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Objective
Evaluate the use of machine learning 
techniques for estimation of bycatch
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Study system: shallow-set longline
• Hawaii shallow-set longline fishery has 100% observer coverage

• This allows us to estimate bycatch and compare estimates to true take
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Methods
• Developed Ensemble Random Forest method using all 2005-2021 shallow-

set longline data (n=18,988 sets)

• Leave one out approach (16 years training, 1 test)

• Focused on 5 protected species: 
• Oceanic whitetips (n=667 sets with interaction)
• Laysan albatross (n=417)
• Black-footed albatross (n=354)
• Loggerheads (n=204)
• Leatherback (n=105)

• Used a set of 26 environmental covariates derived from GPS coordinates of 
longline set and retrieve locations
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ERF framework



Leave-one-out results



Sequential addition

• Attempting to assess training data needs

• For 2010-2021: compared models that only 
used previous years and those that used all data
• Examples:

• For 2010, used 2005-2009

• For 2017, used 2005-2016



Sequential addition results



Takeaways

• Method works best for species above 2% interaction rates
• Whitetips, Laysan albatross, Black-footed albatross (sort of)

• Error-corrected results generally better, especially over the long term

• Training data needs vary, but approximately 7-12 years for most 
species
• 7,000 - 12,000 sets



Comparing to ratio-based estimators

Can ERF method help reduce observer coverage needs?
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Methods
• For each test year (2005-2021), 

we repeated this procedure for 
each species at many coverage 
levels

• Leave-one-out only

• Observer coverage in training 
years: always 100%

• Observer coverage in test year: 
5% to 95%
• 25 replicates at each coverage 

level

• Compared by 4 metrics
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What happens if you combine all of these metrics?



Summary

• ERF framework can produce biased estimates 
while ratio-based estimator is unbiased

• However, variability of bycatch estimates is 
substantially reduced at low coverage levels

• Combining all metrics, ERF method preferable 
for oceanic whitetips and Laysan albatross

• How much bias is acceptable if observer costs 
and estimate variation can be reduced?
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