedler, P.C. 2002. *Environmental change in the eastern tropical Pacific Ocean: review of ENOS and decadal variability*. Mar. Ecol. Prog. Ser. 244: 265-283.

alimentación y reproducción de peces, aves y mamíferos marinos. Los eventos de El Niño ocurren a intervalos de entre 2 y 7 años, y son caracterizados por vientos alisios más débiles, una termoclina más profunda, y TSM anormalmente elevadas en el OPO ecuatorial. La fase contraria de El Niño, denominado comúnmente La Niña, es caracterizada por vientos alisios más fuertes, una termoclina menos profunda, y TSM más bajas. La investigación ha documentado una conexión entre el ENOS y la tasa de producción primaria, la biomasa de fitoplancton, y la composición por especies del fitoplancton. Durante los episodios de El Niño disminuye el afloramiento de agua subsuperficial, rica en nutrientes, lo cual lleva a una reducción notoria en la producción primaria y secundaria. El ENOS también afecta directamente a los animales en los niveles tróficos medianos y altos. Los investigadores han concluido que el Niño de 1982-1983, por ejemplo, incrementó la profundidad de la termoclina y nutriclina, redujo la producción primaria, redujo la abundancia de zooplancton, y al final redujo las tasas de crecimiento, el éxito reproductivo, y la supervivencia de varias aves, mamíferos, y peces en el OPO. Sin embargo, en general los moradores del océano se recuperan en períodos cortos, porque su ciclo vital está adaptado para responder a un hábitat variable.

El personal de la CIAT emite informes trimestrales de los datos oceanográficos y meteorológicos mensuales medios del OPO, incluyendo un resumen de las condiciones actuales del ENOS. En enero de 2014, las TSM fueron muy cercanas al nivel normal en todo el OPO tropical. En febrero apareció una franja de agua fría que se extendía a lo largo de la línea ecuatorial desde la costa de Sudamérica hasta aproximadamente 145°O, pero para abril había desaparecido. Hubo también manchas de agua fría a lo largo del litoral de Ecuador y Perú desde marzo hasta mayo. Manchas de agua cálida que aparecieron frente a México y Centroamérica en febrero estuvieron todavía presentes en junio, y en mayo y junio hubo una franja de agua cálida a lo largo de la línea ecuatorial desde la costa de Sudamérica hasta más allá de 180°. En mayo, junio, y julio hubo una franja de agua fría a lo largo de 10°S desde la costa de Sudamérica hasta aproximadamente 125°O, pero fue menos destacado durante agosto y septiembre. Entre tanto aparecieron áreas extensas de agua cálida al norte de aproximadamente 10°S, aparentemente el comienzo temprano del evento de El Niño predicho por el Servicio Meteorológico Nacional de EE.UU. Sin embargo, el agua cálida estuvo limitada principalmente al área al norte de la línea ecuatorial hasta el fin de año, y una pequeña área de agua fría que apareció al sur de la línea ecuatorial expandió en diciembre. Las TSM fueron mayormente inferiores al nivel normal desde octubre de 2013 hasta marzo de 2014, pero durante -diciembre de 2014 fueron casi todas superiores al nivel normal. Según el Climate Diagnostics Bulletin del Servicio Nacional Meteorológico de EE.UU. de diciembre de 2014, «La mayoría de los modelos predicen que las anomalías de las TSM permanecerán en niveles de un El Niño débil (valores trimestrales del índice de Niño-3.4 entre 0.5°C y 0.9°C) durante diciembre-febrero de 2014-15, y persistirán hasta la primavera de 2015 del hemisferio norte. Si apareciera un Niño, el consenso de los meteorólogos favorece un evento de 1000 que terminará a principios de la primavera del hemisferio norte. En resumen, existe una probabilidad de aproximadamente 50 a 60% de condiciones de El Niño durante los dos próximos meses, con condiciones d ENOS neutras posteriormente. »

La variabilidad a escala decadal (o sea, de 10 a 30 años) también afecta al OPO. A fines de la década de 1970 ocurrió en el Pacífico Norte un cambio importante en las condiciones físicas y biológicas. Este cambio de clima fue detectado en el OPO tropical también, mediante pequeños aumentos de las TSM, un debilitamiento de los vientos alisios, y un cambio moderado en los niveles de clorofila en la superficie. Algunos investigadores han reportado otro cambio importante en el Pacífico Norte en 1989. La variabilidad en el océano causada por el clima ha sido descrita a menudo en términos de "regímenes" caracterizados por promedios y patrones relativamente estables en las variables físicas y biológicas. Análisis realizados por el personal de la CIAT indican que el atún aleta amarilla en el OPO ha pasado por regímenes de reclutamiento bajo (1975-1982) y alto (1983-2001), y posiblemente otro intermedio (2002-2012). Se cree que el mayor reclutamiento durante 1983-2001 se debe a un cambio a un régimen de productividad más alta en el Océano Pacífico. Las fluctuaciones decadales en el afloramiento y transporte de agua son simultáneas con el patrón de ENOS más frecuentes y tienen efectos en toda la cuenca sobre las TSM y la pendiente de la termoclina que son similares a los que causa el ENOS, pero a escala temporal mayor.

Literatura revisada por pares reciente brinda pruebas fuertes de que han resultado cambios a gran escala en la producción biológica y hábitat como consecuencia del forzamiento físico en el Océano Pacífico subtropical y tropical. Se cree que estos cambios son capaces de afectar comunidades de presas. La producción primaria ha disminuido en regiones vastas oceánicas en la última década o décadas. Un estudio publicado en 2008, que usó datos del color del océano tomados con sensores remotos (« Seaviewing Wide Field-of-view Sensor » (SeaWiFS)), señaló que, en el Pacífico norte y sur, las aguas superficiales más oligotróficas han aumentado en área 2.2 y 1.4% por año, respectivamente, entre 1998 y 2006. Estos incrementos estadísticamente significativos en los giros oligotrófics ocurrieron concurrentemente con aumentos significativos de las TSM medias. En el Pacífico norte, la dirección de expansión fue hacia el noreste, entrando en el Pacífico oriental hasta aproximadamente 120°O y al sur hasta aproximadamente 15°N. La productividad primaria neta también ha disminuido en los océanos tropicales y subtropicales desde 1999. Se reconoce al mecanismo como una mayor temperatura del agua en la capa superior del océano y una estratificación vertical incrementada, que afectan la disponibilidad de los nutrientes para el crecimiento del fitoplancton. También existen pruebas fuertes que los productores primarios han cambiado la composición de sus comunidades y su estructura por tamaño en las últimas décadas. El tamaño de las células de fitoplancton es pertinente a la dinámica de depredación de los atunes porque las redes alimenticias que tienen picofitoplancton en la base necesitan más pasos tróficos para alcanzar depredadores de un tamaño dado que las redes alimenticias que comienzan con nanofitoplancton más grande (por ejemplo, díatomas). La eficacia de la transferencia de energía es más baja para las redes alimenticias basadas en picofitoplancton que para aquellas basadas en nanofitoplancton, es decir, para una cantidad dada de producción primaria, menos energía alcanzará un aleta amarilla de un tamaño dado en el primero que en el segundo porque la eficacia de transferencia trófica anual media en cada paso es relativamente constante. Un estudio publicado en 2012 usó TSM detectadas a distancia por satélite y concentraciones de clorofila-a para estimar la composición por talla mensual de las comunidades de fitoplancton durante 1998-2007. Con el componente estacional excluido, el tamaño mediano de la célula de fitoplancton estimado para el Pacífico subtropical 10°-30°N y 10°-30°S disminuyó un 2,2% y 2,3%, respectivamente, durante el periodo de nueve años. La expansión de la zona de oxígeno mínimo (ZOM) es el tercer factor que demuestra cambio en el ecosistema a escala capaz de afectar las comunidades de presas. La ZOM es una capa gruesa de oxígeno bajo a profundidades intermedias, que es generalmente subóxica (<~10 umol kg-1) en el OPO tropical. Series de tiempo de la concentración de oxígeno disuelto a profundidad desde 1960 hasta 2008 mostraron una expansión vertical e intensificación de la ZOM en los océanos Atlántico y Pacífico tropical oriental y central, y en otras regiones de los océanos del mundo. Las consecuencias biológicas potenciales de una ZOM creciente son numerosas, pero para los atunes epipelágicos la compresión del hábitat puede tener implicaciones profundas. Una reducción de la profundidad de la ZOM limita la distribución vertical de los atunes y otros peces epipelágicos en una capa superficial estrecha, comprimiendo su hábitat de alimentación y cambiando las comunidades de alimento. Mejores oportunidades de alimentación para todos los depredadores pelágicos podrían cambiar las rutas tróficas y afectar la composición por especies de las presas. Además, con una ZOM menos profunda, las presas mesopelágicas que migran en dirección vertical, tales como el pez fosictidao Vinciguerria lucetia, peces mictófidos, y los calamares omastréfidos, ocurrirían probablemente a profundidades menores durante el día y serían más vulnerables a los depredadores epipelágicos. Estos son algunos de los taxones que más aumentaron en la dieta del aleta amarilla en el OPO tropical entre 1992-1994 y 2004-2005 (ver 4, interacciones tróficas).

6. INDICADORES AGRUPADOS

El reconocimiento de las consecuencias de la pesca para los ecosistemas marinos ha fomentado una investigación considerable en los últimos años. Han sido propuestos numerosos objetivos para evaluar los impactos de la pesca sobre los ecosistemas y para definir la sobrepesca desde una perspectiva ecosistémica. Mientras que se han usado los puntos de referencia principalmente para la ordenación de especies objetivo individuales, se cree que un primer paso factible sería aplicar medidas de desempeño y

192

puntos de referencia a especies no objetivo. Ejemplos actuales incluyen límites de mortalidad incidental de delfines en la pesquería cerquera del OPO bajo el APICD. Otra área de interés es la posibilidad de elaborar indicadores útiles de desempeño basados en propiedades a nivel de ecosistema. Han sido propuestos varios indicadores de ecosistema, entre ellos la estructura del tamaño de la comunidad, índices de diversidad, riqueza y uniformidad de especies, índices de solape, espectros tróficos de la captura, abundancia relativa de una especie o un grupo indicador, y numerosos indicadores ambientales. Se opina generalmente que se debería usar indicadores múltiples a nivel de sistema, pero existen dudas sobre la suficiencia de los conocimientos prácticos de la dinámica de estos indicadores, y sobre la existencia de un fundamento teórico para identificar puntos de referencia precautorios o límite basados en las propiedades de los ecosistemas. El uso de indicadores ecosistémicos para la ordenación de pesquerías todavía no es común.

Métricas ecológicas Se usó una variedad de métricas ecológicas en un estudio publicado en 2012³ para evaluar el los efectos ecológicos de la pesca de cerco en el OPO durante 1993-2008. Se hicieron comparaciones de la captura de especies objetivo y no objetivo (incidental), tanto retenida como descartada, por tres tipos de lance cerquero sobre la base de tiempo de reemplazo, diversidad, biomasa (peso), número de individuos, y nivel trófico. Las comparaciones previas consideraron solamente el número de individuos y solamente animales descartados, sin tener en cuenta el tamaño del cuerpo, las características del ciclo vital, o posición en la red alimentaria. Durante 1993-2008, la biomasa media extraída fue 17.0, 41.1 y 12.8 t/lance en lances sobre delfines, objetos flotantes, y no asociados, respectivamente. De estas cantidades, la captura incidental por tipo de lance fue 0.3% sobre delfines, 3.8% sobre objetos flotantes, 1.4% sobre atunes asociados, y 2.1% para todos los métodos combinados. La tasa de descarte fue 0.7% sobre delfines, 10.5% sobre objetos flotantes, 2.2% sobre atunes asociados, y 5.4% para todos los métodos combinados. Añadiendo el 0.7% estimado para los buques más pequeños, la tasa de descarte total fue 4.8%. Esta tasa es baja comparada con las estimaciones globales de 7.5% para los palangres atuneros, 30.0% para las redes de arrastre pelágicas, y 8.0% para todas las pesquerías combinadas.

Tiempo de reemplazo es una medida del tiempo necesario para reemplazar la biomasa extraída por la pesca. Niveles de extracción insostenibles pueden conducir a disminuciones mayores de la probabilidad de persistencia de animales de vida larga, fecundidad baja, y madurez tardía que de especies de crecimiento rápido y fecundidad alta. A diferencia de las métricas de nivel trófico, las métricas de tiempo de reemplazo fueron sensibles a categorías de animales con proporciones relativamente altas de biomasa a producción de biomasa (B/P), como el atún patudo, los tiburones, y los cetáceos. El tiempo de reemplazo medio para las extracciones totales fue mínimo para los lances sobre delfines (promedio 0.48 años), intermedio para los lances no asociados (0.57 años), y máximo para los lances sobre objetos flotantes (0.74 años). No hubo tendencias temporales en el tiempo de reemplazo medio de las descargas, y los tiempos de reemplazo medios de los descartes fueron más variable que aquellos de las descargas. Los tiempos de reemplazo medios de los descartes en lances sobre delfines fueron aproximadamente siete veces aquellos de los descartes en los lances sobre objetos flotantes o no asociados porque la tasa de reproducción de los delfines es baja.

Diversidad. La pesca cambia la diversidad al extraer selectivamente las especies objetivo. La relación entre la diversidad de las especies extraídas y los efectos sobre la diversidad y estabilidad del ecosistema del cual son extraídas podría ser compleja. Una mayor diversidad de la captura podría estar asociada a menos efectos indeseables sobre el ecosistema, aunque la complejidad de las interacciones competitivas y tróficas entre especies dificulta la determinación de la relación entre la diversidad de la captura y la diversidad y estabilidad del ecosistema. El índice de diversidad de Shannon para extracciones totales fue mínimo para los lances sobre delfines (promedio 0.62), intermedio para los lances no asociados (1.22), y

³ Gerrodette, T., R. Olson, S. Reilly, G. Watters, and W. Perrin. 2012. *Ecological metrics of biomass removed by three methods of purse-seine fishing for tunas in the eastern tropical Pacific Ocean*. Conservation Biology. 26 (2): 248-256.

máximos para los lances sobre objetos flotantes (1.38). La diversidad de las descargas de los lances sobre delfines aumentó en promedio 0.023/año de 0.45 a 0.79, debido principalmente a un aumento del porcentaje de atún barrilete en la captura de <1% a >7% y una disminución correspondiente del porcentaje de aleta amarilla. La diversidad de las descargas y los descartes en lances no asociados disminuyó, y la diversidad de las extracciones totales disminuyó un 0.024/año, de 1.40 a 1.04.

Biomasa. Las cantidades y características relativas de la biomasa extraída por cada uno de los métodos de pesca varió en función de cómo se midió la extracción. Las descargas de los lances sobre objetos flotantes fueron máximas para todas las cuatro medidas de extracción, pero fueron particularmente altas cuando se midió sobre la base del número de individuos o tiempo de reemplazo. La cantidad y composición de los descartes varió entre los métodos de pesca. Los descartes de las especies de atunes objetivo formaron la mayor proporción de los animales extraídos, independientemente de si se midió en biomasa, número de individuos, o unidades de nivel trófico. Los descartes de cetáceos en los lances sobre delfines y de tiburones en lances sobre objetos flotantes y no asociados fueron mayores cuando se midieron en unidades de tiempo de reemplazo que cuando se midieron en otras unidades debido a las bajas tasas de reproducción de estos animales.

Estructura trófica y niveles tróficos de la captura: Los enfoques ecosistémicos a la ordenación de la pesca ponen énfasis de nuevo en lograr representaciones fieles de los vínculos tróficos y los flujos de biomasa por la red alimenticia en los sistemas explotados. La estructura de la red alimenticia y las interacciones entre sus componentes desempeñan un papel demostrable en la determinación de la dinámica y productividad de los ecosistemas. En la ecología de las redes tróficas se usan los niveles tróficos (TL) para caracterizar el papel funcional de los organismos, para facilitar las estimaciones del flujo de energía o masa por las comunidades, y para elucidar aspectos de la trofodinámica del funcionamiento de los ecosistemas. En la Figura L-1 se presenta un diagrama simplificado, con NT aproximados, de la red trófica del OPO tropical pelágico. Las ballenas dentadas (Odontoceti, NT medio 5.2), depredadores de calamar grande (atún patudo grande y pez espada, NT medio 5.2) y tiburones (NT medio 5.0) son depredadores ápice. Los otros atunes y peces piscívoros grandes, delfines (NT medio 4.8), v aves marinas (NT medio 4.5) ocupan NT ligeramente más bajos. Peces epipelágicos menores (melvas v peces voladores (NT medio 3.2), por ejemplo), cefalópodos (NT medio 4.4), y peces mesopelágicos (NT medio 3.4) son el alimento principal de muchos de los depredadores de alto nivel en el ecosistema. Los peces pequeños y crustáceos se alimentan de dos grupos de zooplancton, y el microzooplancton herbívoro (NT 2) se alimenta de los productores, fitoplancton y bacterias (NT 1).

En los ecosistemas pelágicos explotados, las pesquerías dirigidas hacia peces piscívoros grandes funcionan de depredadores ápice del sistema. A lo largo del tiempo, la pesca puede causar una disminución de la composición por tamaño general de la captura, y en general, los NT de los organismos pequeños son más bajos que los de los más grandes. El NT medio de los organismos capturados por una pesquería es un indicador útil de cambios en el ecosistema y de su sustentabilidad, porque integra una variedad de información biológica sobre los componentes del mismo. Se está prestando mayor atención al análisis del NT medio de las capturas de la pesca desde que un estudio demostró que, según estadísticas de descargas de FAO, el NT medio de los peces e invertebrados descargados a nivel mundial disminuyó entre 1950 y 1994, y la hipótesis de los autores del estudio es que esto perjudica los ecosistemas. Sin embargo, algunos ecosistemas han cambiado en la otra dirección, de comunidades de NT bajo a comunidades de NT más alto. En vista de la utilidad potencial de este enfoque, se estimaron los NT medios de una serie de tiempo de capturas y descartes anuales por especie desde 1993 hasta 2013 para tres modalidades de pesca cerquera y la pesquería cañera en el OPO. Se calcularon las estimaciones mediante la aplicación de los NT del modelo de ecosistema del OPO (Sección 7), ponderados por los datos de captura por pesquería y año correspondiente a todos los grupos del modelo de las bases de datos de la CIAT de atún, captura incidental, y descartes. Los NT del modelo ecosistémico se basaron en datos de dieta de todos los grupos de especies y balance de masas entre los grupos. Los NT medios ponderados de las capturas sumadas de todas las pesquerías de cerco y de caña fueron similares y bastante constantes de año a año (<u>Figura L-2</u>: promedio PS-LP), Una leve tendencia decreciente de los lances no asociados, equivalente a 0,05 TL durante el período de 20 años, resultó de las proporciones crecientes de barrilete y decrecientes de aleta amarilla en la captura, no de capturas crecientes de especies de bajo nivel trófico. Por lo tanto, no es considerada una disminución ecológicamente perjudicial porque fue causada por proporciones crecientes de barrilete en la captura a lo largo del tiempo. En general, los NT de los lances no asociados y la pesquería de caña fueron inferiores al promedio, y aquéllos de los lances sobre delfines superiores al promedio en la mayoría de los años (<u>Figura L-2</u>). Los NT de los lances sobre objetos flotantes variaron más que los de los otros tipos de lance y las otras pesquerías, debido principalmente a la variabilidad interanual de las cantidades de patudo y barrilete capturadas en esos lances. Los NT de los lances sobre objetos flotantes estuvieron positivamente relacionados con el porcentaje de la captura total formado por patudo grande y negativamente relacionado con el porcentaje de la captura formado por barrilete.

Se estimaron también por separado NT medios para la serie de tiempo de capturas retenidas y descartadas de la pesquería de cerco en cada año del período de 1993 a 2013 (Figura L-3). Las capturas descartadas fueron mucho menores que las capturas retenidas, y por lo tanto los patrones de los NT de las capturas totales (retenidas más descartadas) (Figura L-2) fueron determinados principalmente por los NT de las capturas retenidas (Figura L-3). Los NT de las capturas descartadas variaron más entre años que aquéllos de las capturas retenidas, debido a la diversidad de especies en las capturas incidentales. La disminución considerable de los NT medios de los descartes en los lances sobre delfines durante el período de 20 años (Figura L-3) se debió en gran parte a un aumento de las proporciones de peces de presa pequeños (melvas (*Auxis* spp.) y peces epipelágicos misceláneos) y rayas (Rajiformes, principalmente mantarrayas, Mobulidae) de niveles tróficos más bajos. En el caso de los lances no asociados, las marcadas disminuciones interanuales del NT durante 1997 se debieron a una mayor captura incidental de rayas (NT 3.68), que se alimentan de plancton y otros animales pequeños que ocupan NT bajos, una disminución de las capturas de tiburones grandes (NT 4.93-5.23), y un aumento de los peces presa, por ejemplo, *Auxis* spp. (NT 3,86) en la captura incidental. En el caso de los lances sobre objetos flotantes, los descartes de patudo están relacionados con NT medios más altos de la captura descartada.

7. EVALUACIÓN DE RIESGOS ECOLÓGICOS

La sustentabilidad ecológica a largo plazo es un requisito de la ordenación de la pesca basada en ecosistemas. La pesca afecta directamente las poblaciones de no sólo las especies objetivo, sino también las especies capturadas incidentalmente. Se ignora la vulnerabilidad a la sobrepesca de muchas de las poblaciones capturadas incidentalmente en las pesquerías atuneras del OPO, y los datos biológicos y de la pesca son severamente limitados en el caso de la mayoría de estas poblaciones. El personal de la CIAT aplicó en años recientes una versión del análisis de productividad y susceptibilidad (APS), usado para evaluar pesquerías en otras regiones oceánicas en los últimos años, para estimar la vulnerabilidad de especies no objetivo y de datos escasos capturadas por la pesquería de cerco en el OPO. APS considera la vulnerabilidad de una población como una combinación de su productividad y su susceptibilidad a la pesca. La productividad de una población es la capacidad de la población de recuperarse si es mermada, y es una función de las características del ciclo vital de la especie. La susceptibilidad de una población es el grado al cual la pesca puede impactarla negativamente, es decir, la propensión de una especie de ser capturada por una pesquería y padecer mortalidad debido a la misma. Los índices de productividad y susceptibilidad de una población son determinados por derivar una puntuación de entre 1 (baja) y 3 (alta) relativa a un conjunto estandarizado de atributos para cada índice. Las puntuaciones de los atributos individuales son entonces promediadas para cada factor e ilustradas en una gráfica de dispersión x-y. La escala del eje x en la gráfica de dispersión está invertida porque se considera que las especies o poblaciones con una puntuación alta de productividad y baja de susceptibilidad (o sea, en el origen de las gráficas) son las menos vulnerables. Al puntuar los atributos, se evalúa la calidad de los datos asociados con de cada atributo, y se ponderan los atributos por la puntuación de calidad de datos. Se considera que las poblaciones con una puntuación de productividad (p) baja y una puntuación de susceptibilidad (s) alta corren un riesgo de ser mermadas, mientras que el riesgo es bajo para aquellas con una puntuación de productividad alta y una puntuación de susceptibilidad baja. Se calculan puntuaciones de vulnerabilidad (v) a partir de las puntuaciones de p y s como la distancia euclidiana entre el origen de la gráfica de dispersión x-y y el punto del dato:

$$v = \sqrt{(p-3)^2 + (s-1)^2}$$

A fin de examinar la utilidad de los índices de productividad y susceptibilidad para evaluar la vulnerabilidad a la sobrepesca de los peces, mamíferos, y tortugas capturados incidentalmente en el OPO, se realizó una evaluación preliminar de tres « pesquerías » de cerco en el OPO en 2010, usando 26 especies que forman la mayor parte de la biomasa extraída por los buques cerqueros de clase 6 (más de 363 t de capacidad de acarreo) durante 2005-2009. Se usaron en el APS preliminar nueve atributos de productividad y ocho de susceptibilidad, con base en la metodología de APS establecida⁴, y algunas fueron modificadas para mayor consistencia con los datos de las pesquerías atuneras en el OPO. Se compiló información correspondiente a los atributos de productividad para cada especie de una variedad de fuentes publicadas e inéditas y de datos de la pesca del OPO (o sea, no adoptadas de ASP previos) para aproximar mejor la distribución de las características del ciclo vital observadas en las especies encontradas en el OPO. Se derivaron los umbrales de puntuación para los atributos de productividad dividiendo los datos compilados en tercios iguales. Los criterios de puntuación para los atributos de susceptibilidad fueron tomados del APS ejemplar y modificados en caso apropiado para un mejor ajuste a las pesquerías del OPO. Sin embargo, surgieron problemas al intentar comparar las estimaciones de susceptibilidad de las especies para todas las distintas pesquerías (Informe de la Situación de la Pesquería 8). En 2012, se modificó el APS para incluir siete especies adicionales, con base en datos de 2005-2011 (Informe de la Situación de la Pesquería 10).

El personal del Programa de Biología y Ecosistemas tenía planeado finalizar y publicar el análisis de APS durante 2014, pero la jubilación de un miembro del programa y limitaciones presupuestarias imposibilitaron terminar el trabajo. No obstante, se han realizado tres modificaciones del análisis desde que fue revisado en la reunión del Comité Científico Asesor en mayo de 2014: 1) se modificaron los procedimientos para determinar cuáles especies incluir en el análisis; 2) se combinaron los valores de susceptibilidad para cada pesquería para producir un valor general de susceptibilidad para cada especie; y 3) se modificó el uso de información de captura y captura incidental en la formulación de *s*. La lista de atributos de productividad sigue sin modificar (<u>Tabla L-1</u>), mientras que la lista de atributos de susceptibilidad paro se describen brevemente estas tres modificaciones. En el resto de la presente sección, el término "captura" significará captura en el caso de las especies de atunes y captura incidental en el caso de las otras especies.

La primera modificación fue establecer un procedimiento de dos pasos para identificar y excluir especies poco comunes, con base en la biomasa capturada por pesquería. Sin embargo, como medida precautoria, se retuvo o se incluye ahora en el análisis toda especie poco común clasificada como « vulnerable », « en peligro », o « casi amenazada » en la Lista Roja de la IUCN. Actualmente, el APS incluye 32 especies (<u>Tabla L-3a</u>); se incluirán en el futuro ocho especies susceptibles adicionales, dos mantarrayas y seis tiburones.

La segunda modificación fue combinar los valores de susceptibilidad para cada especie de todas las pesquerías para producir una susceptibilidad a la pesquería de cerco para cada especie. Se calculó una puntuación de susceptibilidad combinada preliminar para una especie, s_j^1 , como la suma ponderada de los valores de susceptibilidad de cada pesquería para esa especie (<u>Tabla L-3a</u>), con ponderación igual a la proporción de lances en cada pesquería.

⁴ Patrick, W.S., P. Spencer, J. Link, J. Cope, J. Field, D. Kobayashi, P. Lawson, T. Gedamke, E. Cortés, O. Ormseth, K. Bigelow, and W. Overholtz. 2010. Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing. Fish. Bull. U.S. 108: 305-322.

$$s_j^1 = \sum_k s_{jk} p_k$$

donde

 s_i^1 es la susceptibilidad combinada para la especie j

 s_{ik} es la susceptibilidad de la especie j en el tipo de lance k, computada usando solamente los atributos en la Tabla L-2. s_{ik} varía de 1 (mínimo) a 3 (máximo). En el caso de una especie con capturas < 5% en tipo de lance k, $s_{jk} \equiv 1$, a menos que se hubiese computado un s_{jk} para uno de los APS previos (Informes de la Situación de la Pesquería 8 y 10), en cual caso se usó este s_{ik} ; de lo contrario se supuso que si las capturas fueron menos del 5% en una pesquería, la especie era tan sólo mínimamente susceptible a esa pesquería. Un APS previo (Informe de la Situación de la Pesquería 10) usó información de tendencias de la captura como atributo adicional para calcular el s_{ik}, pero se eliminó esta información del s_{ik} en este caso porque, siguiendo la metodología de PSA establecida, los otros atributos de susceptibilidad no varían a lo largo del tiempo (pero ver más adelante).

$$p_k = \left(\frac{N_k}{\sum_k N_k}\right)$$
 y N_k es el número total de lances (clase-6) de tipo de lance k en 2013

 s_i^1 toma en cuenta el esfuerzo de pesca por tipo de lance, aún para los tipos de lance con poca o ninguna captura de una especie. En la Figura L-4a se presenta una gráfica preliminar de APS usando s_j^1 , y en la Tabla L-3a se presentan los valores de s_{jk} , s_j^1 y v_i . Una preocupación con respecto a s_j^1 para algunas especies es que la variación en el s_{ik} computado a partir de los atributos en la Tabla L-2 no se correlaciona bien con diferencias observadas entre tasas de captura por tipo de lance, lo cual sugiere que los atributos en la Tabla L-2 no capturan la susceptibilidad completa de la especie i; en general se supone que tasas de captura altas deberían reflejar una mayor susceptibilidad total. Además, los s_{jk} no explican tendencias a largo plazo.

Se realizó la tercera modificación, el uso de información de captura en la formulación de s, para intentar explicar las diferencias en las tasas de captura observadas entre tipos de lance, por especie, y para explicar las tendencias a largo plazo de la abundancia. Se computaron dos formulaciones de susceptibilidad alternativas preliminares como "prueba de concepto" para estas ideas. La primera, s_i^2 , modifica s_i^1 para tomar en consideración las tasas de captura actuales, que se supone ser un sustituto alternativo para la susceptibilidad y para reflejar los efectos integrados reales de los atributos de susceptibilidad en la Tabla L-2:

$$s_j^2 = \sum_k s_{jk}^* p_k$$

donde

 s_i^2 es la susceptibilidad combinada para la especie j, ajustada para las tasas de captura recientes

- s_{jk}^* es el promedio de s_{jk} y la susceptibilidad basada en la tasa de captura: $s_{jk}^* = \frac{1}{2}(s_{jk} + s_{cps_jk})$
- s_{ik} . es como se define para s_i^1
- s_{cps} ik es la susceptibilidad basada en la tasa de captura y toma un valor de 1, 2 o 3, asignado como sigue. Si la especies no es una especie de atún objetivo, se usa la captura por lance, en número de animales por lance, para asignar un valor a $s_{cps \ ik}$:
- 2
- para $cps_{jk} = 0$ para $0 < cps_{jk} < 1.0$ para $cps_{jk} \ge 1.0$

Si la especie es una especie de atún objetivo, entonces se asignan los valores siguientes a s_{cps_jk} :

	Lances sobre delfines	Lances no asociados	Lances sobre objetos flotantes
Patudo	1	2	3
Aleta amarilla	3	3	3
Barrilete	2	3	3

 cps_{jk} es la captura por lance para la especie *j* en el tipo de lance *k* (= captura de clase 6 (en número de animales) dividida por el número de lances de clase 6), en el año más reciente (2013). Se usó captura por lance en lugar de captura total a fin de controlar por diferencias en el esfuerzo entre los tipos de lance.

$$p_k$$
 es como se define para s_i^1

En la Figura L-4b se presenta una gráfica APS preliminar usando s_j^2 y en la Tabla L-3b se presentan los valores de s_{jk}^* , s_j^2 y v_2 . s_j^2 podría ser afectado por diferencias en la abundancia entre especies porque la captura por lance es afectada por la abundancia. Clasificar cps_{jk} por rango podría ayudar a minimizar este problema. Las reglas actuales para clasificar cps_{jk} por rango para especies de atunes no objetivo se basaron en la idea que una captura nula equivale a susceptibilidad mínima, una captura que aumenta por menos de un animal por lance equivale a susceptibilidad móderada, y una captura que aumenta por una tasa de esfuerzo de un animal o más por lance equivale a susceptibilidad alta. No obstante, estas reglas son una "prueba de concepto" y podrían ser modificadas.

La segunda formulación alternativa de susceptibilidad, computada para especies aparte de atunes objetivo y delfines, s_i^3 , se ajusta por tendencias a largo plazo:

$$s_j^3 = \sum_k s_{jk}^{**} p_k$$

donde

 s_i^3 es la susceptibilidad combinada para especie *j*, ajustada por tendencias a largo plazo

 s_{jk}^{**} es el promedio de s_{jk} y las susceptibilidad a tendencias: $s_{jk}^{**} = \frac{1}{2} (s_{jk} + s_{trend_jk})$;

 s_{ik} es como se define para s_i^1

 S_{trend_jk} es la susceptibilidad a tendencias para la especie j en tipo de lance k, obtenida como sigue:

((1.0	si la especie <i>j</i> no ocurre en el tipo de lance <i>k</i>
ł	1.5	si <i>trend_{jk}</i> no es significativa o es significativa pero creciente
	3.0	si <i>trend_{ik}</i> es significativa pero decreciente

*trend*_{*jk*} es la pendiente de la regresión de *cps*_{*jk*,*y*} y año *y*, a partir del inicio de la toma de datos (que puede variar por especie). Se computó *trend*_{*jk*} para especies para las cuales no existen evaluaciones completas (o indicadores de ordenación) y para las cuales no se ha determinado que los datos de la pesca no son adecuados para la estimación de tendencias; es decir, para especies aparte de las tres especies de atún objetivo y las especies de delfines (pero ver más adelante). Una tendencia significativa fue cualquier pendiente con un valor p < 0.05.

 $cps_{,jk,y}$ es la captura por lance de especie j para el tipo de lance k en el año y

En la Figura L-4c se presentan una gráfica preliminar de APS usando s_j^3 para especies aparte de las tres especies de atunes objetivo y de las especies de delfines, y en la Tabla L-3c se presentan los valores de s_{jk}^{**} , s_j^3 y v_3 . Para el futuro, se podría ampliar s_j^3 para incluir las tres especies de atunes objetivo mediante la estimación de tendencias a partir de la biomasa reproductora, y a las especies de delfines mediante el uso de tendencias estimadas a partir de estimaciones históricas de la abundancia basadas en transectos

lineales. Una preocupación acerca de s_j^3 es que las tendencias estimadas a partir de la captura por lance podrían no seguir de forma fiable los cambios de la abundancia (tal como se demostró en el caso de los delfines en el Documento <u>SAC-05-11d</u>).

Las tres medidas de susceptibilidad, s_j^1 , s_j^2 , y s_j^3 , son consideradas preliminares y representan ideas de "prueba de concepto" para ilustrar varias opciones para computar susceptibilidad ajustada a la pesquería de cerco del OPO.

El personal de la CIAT seguirá trabajando durante 2015 para mejorar y refinar el análisis de productividad y susceptibilidad para el OPO. El trabajo future se enfocará en la evaluación de cuál de las tres medidas de susceptibilidad es preferible, y si se deberían hacer modificaciones adicionales. Además, se está realizando una revisión completa de la literatura para determinar si los atributos de susceptibilidad en la <u>Tabla L-2</u> y las puntuaciones y puntuaciones de productividad correspondientes deberían ser actualizadas como resultado de nuevas investigaciones.

8. MODELADO DE ECOSISTEMAS

Es evidente que los distintos componentes de un ecosistema interactúan. La ordenación ecosistémica de la pesca es facilitada por la elaboración de modelos ecosistémicos multiespecíficos que representan las interacciones ecológicas entre las especies o gremios. Nuestros conocimientos del complicado laberinto de conexiones en los ecosistemas del océano abierto están en su etapa temprana, y, por lo tanto, la mayor utilidad de los modelos de ecosistema actuales es como instrumentos descriptivos para explorar los efectos de una mezcla de hipótesis y conexiones establecidas entre los componentes del ecosistema. Los modelos de ecosistema necesitan mantener un equilibrio entre representaciones simplistas por un lado y una complejidad imposible de manejar por el otro.

El personal de la CIAT ha desarrollado un modelo del ecosistema pelágico en el OPO tropical (Boletín de la CIAT, <u>Vol. 22, No. 3</u>) para explorar cómo la pesca y la variación climática podrían afectar los animales en los niveles tróficos medianos y altos. El modelo tiene 38 componentes, entre ellos las principales especies explotadas (atunes, por ejemplo), grupos funcionales (tiburones y peces voladores, por ejemplo), y especies sensibles (tortugas marinas, por ejemplo). Algunos grupos taxonómicos están subdivididos en categorías (marlines grandes y pequeños, por ejemplo). La resolución taxonómica del modelo es más fina en los niveles tróficos superiores, pero la mayor parte de la biomasa del sistema está en los niveles tróficos medianos y bajos. Se estimaron las descargas y descartes para cinco "artes" de pesca: caña, palangre, y tres tipos de lances cerqueros: sobre atunes asociados con delfines, con objetos flotantes, y no asociados. El modelo está enfocado en las regiones pelágicas; no describe adecuadamente los ecosistemas locales costeros.

La mayor parte de la información que describe las interacciones interespecíficas en el modelo provino de un proyecto conjunto CIAT-NMFS, el que incluyó estudios de los hábitos alimenticios de atunes aleta amarilla, barrilete, y patudo, delfines, tiburones pelágicos, peces picudos, dorados, petos, salmones, y otros. El objetivo del proyecto fue contribuir a los conocimientos de la asociación atún-delfín, y se adoptó un diseño de muestreo a nivel de comunidad.

Se usó el modelo de ecosistema para evaluar los posibles efectos de variabilidad en los procesos forzados desde abajo por el medio ambiente sobre los niveles tróficos medianos y altos del ecosistema pelágico. Se incorporaron en el modelo series de tiempo predeterminadas de biomasa de productores para aproximar los cambios en la producción primaria documentados durante eventos de El Niño y La Niña, y se simuló la dinámica de los demás componentes del ecosistema. Se usó el modelo también para evaluar las contribuciones relativas de la pesca y el medio ambiente en la formación de la estructura del ecosistema en el OPO pelágico tropical. Se hizo esto usando el modelo para predecir cuáles componentes del ecosistema podrían ser susceptibles a efectos de la pesca de arriba hacia abajo, dada la importancia aparente de la variabilidad ambiental en la estructuración del ecosistema. En general, los animales con tasas de cambio relativamente bajas fueron afectados más por la pesca que por el medio ambiente, y

aquéllos con tasas relativamente altas más por el medio ambiente que por la pesca.

Se cree generalmente que la estructura de los ecosistemas marinos es controlada por uno de dos mecanismos: control « abajo-arriba » (impulsado por recursos), en el cual la dinámica de los productores primarios (por ejemplo, fitoplancton) controla la producción y biomasa en los niveles tróficos superiores, o control « arriba-abajo » (impulsado por consumidores), en los que la depredación por depredadores de alto nivel trófico controla la abundancia y composición de las presas en los niveles tróficos inferiores. En años relativamente recientes se ha reconocido también el control de « cintura de avispa ». Esto se refiere a una combinación de forzamiento abajo-arriba y arriba-abajo por un pequeño número de especies abundantes, altamente productivas, y de vida corta, en niveles tróficos intermedios (por ejemplo, sardinas y anchoas) que forman una « cintura » estrecha que regula el flujo de energía en el sistema. Estas especies ejercen un control depredador arriba-abajo sobre los flujos de energía del zooplancton, pero también un control abajo-arriba porque proporcionan energía para los depredadores de alto nivel trófico. Se ha supuesto que el control de « cintura de avispa » ocurre principalmente en sistemas costeros altamente productivos pero con pocas especies (por ejemplo, regiones de afloramiento), que pueden ser altamente inestables y donde pueden ocurrir cambios de régimen natural rápidos en períodos breves. Se usó el modelo de ecosistema del OPO tropical en conjunto con un modelo de una región frente al litoral este de Australia donde se capturan atunes y peces picudos para examinar la posible dinámica de forzamiento de estos sistemas. Estos dos ecosistemas pelágicos, grandes y ricos en especies, también muestran una estructura parecida a la « cintura de avispa », en el sentido que los cefalópodos y peces en niveles tróficos intermedios, de vida corta y crecimiento rápido, forman la enorme mayoría de la biomasa. Se observaron los efectos forzantes más importantes al modificar las biomasas de los peces epipelágicos y mesopelágicos de nivel trófico mediano en los modelos, lo cual causó cascadas tróficas dramáticas tanto hacia arriba como hacia abajo en el sistema. Estos ecosistemas pelágicos tropicales parecen poseer una estructura compleja en la cual varios grupos de cintura y rutas tróficas alternativas de productores primarios a depredadores ápice pueden causar efectos impredecibles cuando se modifican las biomasas de grupos funcionales particulares. Estos modelos destacan los posibles mecanismos de estructuración en los sistemas pelágicos, que tienen implicaciones para las pesquerías que explotan estos grupos (por ejemplo, la pesca del calamar), así como para las pesquerías de depredadores ápice, como los atunes y peces picudos, que se alimentan de las especies de « cintura de avispa ».

9. ACCIONES DE LA CIAT Y EL APICD RELATIVAS A CONSIDERACIONES ECOSISTÉMICAS

Tanto la Convención de la CIAT como el APICD tienen objetivos que versan sobre la incorporación de consideraciones ecosistémicas en la ordenación de las pesquerías atuneras en el OPO. Acciones tomadas en el pasado incluyen:

9.1. Delfines

- a. Desde hace muchos años se evalúa el impacto de la pesquería sobre las poblaciones de delfines, y los programas para reducir o eliminar ese impacto han tenido un éxito considerable.
- b. Se ha limitado la mortalidad incidental de todas las poblaciones de delfines a niveles insignificantes con respecto al tamaño de las poblaciones.

9.2. Tortugas marinas

- a. Se ha compilado una base de datos sobre todos los avistamientos, capturas, y mortalidades de tortugas marinas reportadas por observadores.
- b. En junio de 2003, la CIAT adoptó una *Recomendación sobre tortugas marinas*, en la que se contempla "el desarrollo de un programa de tres años que podría incluir la reducción de capturas incidentales de tortugas marinas, investigaciones biológicas de tortugas marinas, perfeccionamiento de artes de pesca, educación de la industria y otras técnicas para mejorar la

conservación de tortugas marinas." En enero de 2004, el Grupo de Trabajo sobre Captura Incidental propuso un programa detallado que incluye todos estos elementos e insta a todas las naciones con buques que pescan atunes en el OPO a que provean a la CIAT información sobre interacciones de las pesquerías con tortugas marinas en el OPO, incluyendo capturas tanto incidentales como directas, y otros impactos sobre las poblaciones de tortugas marinas. En junio de 2004, la CIAT adoptó la <u>Resolución C-04-07</u> sobre un programa de tres años para mitigar el impacto de la pesca atunera sobre las tortugas marinas; incluye disposiciones sobre la toma de datos, medidas de mitigación, educación de la industria, fomento de capacidad, e informes.

- c. La <u>Resolución C-04-05</u>, adoptada por la CIAT en junio de 2004, contiene disposiciones relativas a la liberación y tratamiento de tortugas marinas capturadas en redes de cerco. Prohíbe también a los buques desechar bolsas y otra basura plástica en el mar, y encarga al Director estudiar y formular recomendaciones acerca del diseño de plantados, particularmente el uso de malla de red sujetada bajo el agua a los mismos.
- d. La <u>Resolución C-07-03</u>, adoptada por la CIAT en junio de 2007, contiene disposiciones acerca de la instrumentación de programas de observadores en pesquerías bajo el amparo de la Comisión que podrían ejercer un efecto sobre las tortugas marinas y actualmente no son acatadas. La resolución exige que los pescadores fomenten la recuperación y reanimación de tortugas marinas de caparazón duro comatosas o inactivas antes de devolverlas al agua. Se dirige a los CPC con buques de cerco o palangre que pesquen especies abarcadas por la Convención de la CIAT en el OPO evitar a evitar encuentros con las tortugas marinas, reducir las mortalidades mediante el uso de una variedad de técnicas, y realizar investigaciones sobre la modificación de los diseños de los plantados y las artes de palangre y las prácticas de pesca.
- e. En respuesta a una solicitud de la Subsecretaría de Recursos Pesqueros del Ecuador, un programa fue establecido por World Wildlife Fund, la CIAT, y el gobierno de Estados Unidos, para mitigar la captura incidental y reducir la mortalidad de tortugas marinas causadas por la pesca con palangre. Un elemento clave de este programa es la comparación de las tasas de captura de atunes, peces picudos, tiburones, y dorado capturados con anzuelos J con las tasas de captura con anzuelos circulares. Los anzuelos circulares no enganchan tantas tortugas como los anzuelos J, usados tradicionalmente en la pesca palangrera, y la probabilidad de herir gravemente a las tortugas que muerden los anzuelos circulares es menor porque son más anchos y suelen engancharse en la mandíbula inferior, en lugar de internarse en el esófago y otras áreas, evento más peligroso y más común con los anzuelos J. Se difundieron además a las flotas palangreras de la región procedimientos y herramientas para liberar tortugas marinas enganchadas y enmalladas.

Al fin de 2008, el programa de intercambio de anzuelos y de observadores, que comenzó en Ecuador en 2003, fue activo en Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, México, Nicaragua, Panamá, y Perú, y está en desarrollo en Chile, con talleres en muchos puertos. El programa en Ecuador se está realizando en conjunto con el gobierno y la Overseas Fishery Cooperation Foundation de Japón, mientras que en los otros países es financiado por agencias de EE.UU. Los resultados iniciales señalan que, en las pesquerías dirigidas hacia los atunes, peces picudos y tiburones, ocurrió una reducción importante en las tasas de enganche de las tortugas marinas con los anzuelos circulares, y que menos anzuelos se alojaron en el esófago u otras áreas perjudiciales para las tortugas. Las tasas de captura de las especies objetivo son, en general, similares a aquéllas de los anzuelos J. Se realizó también un experimento en la pesquería de dorado con anzuelos circulares más pequeños; las tasas de enganche de tortugas disminuyeron, pero menos que en las pesquerías de atunes, peces picudos y tiburones del personal de la CIAT y otros dirigieron talleres e hicieron presentaciones en todos los países que participan en el programa.

9.3. Aves marinas

- a. La Recomendación <u>C-10-02</u>, adoptada por la CIAT en octubre de 2010, reafirmó la importancia que los miembros de la CIAT y los no miembros cooperantes apliquen, en caso apropiado, el *Plan de Acción Internacional para reducir las capturas incidentales de aves marinas en la pesca con palangre* de la FAO (PAI Aves marinas). Los gobiernos detallados en la recomendación acordaron notificar a la CIAT de su instrumentación del PAI-Aves Marinas, incluyendo, según proceda, la situación de su Plan de Acción Nacional para reducir la captura incidental de las aves marinas en las pesquerías de palangre. Se acordó además que los gobiernos exigirían de sus buques palangreros que pescan Especies gestionadas por la CIAT en zonas específicas (detalladas en el Anexo 1 de la recomendación) usar al menos dos de un conjunto de ocho medidas de mitigación determinadas. Además, se alentó a los miembros y no miembros cooperantes de la CIAT a establecer programas nacionales para asignar observadores a buques palangreros de su pabellón o que pescan en sus aguas, y adoptar medidas dirigidas a asegurar que las aves marinas capturadas vivas durante las faenas de pesca con palangre sean liberadas vivas y en las mejores condiciones posibles.
- b. La resolución <u>C-11-02</u>, adoptada por la CIAT en julio de 2011, reafirmó la importancia de aplicar el PAI-Aves marinas (ver 9.3.a), y dispone que los Miembros y No miembros cooperantes (CPC) requerirán de sus buques palangreros de más de 20 metros de eslora total y que pesquen especies abarcadas por la CIAT en el OPO usar al menos dos de las medidas de mitigación detalladas, y establece estándares técnicos mínimos para dichas medidas. Alienta a los CPC a emprender, conjunta e individualmente, investigaciones para desarrollar y refinar los métodos para mitigar la captura incidental de aves marinas, y remitirán a la CIAT cualquier información derivada de estos esfuerzos. Además, alienta a los CPC a establecer programas nacionales para la asignación de observadores a bordo de los buques de palangre que enarbolen su pabellón o que pesquen en sus aguas, con el propósito de, entre otros, obtener información sobre las interacciones de las aves marinas con las pesquerías de palangre.

9.4. Otras especies

- a. En junio de 2000, la CIAT adoptó una resolución sobre la liberación de tiburones, rayas, peces picudos, dorados, petos, y otras especies no objetivo.
- b. La <u>Resolución C-04-05</u>, adoptada por la CIAT en junio de 2006, encarga al Director buscar fondos para la reducción de la mortalidad incidental de atunes juveniles, para desarrollar técnicas y/o equipo para facilitar la liberación de peces picudos, tiburones y rayas de la cubierta o de la red, y para realizar experimentos para estimar las tasas de supervivencia de peces picudos, tiburones y rayas liberados.
- c. La <u>Resolución C-11-10</u>, adoptada por la CIAT en julio de 2011, prohíbe la retención a bordo, transbordo, descarga, almacenamiento, venta, u ofrecimiento de venta del cadáver de tiburones oceánicos punta blanca, en parte o entero, en las pesquerías abarcadas por la Convención de Antigua, y requiere que se liberen con prontitud ilesos, en la medida de lo posible, tiburones punta blanca cuando sean aproximados al costado del buque.

9.5. Dispositivos agregadores de peces (plantados)

a. La Resolución <u>C-13-04</u>, adoptada por la CIAT en junio de 2013, requiere que todos los buques cerqueros que pesquen sobre plantados reúnan y notifiquen información sobre los mismos, incluyendo un inventario de los plantados presentes en el buque, y que especifiquen, para cada plantado, su identificación, tipo, y características. Para cada actividad relacionada con un plantado, se debe reportar la posición, fecha, hora, identificación del plantado, y tipo de plantado. El personal de la CIAT analizará los datos obtenidos, a fin de identificar cualquier elemento adicional necesario para evaluar los efectos del uso de plantados sobre el ecosistema, y presentará recomendaciones iniciales para la ordenación de los plantados en el OPO. La Comisión

considerará la adopción de medidas de ordenación basadas en estas recomendaciones, incluyendo un plan regional de ordenación de plantados. Se requiere además que los buques de cerco identifiquen todo plantado sembrado o modificado, de conformidad con un sistema de identificación elaborado por el Director. A fin de reducir el enmallamiento de tiburones, tortugas marinas, o cualquier otra especie, se especifican principios para el diseño y uso de plantados. Se prohíbe lanzar una red de cerco sobre atunes asociados con un tiburón ballena vivo, si se observa el animal antes del lance.

9.6. Todas especies

- a. Se está recabando datos sobre las capturas incidentales por buques cerqueros grandes, y se insta a los gobiernos a proveer información sobre las capturas incidentales de otros buques.
- b. Se han recabado datos sobre la distribución espacial de las capturas incidentales y las proporciones de captura incidental a captura para análisis de opciones de políticas de reducción de capturas incidentales.
- c. Se ha recabado información para evaluar medidas para reducir las capturas incidentales, tales come vedas, límites de esfuerzo, etc.
- d. Se han realizado evaluaciones de preferencias de hábitat y el efecto de cambios ambientales.
- e. Se han adoptado requisitos para los CPC para asegurar que, a partir del 1 de enero de 2013, un mínimo de 5% del esfuerzo de pesca realizado por sus buques palangreros de más de 20 metros de eslora total lleve un observador científico.

10. ACONTECIMIENTOS FUTUROS

Es poco probable, al menos en el futuro cercano, que se disponga de evaluaciones de las poblaciones de la mayoría de las especies de captura incidental. Es posible que en lugar de evaluaciones formales se puedan desarrollar índices para evaluar tendencias en la condición de estas especies. La experiencia del personal de la CIAT con los delfines sugiere que la tarea no es trivial si se desea una precisión relativamente alta.

Han sido propuestas varias medidas para estudiar cambios en las características del ecosistema, entre ellas estudios del nivel trófico medio, espectros de tamaño, dominancia, diversidad, y otros, para describir el ecosistema de forma agregada.

La distribución de las pesquerías de atunes y peces picudos en el OPO es tal que incluye probablemente varias regiones con características ecológicas diferentes. Es posible que, dentro de éstas, masas de agua, características oceanográficas o topográficas, influencias del continente, etcétera, generen heterogeneidad que afecte la distribución de las distintas especies y su abundancia relativa en las capturas. Sería ventajoso incrementar los conocimientos de estos estratos ecológicos para poder usarlos en nuestros análisis.

Es importante continuar los estudios de los ecosistemas en el OPO. La capacidad de resolver problemas relacionados con la pesca y el ecosistema crecerá con el número de variables de hábitat, grupos taxonómicos y niveles tróficos estudiados y con series de tiempo de datos más largas.