Review of the Effects of Circle Hooks on Elasmobranchs

Bryan Keller, Ph.D.

bryan.keller@noaa.gov Foreign Affairs Specialist NOAA Fisheries

Introduction

- Dissertation focused on elasmobranchs
- Currently in NOAA Fisheries Office of International Affairs
- Expertise in shark bycatch reduction in longline fisheries

Report

Map-like use of Earth's magnetic field in sharks

Bryan A. Keller,^{1,5,*} Nathan F. Putman,² R. Dean Grubbs,¹ David S. Portnoy,³ and Timothy P. Murphy⁴ ¹Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St. Teresa, FL 32358, USA ²LGL Ecological Research Associates, 4103 South Texas Avenue, Suite 211, Bryan, TX 77802, USA ³Marine Genomics Laboratory, Texas A&M University, Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA ⁴Florida State University, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA ⁵Lead contact ^{*}Correspondence: bryan.keller@noaa.gov

https://doi.org/10.1016/j.cub.2021.03.103

SUMMARY

Migration is common in marine animals,^{1–5} and use of the map-like information of Earth's magnetic field appears to play an important role.^{2,6–9} While sharks are iconic migrants^{10–12} and well known for their sensitivity to electromagnetic fields,^{13–20} whether this ability is used for navigation is unresolved.^{14,17,21,22} We conducted magnetic displacement experiments on wild-caught bonnetheads (*Sphyrna tiburo*) and show that magnetic map cues can elicit homeward orientation. We further show that use of a magnetic map to derive positional information may help explain aspects of the genetic structure of bonnethead populations in the northwest Atlantic.^{23–26} These results offer a compelling explanation for the puzzle of how migratory routes and population structure are maintained in marine environments, where few physical barriers limit movements of vagile species.

- Some studies have indicated higher retention rates on circle hooks
- Circle hooks may also be beneficial for sharks, especially due to a higher probability of survival

- Today we have heard about the effects of circle hooks on sea turtles
- Concern has been expressed about potential trade offs for other taxa, such as sharks

Bycatch of sharks in longline fisheries

• Various meta-analyses conducted to understand the effect of fishing gears

- Retention rate
- At-haulback mortality
- Hooking location
- Post-release survival

Retention rates on circle hook use

Study	Circle hook		J-hook			-
	Events	Total	Events	Total		
Promjinda et al. (2008)	7	3,113	16	3,113		-
Gilman et al. (2007)	30,109	2,150,674	28,092	1,282,748	•	
Kim et al. (2006)	82	29,400	61	14,700		
Kerstetter and Graves (2006, fall)	27	7,020	37	7,020		
Kerstetter and Graves (2006, spring)	12	8,280	15	8,280		
Curran and Bigelow (2011)	4,229	1,386,713	5,051	1,386,713	+	
Yokota et al. (2006)	2,318	32,400	1,060	16,200	+	
Coelho et al. (2012)	6,027	203,568	2,691	101,784	+	
Watson et al. (2005)	6,555	213,621	5,915	213,691	+	
Bolten et al. (2005) (1)	796	46,040	1,333	92,081		
Sales et al. (2010)	2,116	72,914	1,773	72,914	+	
Carruthers et al. (2010)	8,573	458,964	2,587	165,890	+	
Pacheco et al. (2011)	68	25,085	56	25,085		
Bolten et al. (2005) (4A)	976	27,225	350	13,613		
Ward et al. (2009)	73	47,575	44	47,575		
Bolten et al. (2005) (2)	3,095	58,767	896	29,383	+	
Kim et al. (2007)	232	46,848	42	15,616		
Afonso et al. (2011)	92	3,900	42	3,900		
Pooled effects estimate	65,387	4,822,107	50,061	3,500,306	↓ ↓	1.13 [0.94; 1.35]
					0.2 0.5 1 2 5	Godin et al 20
					Udds of catchability	= = = = = = = = , = =

Reduction in at-haulback mortality on circle hooks

- Meta-analyses demonstrate that circle hook use results in a significantly lower level of at-haulback mortality for sharks (Godin et al., 2012; Reinhardt et al., 2017; Gilman et al., 2016)
- "Our results suggest that circle hooks would reduce at-vessel mortality in three ram-ventilating sharks—oceanic whitetip, scalloped hammerhead and shortfin mako. This result is particularly promising for their management because these species are commonly caught in pelagic longline fisheries (Coelho, Santos, & Amorim, 2012)"

Hooking location

- Circle hook use results in significantly less foul or gut hooking (Carruthers et al., 2009; Epperly et al., 2012; Watson et al., 2005; Saidi et al., 2019)
- Hooking location is a main driver for injuries, stress and mortality (Coelho et al., 2020)
- Circle hook use therefore improves the condition of sharks at-haulback and prior to release

Post-release survival

- Accurate estimates of post-release survival are critical for stock assessments
- "Hooking location provides an indicator of the degree of injury and probability of ...postrelease survival (Gilman et al., 2016)"
- As circle hooks are more likely to stay in the mouth/jaw, the injury to the animal is less severe and the likelihood of survival is likely greater

Survivorship tag being deployed on a bonnethead

Retention Rates and the role of Bite-offs

- A "bite-off" occurs when a gut-hooked animal bites through the leader or fishing line and evades capture
- This is most likely to occur with a non-wire leader
- Sharks captured on J-hooks may have lower retention rates, artificially inflating the "catch" rates on circle hooks (Afonso et al., 2012)

Circle hook size

- Most studies compare the difference amongst J-hooks, tuna hooks, and/or circle hooks
- Few studies include treatments with various sizes of circle hooks (Foster et al., 2012; Ward et al., 2009; Kim et al., 2006)
- Small sample sizes of sharks are restrictive in drawing conclusions; confounding variables, such as body size, remain problematic

Figure 1. Hooks used during the 2002 and 2003 pelagic longline experiments in the western North Atlantic (NED): (A) LP-SW 10° offset J-hook, (B) 0° offset 10/0 Japanese tuna (J-tuna) hook, (C) 0° offset 18/0 circle hook, (D) 10° offset 18/0 circle hook, (E) 10° offset 20/0 circle hook.

Foster et al., 2012

Circle Hooks and Pelagic stingrays

Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Short communication

Reducing longline bycatch: The larger the hook, the fewer the stingrays

Susanna Piovano^{a,*}, Simona Clò^b, Cristina Giacoma^a

^a Dipartimento di Biologia Animale e dell'Uomo, Torino University, Via Accademia Albertina 13, 10123 Torino, Italy ^b CTS, Via Albalonga 3, 00183 Roma, Italy

Fig. 2. Mean (± standard error) pelagic stingray CPUEs (captures per 1000 hooks) of each trialled type of hook, per year.

Retention on circle hooks (16/0) is significantly reduced relative to J-hooks (Piovano et al., 2010;)

BIOLOGICAL

CONSERVATION

- "These results suggest that the adoption of <u>large circle hooks</u> by commercial and artisanal swordfish longlining may be a measure to reduce their environmental footprint."
- At-haulback mortality is also significantly reduced on circle hooks (Carruthers et al., 2009)

Final considerations

- Meta-analyses indicate overall significant reductions in at-haulback mortality due to circle hook use
- Differences in retention rates may be due to bite offs
- There is little evidence to indicate that total mortality associated with circle hook use is higher than J-hooks
- On the contrary, reduced injury and at-haulback mortality, in addition to the cryptic mortality associated with bite offs, may result in a lower total mortality associated with circle hook use