Comparing machine learning to ratio-based estimates of protected species bycatch

Chris Long, Robert Ahrens, T. Todd Jones, Zachary Siders

Objective

Evaluate the use of machine learning techniques for estimation of bycatch

Photo: Michael Patrick O'Neill/SWOT

Study system: shallow-set longline

- Hawaii shallow-set longline fishery has 100% observer coverage
- This allows us to estimate bycatch and compare estimates to true take

Methods

- Developed Ensemble Random Forest method using all 2005-2021 shallowset longline data (n=18,988 sets)
- Leave one out approach (16 years training, 1 test)
- Focused on 5 protected species:
 - Oceanic whitetips (n=667 sets with interaction)
 - Laysan albatross (n=417)
 - Black-footed albatross (n=354)
 - Loggerheads (n=204)
 - Leatherback (n=105)
- Used a set of 26 environmental covariates derived from GPS coordinates of longline set and retrieve locations

Environmental Covariates						
Bathymetry	SST	Current (meridonal)	Current speed	Chl a front	Wind speed	Dist. to wind front
Lunar phase	SST front	Current flow	Current vorticity	Dist. to chl a front	Wind vorticity	Log(dist. to wind front)
Dist. to seamount	Dist. to SST front	Current front	Current divergence	Wind (zonal)	Wind divergence	
SLA	Current (zonal)	Log(current front)	Log(chl a)	Wind (meridonal)	Wind direction	

ERF framework

Leave-one-out results

Threshold Type --- ACC Threshold Type 🛛 🛶 🗛 🗛 --- MSS ---- PRBE MSS ---- PRBE - True Uncorrected Corrected Uncorrected Corrected 60 - D Oceanic Whitetip 40 oggerhead 20 -E Predicted Bycatch 15 Laysan Albatross 10 **Dack** 2005 2008 2011 2014 2017 2020 2005 2008 2011 2014 2017 2020 Year Black-footed Albatross 2005 2008 2011 2014 2017 2020 2005 2008 2011 2014 2017 2020 Year

Sequential addition

- Attempting to assess training data needs
- For 2010-2021: compared models that only used previous years and those that used all data
 - Examples:
 - For 2010, used 2005-2009
 - For 2017, used 2005-2016

Sequential addition results

Threshold Type 🔶 ACC 🔶 MSS 🔶 PRBE Threshold Type - ACC - MSS - PRBE D Uncorrected Corrected 150 -Oceanic Whitetip 100 -50 . Absolute Difference from LOO Results Laysan Albatross 2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020 Year Black-footed Albatross 2010 2012 2014 2016 2018 2020 2010 2012 2014 2016 2018 2020 Year

.oggerhead

Takeaways

- Method works best for species above 2% interaction rates
 - Whitetips, Laysan albatross, Black-footed albatross (sort of)
- Error-corrected results generally better, especially over the long term
- Training data needs vary, but approximately 7-12 years for most species
 - 7,000 12,000 sets

Comparing to ratio-based estimators

Can ERF method help reduce observer coverage needs?

Methods

- For each test year (2005-2021), we repeated this procedure for each species at many coverage levels
- Leave-one-out only
- Observer coverage in training years: always 100%
- Observer coverage in test year: 5% to 95%
 - 25 replicates at each coverage level
- Compared by 4 metrics

Mean Pearson Correlation: Estimate vs. Actual

.

What happens if you combine all of these metrics?

Summary

- ERF framework can produce biased estimates while ratio-based estimator is unbiased
- However, variability of bycatch estimates is substantially reduced at low coverage levels
- Combining all metrics, ERF method preferable for oceanic whitetips and Laysan albatross
- How much bias is acceptable if observer costs and estimate variation can be reduced?

Acknowledgments

- Marti McCracken, Brett Cooper
- PIRO: Dawn Golden, Josee Vincent, Lesley Hawn
- Asuka Ishizaki

Thank you for listening!

