INTER-AMERICAN TROPICAL TUNA COMMISSION COMISION INTERAMERICANA DEL ATUN TROPICAL

Internal Report - Informe Interno

No.4

OBSERVATIONS ON THE PURSE-SEINE FISHERY FOR TROPICAL TUNAS IN THE EASTERN PACIFIC OCEAN

by

William H. Bayliff and Craig J. Orange

La Jolla, California 1967

CONTENTS

i

,

ł .

.

																			Page
INTRODUCT	ION .	• •	e we	٠	* *	٠	+	•	14 I		*	•	•	æ				•	1
DATA AND	METHO	DS .		٠	• 4	٠			.	≠ ÷ ÷	•		•	•		٠	۰	φ.	2
ASSUMPTIO	ns .		•	•	* *	*	8	*	•		۲	*					•		5
SKIPJACK	TUNA	• •	• •		* *		ø	*	a; .	• •	•	*	*				٠		7
Resul	ts .	• •		۰.			•				•	¥			¢		4	•	7
	Catel					f:	lsh	ine	s.				8 .	•	۶	ø	•		8
	Catel	****				*	.	•	ø (*	٠	•	٠	٠			¢	•	8
	Catel				ces gr			se	ť,	• •	•	¢	•	*	i# -	*	٠		9 9
					ı gr			•	89 y	••		•		*		•	*	*	9
	Rati								toi			əts							10
	Sets	per	r đa	ay	of	fis	shi	ng	,	* *		*	•						10
	Aire:							•	•	• •	۶	٠		•	۲				11
					r s								-	۰		۲	•		11
	(Thi mo				` ອນ							tal	. 8	set	;\$	*	*	٠	12 12
	Time		isu	neo	1.0	, me	<u>икл</u>	uĝ.	56	ets	•			•	٠	۶		*	
Discu	ssion		•	æ	ø ø	٠	٠	•	ë . (a a	٠	*	*	ø			٠	ø	13
	Diff									a (†		ø			ø		ø	ø	13
	Diff Year														<u>.</u>	٠	*	۶	16
		tor:								a a	6	010	. 25 2	5 -		۴			16
	Diff							•	*		e .	cĺa	ເສີຣ	s e s	* 3		.*	*	17
	Time														a,	*	ø		19
YELLOWFIN	TUNA			•	* •	*	æ	•	•	• •				a		ø		•	20
Resul	ts .								•			*			•				20
	Catc	h pe	er (day	of	f:	lsh	in	g			•		- 24	5				20
	Cate	h pe	r i	se:t	, .	•			ø 1	÷ •	.4	0		٠		ø			20
	Cate												٠	*	٠	•		٠	20
	Rati									tal	S	ets	5	, •	.•	. #	ø		21
	Sets Type:			-				ng		¢ 4	.*		٠	٠	٠	٠	*	.*	21 21
	Aire:								•	69 de	*	٠	٠	٠	. 19				22
	42.4.4. ()				n s			•	T	• .• Se	t.	•	*	*	•			.•	22
				-	' su									set	s				23
	Time	cor	ısu	med	l in	n me	aki	ng	s	ets		, W	٠	•	. 69				23
Discu	ssion											_	_				_		24
27440 (76	Diff							rs	• .	* *					-	•	*	•	24
	Diff										-				Т. Ф		à		26
	Year			\mathbf{er}	and	lືy€	ear	-5	iz(әс	1 a	ទន	ir	ıte	er-	4			
	ac	tior	1\$	٠	ه , ه	æ	٠	æ.	.W	• •				đi		٠	ø		26
	Diff	erei	ice	s a	mon	g v	ves	se.	1 :	siz	e	cla	ISS	ses	5	ø			26
	Time	cor	າອານ	med	l in	n ma	aki	ng	s	ets		٠	•	#		٠		٠	28
CONCLUSIO	NS .		•.•		* *	٠	¢	•	*	e	¢	¢	. •	۰	•	ø	. •	þ	28
FIGURES				ie.	¢ 0	•	٠	•	*			•	٠	ø		٠			30
TABLES .	u		s 16		a a	•	*	•	•	• •	*							. #	33
LITERATUR		ED												*					78
VLV بار ۲۵٬۰۷ از شهر به مهر سهر سهر س	بلبناس مسد	و السالينيد		¥		-	. 🖷		🕷 ji	et .et	4		10	۲	•		٠		10

OBSERVATIONS ON THE PURSE-SEINE FISHERY FOR TROPICAL TUNAS IN THE EASTERN PACIFIC OCEAN

bv

William H. Bayliff and Craig J. Orange

INTRODUCTION

Yellowfin tuna, <u>Thunnus albacares</u>, and skipjack tuna, <u>Katsuwonus</u> <u>pelamis</u>, are caught in the eastern Pacific Ocean by fishermen based in the Americas by two methods, bait fishing and purse-seining. Bait fishing was the dominant method until 1960-1961. During 1948-1957 about 80 percent of the yellowfin and 90 percent of the skipjack landed by California-based vessels, which make up the majority of the fleet, were caught by bait vessels (Anonymous 1967:Table 4). In 1957 conversion of bait vessels to purse-seine vessels was begun, and most of the fleet had been converted by the end of 1961. The details of this conversion are discussed by Orange and Broadhead (1959), Broadhead and Marshall (1961), and McNeely (1961). During 1963-1966 about 90 percent of the yellowfin and 85 percent of the skipjack landed by the California-based fleet were caught by purse-seine vessels (Anonymous.1967:Table 4).

Several studies have been made of the purse-seine fishery for yellowfin and skipjack tuna. Orange, Schaefer, and Larmie (1957) studied the incidence of pure yellowfin, pure skipjack, and mixed yellowfin-skipjack schools in the catches, and the weights of the catches made in individual sets. Their data were for 1946-1955, when the purse-seine fishery was less important than the bait fishery, and conducted mostly north of 20°N. Broadhead and Orange (1960) conducted the same type of study for 1956-1958, when the spatial and temporal extent of the fishery was much more extensive. In addition, they compared the length-frequency distribution of yellowfin and skipjack tuna from pure and mixed schools of yellowfin and skipjack, Broadhead (1962) compared the catches per unit of effort by bait and purse-seine vessels to standardize the effort by purseseine vessels to the fishing power of a Class-4 baitboat (201-300 short tons capacity). Calkins (1963) examined the "concentration indices," i.e., indices of the degree of concentration of the fishing effort in the areas where the catch per unit of effort was highest, for purse-seine vessels for 1951-1961. Calkins (1965) made a study of the size composition of yellowfin tuna within individual purse-seine sets. Green and

-1-

Broadhead (1965) made an economic study of the purse-seine fishery for tropical tunas.

One of the Inter-American Tropical Tuna Commission's most important investigations is a continuing study of the relationship among catch, effort, and catch per unit of effort of yellowfin and skipjack tuna (Shimada and Schaefer 1956; Schaefer 1957). An estimate of the total effort in the eastern Pacific Ocean is obtained by dividing the total catch of all vessels by the catch per unit of effort of as many bait and purseseine vessels as possible standardized to the fishing power of a Class-4 baitboat. To accomplish the standardization, it is necessary to have as thorough an understanding as possible of the schooling habits of the fish, the nature of the purse-seine fishery, and the relationships between them. This report constitutes a contribution to this end.

Acknowledgement is extended to Messrs, Patrick L. Boylan, Thomas P, Calkins, Bruce M. Chatwin, Kenneth R. Feng, James Joseph, Sueichi Oshita, Jerome J. Pella, and Clifford L. Peterson, all of the Inter-American Tropical Tuna Commission, who contributed to this study in various ways. Thanks are also expressed to the many tuna vessel captains and crew members and to the airplane pilots who collected and recorded the data on which this study is based.

DATA AND METHODS

Three species of tropical tunas, yellowfin, skipjack, and bigeye, <u>Thunnus obesus</u>, are caught by the purse-seine vessels of the tropical tuna fleet of the eastern Pacific Ocean. In addition, at the northern and southern ends of the range of the tropical tunas these vessels catch bluefin tuna, <u>T. thynnus</u>, albacore tuna, <u>T. alalunga</u>, bonito, <u>Sarda velox</u>, and <u>S. chiliensis</u>, mackerels, <u>Scomber japonicus</u> and <u>Trachurus symmetri-</u> <u>cus</u>, and yellowtail, <u>Seriola dorsalis</u>.

For this report, the eastern Pacific Ocean has been divided into the five areas shown in Figure 1. This division is made because of differences in the species composition of the catches, the habits of the fish, and the methods of fishing at different latitudes. The vessels have been assigned to the following size classes, in accordance with their capacities in short tons: 1, 1-50; 2, 51-100; 3, 101-200; 4, 201-300; 5, 301-400; 6, greater than 400. This was done by Shimada and Schaefer (1956) because they suspected that the fishing powers differed among vessels of different sizes.

The data on which this study is based were obtained from information

-2-

in the logbooks of the purse-seine vessels. Data from the logbooks of vessels based in Canada, Mexico, Peru, Puerto Rico, and the United States were used. The information in the logbooks includes records of the date of each set, the location where it was made, the type of school, the weight in short tons of each species caught, and a notation as to whether or not assistance was received from an airplane or helicopter in locating and setting the net around the school of fish. Information on the capacity and speed of each vessel and the length and depth of its net were collected from various sources, and these were also used in the analysis.

The following data were analyzed in this report: catch per day of fishing; catch per set; catch per successful set; ratio of successful to total sets; sets per day of fishing. The first statistic, catch per day of fishing, which is presently used as an index of the abundance of the fish, is the product of the last three statistics. It is thus likely that study of these three statistics will provide a greater understanding of the usefulness of catch per day of fishing as an index of abundance of the fish. The catch per successful set is the product of the sizes of the schools and the fractions of the schools which are caught, but since neither of these can be measured, the catch per successful set must be used. The catch per set is studied only because it is necessary to use this statistic, in conjunction with the catch per day of fishing, to estimate the sets per day of fishing.

The data were abstracted from the logbooks and punched on two sets of computer cards, one with the fishing effort in days and the other with the effort in sets. From these cards summaries have been made for various purposes. The analyses in the present report were prepared mostly from these summaries, but also partly from the original computer cards and partly from new cards prepared from the original ones, but with additional information added to them.

The data were not used to calculate the catch per day of fishing in the following cases:

1. If the total weight logged for the trip did not agree within 25 percent of the weight of fish unloaded, none of the data for this trip were used.

2. If the weight of yellowfin and skipjack combined was less than two-thirds of the total weight of fish unloaded, none of the data for that trip were used. If the weight of yellowfin and skipjack was twothirds or more of the total weight, however, all the effort for that trip was assumed to have been directed toward yellowfin and skipjack.

-3-

The data were not used to calculate the catch per set, catch per successful set, or ratio of successful to total sets in the following cases:

1

1. If the total weight logged for the trip did not agree within 25 percent of the weight of fish unloaded, none of the data for that trip were used.

2. If it was not reasonably certain that the vessel was fishing for yellowfin or skipjack, rather than for some other species, the data for those days were not used.

3. If the catch was recorded for several sets combined instead of individually, the data for those sets were not used. If this occurred frequently in the logbook record of a trip, none of the data for that trip were used.

The catch data were recorded in short tons, and the catches of fractions of tons were reduced to the nearest whole number. Thus 0 tons was recorded for the sets in which $\frac{1}{4}$ to $\frac{1}{2}$ ton was caught. These were considered to be successful sets, however, as were all the sets in which $\frac{1}{4}$ ton or more of yellowfin and/or skipjack was caught.

In some cases, when a school consisted of many fish of one species and only a few of the other, the school was recorded in the vessel's logbook as being a pure school. This is not believed to be an applicable source of error for the present analysis, however.

The data are summarized in Tables 1-6 and 22-26. The catches are recorded in short tons in all the tables in this report. The species of fish were not recorded in the logbooks in some cases. For the catch-perunit-of-effort data in Tables 1 and 22, the data for all fish of the species in question, whether caught in pure schools or in schools mixed with the other species, were used. The catches which were not recorded by species were prorated in accordance with the species composition of the catches by all vessels for which logbook data were available for the same 1-degree area, year, and quarter. For the catch-per-set data in Tables 2 and 23, all the data were used except those for the sets for which the species was not recorded. In other words, the total catches recorded as the species in question, whether the fish were caught in pure or mixed schools, were divided by the numbers of sets, exclusive of those for which the species of fish caught was not recorded. For the catch-per-successful-set data in Tables 3, 4, and 24 only the data for the sets in which only the species in question were caught were used. For the ratio-ofsuccessful-to-total-sets data in Tables 5 and 25, the data for all the

-4-

sets were used, and all those in which $\frac{1}{4}$ ton of yellowfin and/or skipjack or unidentified fish believed to have been yellowfin and/or skipjack were caught, were considered to have been successful. For this reason, the numbers of sets are usually slightly higher in Tables 5 and 25 than in Tables 2 and 23. For the sets-per-day-of-fishing data in Table 6 and Table 26, the numbers of days of fishing and the numbers of sets were taken from Tables 1 and 2 and Tables 22 and 23, respectively.

In Tables 7 and 27 are shown the logged catches of skipjack and yellowfin (<u>i.e.</u>, those for which logbook data were obtained) and the total catches of skipjack and yellowfin in the eastern Pacific Ocean for 1961 through 1966. It can be seen from these tables that the majority of the logged catches of skipjack in Areas 3, 4, and 5 are included in Tables 1, 2, and 3 and that the majority of the logged catches of yellowfin in Area 2 are included in Table 24. A minority of the logged catches of skipjack in Area 1 appears in Table 4, however; this is because a large portion of the skipjack in this area is taken in schools of mixed yellowfin and skipjack.

Most of the calculations were performed on the CDC 3600 computer at the University of California at San Diego and the IBM 7094 and IBM 360 computers at the University of California at Los Angeles. The following computer programs were used in the analyses:

Multiple-classification analysis of variance--BMD 02V (Dixon 1965),

BMD 05V (Dixon 1965);

Single-classification analysis of variance--G4 UTEX SCANOVA

(Veldman 1962);

Analysis of covariance--BIMD 20 (Dixon 1961);

Simple correlation--Weighted Linear Regression for Two Variables

(Paulik and Gales 1965), BMD 03R (Dixon 1965);

Multiple correlation--BMD 03R (Dixon 1965).

ASSUMPTIONS

As mentioned previously, the vessels of the tropical tuna fleet fish for several species. The problem of separating the effort according to the species toward which it is directed is a formidable one. On most trips the vessels do not catch bluefin, albacore, bonito, mackerel, or yellowtail, nor do they fish in water of the temperatures where these species occur. When they do catch these species, the criteria described in the preceding section are probably adequate for assigning the effort

-5-

as to whether it is directed toward these species or toward the tropical tunas. This leaves the effort directed toward yellowfin, skipjack, and bigeye to be separated. According to the procedures described in the preceding section, the data for a trip in which the catch consisted of 50 percent yellowfin and 50 percent bigeye would not be used to calculate the catch per day of fishing, but those for a trip in which the catch consisted of 50 percent yellowfin and 50 percent skipjack would be used for this purpose. This seems illogical, since the bigeye is a tropical tuna and occurs within the geographic ranges of the yellowfin and skipjack. The error resulting from this procedure is minor, however, since bigeye tuna are rarely caught in sufficient quantities to cause the data for a trip not to be used to calculate the catch per day of fishing.

The problem thus consists almost entirely of separating the effort directed toward yellowfin and skipjack. The sets in which only yellowfin or only skipjack are caught can be considered as being directed toward whichever of these species was caught (and possibly toward the other species too), and those in which both species were caught can be considered as being directed toward both. A considerable portion of the sets catch no fish, however, and there are no notations in the logbooks to tell which species the fishermen thought were in the schools when the sets were begun. Shimada and Schaefer (1957), considered all effort assigned as being directed toward yellowfin or skipjack to be directed toward yellowfin. Yellowfin occur throughout the range of the tropical tuna fishery (Alverson 1963), and are favored by the fishermen because they can be sold for a higher price. Therefore, any vessel fishing in the area where tropical tunas are caught could be assumed to be searching for yellowfin, except possibly when it is in an area where there are known to be large schools of skipjack and few yellowfin. Skipjack, on the other hand, do not occur in all areas of the range of the tropical tuna fishery, nor do they occur at all times of the year in the areas where they are found (Alverson 1963). Recognizing this, Joseph (unpublished manuscript) has defined an area off central Mexico where relatively few skipjack are caught, and considered all effort except that in this area to be directed toward skipjack. This area shifts slightly from year to year, probably due to differences in oceanographic conditions, but corresponds fairly well to Area 2.

The great majority of the skipjack catch is made in Area 5, and this catch is considerably greater than that of yellowfin in the same

-6-

area (Tables 7 and 27). Thus it is assumed that all the effort in this area is directed toward skipjack. Therefore only this area is considered for the analysis of the catch per day of fishing, catch per set, ratio of successful to total sets, and sets per day of fishing for skipjack. The catches of yellowfin are substantial in Area 2, while those of skipjack are quite low in that area (Tables 7 and 27). Thus it is assumed that all the effort in this area is directed toward yellowfin, and only data for this area are used for the analyses of yellowfin in this report.

The ratio of successful to total sets in each stratum is calculated by dividing the number of sets in which at least $\frac{1}{4}$ ton of yellowfin and/ or skipjack was caught by the total number of sets. The assumption that the ratio of successful to total sets in the same for schools of yellowfin, skipjack, and mixed yellowfin and skipjack is implicit in this procedure. It is not believed that this assumption is valid, but the procedure must be used until some way has been found to determine toward which species the unsuccessful sets were directed.

Results

The differences among years, quarters, and size classes of the values of catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing were tested by analysis of variance to determine if they were significant. For this purpose the model was assumed to be

 $\mathbf{x}_{\mathbf{i}\mathbf{j}\mathbf{k}} = \mu + \alpha_{\mathbf{i}} + \beta_{\mathbf{j}} + \mathbf{y}_{\mathbf{k}} + \alpha_{\mathbf{i}} \beta_{\mathbf{j}} + \alpha_{\mathbf{i}}\mathbf{y}_{\mathbf{k}} + \beta_{\mathbf{j}}\mathbf{y}_{\mathbf{k}} + \boldsymbol{\varepsilon}_{\mathbf{i}\mathbf{j}\mathbf{k}}$ where

x = value (catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, or sets per day of fishing) for size class k in quarter j of year i, p = overall mean,

 $\begin{array}{l} \alpha_{\mathbf{i}} &= \mathrm{mean} \; \mathrm{effect} \; \mathrm{of} \; \mathrm{year} \; \mathrm{at} \; \mathrm{level} \; \underline{\mathbf{i}}, \\ \beta_{\mathbf{j}} &= \mathrm{mean} \; \mathrm{effect} \; \mathrm{of} \; \mathrm{quarter} \; \mathrm{at} \; \mathrm{level} \; \underline{\mathbf{j}}, \\ \gamma_{\mathbf{k}} &= \mathrm{mean} \; \mathrm{effect} \; \mathrm{of} \; \mathrm{size} \; \mathrm{class} \; \mathrm{at} \; \mathrm{level} \; \underline{\mathbf{k}}, \\ \alpha_{\mathbf{i}} \; \beta_{\mathbf{j}}, \; \alpha_{\mathbf{i}} \; \gamma_{\mathbf{k}} \; \mathrm{and} \; \beta_{\mathbf{j}} \; \gamma_{\mathbf{k}} \; = \mathrm{mean} \; \mathrm{effects} \; \mathrm{of} \; \mathrm{the} \; \mathrm{two-way} \; \mathrm{interactions} \\ \mathrm{at} \; \mathrm{their} \; \mathrm{respective} \; \mathrm{levels}, \; \mathrm{and} \; \\ \varepsilon_{\mathbf{i} \; \mathbf{ik}} \; = \; \mathrm{error} \; \mathrm{term}. \end{array}$

For this model the following assumptions are made:

-7-

1. Any factors other than year, quarter, or size class which affect the values are distributed randomly among the year, quarter, and sizeclass strata.

2. There is no three-way interaction among years, quarters, and size classes.

3. The experimental error is distributed normally, with its mean equal to 0 and its variance equal to σ^2 . Because of limitations in the capacities of the available computer programs, it was necessary to use the means instead of the individual values for each stratum in the multiple-classification analyses of variance, and this made it impossible to test whether three-way interactions existed. In some of these tests it may be noted that <u>F</u> values of less than 1 were obtained, and especially in these cases the possibility of the existence of three-way interactions should be recognized. Since all the available data were used in these problems, all three factors are assumed to be fixed.

In the analyses which involve Area 5 (catch per day of fishing, catch per set, ratio of successful to total sets, and sets per day of fishing) and Areas 3, 4, and 5 combined (catch per successful set) only data for Class-4, Class-5, and Class-6 vessels are considered, since vessels of the other size classes fish only infrequently in those areas. In the analyses involving Area 1 (catch per successful set) only data for the third and fourth quarters and for Class-3, Class-4, and Class-5 vessels are used since few skipjack are caught in that area in the first two quarters and since vessels of the other size classes fish there only infrequently.

Catch per day of fishing

In Table 1 are shown the catches, days of fishing, and catches per day of fishing in Area 5 by year, quarter, and size class for 1961 through 1966. In Table 8 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per day of fishing. The data for 1961 were omitted because there were insufficient data for the first quarter of that year. The results indicate significant differences for all three factors and for the year-quarter interaction.

Catch per set

í.

In Table 2 are shown the catches, sets, and catches per set in Area 5 by year, quarter, and size class for 1962 through 1966. There were

no data available for 1961 on the total number of sets, so the catches per set could not be calculated for that year. In Table 9 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per set. The results indicate significant differences for all three factors and for the year-quarter interaction.

Catch per successful set

As mentioned previously, skipjack are caught infrequently in an area off central Mexico. Though it shifts slightly from year to year, this area corresponds fairly well to Area 2. The interchange of fish between Area 1 and Areas 3, 4, and 5 is slight (Schaefer, Chatwin, and Broadhead 1961). Accordingly, in this report the fish of Area 1 are considered to belong to a northern group and those of Areas 3, 4, and 5 to a southern group. The fish caught in Area 2 probably belong to both groups, so they are not considered for this analysis.

In Tables 3 and 4 are shown the catches, successful sets, and catches per successful set for the southern and nothern groups, respectively, by year, quarter, and size class for 1961 through 1966. The catches per successful set are so much greater for the southern than for the northern group that no statistical test is needed to determine the significance of these differences.

Southern group

In Table 10 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per successful set. The data for 1961 were omitted because there were insufficient data for the first quarter of that year. The results indicate significant differences for all three factors and for the year-quarter interaction.

A similar analysis of variance was conducted using only data for Area 5. The results were the same as those for Areas 3, 4, and 5 combined except that for Area 5 the difference among years was significant at the 1-percent instead of the 5-percent level.

Northern group

In Table 11 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per successful set. It was arbitrarily decided not use the data for any stratum for which there were less than five successful sets; three strata were in this category. With BMD 05V,

-9-

the computer program used for this analysis, it is not necessary to have data for all the cells, so substitute values for these strata were not calculated. The results indicate significant differences for the years, quarters, and quarter-size class interaction. This result is in contrast to that obtained for the southern group, for which there were found significant differences for the years, quarters, size classes, and year-quarter interaction.

Ratio of successful to total sets

In Table 5 are shown the ratios of successful to total sets in Area 5 by year, quarter, and size class for 1962 through 1966. There were no data available for 1961 on the total number of sets, so the ratios of successful to total sets could not be calculated for that year. In Table 12 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the ratios of successful to total sets. As the range of values is 0.329 to 0.776, with only 2 of the 60 values above 0.700, no transformation of the data is needed (Steel and Torrie 1960:158). The results indicate significant differences for the years, quarters, and year-quarter interaction. In contrast to the catch per day of fishing, catch per set, and catch per successful set, however, there was no significant difference among size classes in the ratios of successful to total sets.

Sets per day of fishing

In Table 6 are shown the sets, days of fishing, and sets per day of fishing in Area 5 by year, quarter, and size class for 1962 through 1966. The data were taken from Tables 1 and 2. It is evident from the Data and Methods section that different criteria were used to determine whether or not the available logbook data were used for these tables. In most cases more data were usable for Table 1 than for Table 2, as can be seen by the fact that the catches in Table 1 are in most cases higher than those in the equivalent strata of Table 2. Therefore the numbers of sets in Table 2 were adjusted to correct for this discrepancy. This adjustment was made by multiplying the numbers of sets for each stratum by the ratio of the catch in Table 1 to the catch in Table 2 for that stratum. The adjusted numbers of sets are shown in Table 6. \mathbf{In} Table 13 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the numbers of sets per day of fishing. The results indicate

-10-

significant differences for the years, quarters, and year-quarter interaction. Thus they are similar to the results for the ratio of successful to total sets, but in contrast to those for catch per day of fishing, catch per set, and catch per successful set.

Aircraft assistance

Airplanes and helicopters are sometimes used to search for schools of tuna for purse-seine vessels, and to direct the fishing operations. The airplanes are based on shore, while the helicopters are based on the fishing vessels. The airplanes operate independently of the vessels, and the pilots assist any vessel in its fishing operations for a share of the value of the catch of the sets for which assistance was furnished. The helicopter pilot's first responsibility is to the vessel on which the helicopter is based, but when that vessel is not searching for fish $(\underline{i} \cdot \underline{e})$ engaged in bringing the fish aboard the vessel after making a set, returning to port fully loaded, etc.) he may furnish assistance to other vessels. In such cases his remuneration is made in the same manner as that of the airplane pilots. Helicopters have been used much less frequently than airplanes for assistance in fishing.

Catch per successful set

To determine the effect of aircraft assistance on the catch per successful set, the data were examined for each year-to-quarter-size class stratum for which there were at least 10 successful sets for which the vessels were assisted by aircraft and 10 for which they did not receive such assistance. Airplanes and helicopters were not separated from one another, since there were so few data for helicopters. The distribution of the weights of skipjack in purse-seine sets is reverse J-shaped (Orange, Schaefer, and Larmie 1957: Figure 9; Broadhead and Orange 1960: Figure 5) so the logarithmic transformation of Bartlett (1947) to make the frequency distribution more nearly normal is appropriate. This was accomplished by $\underline{x'} = \log_{10}(\underline{x} + 1)$, where $\underline{x} = \text{catch per successful set.}$ Single-classification analyses of variance were made for each stratum to determine if there were significant differences between the assisted and non-assisted sets. The results are summarized in Table 14. Of the 22 tests, seven showed the catch per successful set to be greater at the 5percent level for aircraft-assisted sets and 15 showed no significant difference. The results of the 22 tests were combined, using the method of Winer (1962:44-45). For this it is necessary to assume that aircraft assistance has the same effect on the catch per successful set in each year-quarter-size class stratum. The values of t for Winer's equation

-11-

are the square roots of the values of \underline{F} in Table 14. The value of \underline{z} for the combined data is 3.56, which indicates at the 1-percent level that assistance by aircraft increases the catch per successful set.

Ratio of successful to total sets

In Table 15 are shown the ratios of successful to total sets by year, quarter, and whether or not assistance was received from aircraft. In Table 16 are shown the results of an analysis of variance to determine if there were significant differences among years or whether or not assistance was received from aircraft. Because of the shortage of data for aircraft-assisted sets, the data for 1964 are omitted and the data for the different quarters and size classes are combined. The arcsine transformation described by Bartlett (1947) was used for the data, as two of the eight values are greater than 0.700 (Steel and Torrie 1960:158). The results indicate a significant difference between the assisted and nonassisted sets, the ratio of successful to total sets being higher for the former. However, the airplane pilots do not receive any remuneration for the sets in which no fish are caught, and it is known that often when no fish are caught the fact that assistance was received from an airplane is not recorded in the logbooks. Thus the difference between the ratios of successful to total sets by vessels assisted by aircraft and those not receiving such assistance is less than indicated in Table 15, and may be non-existent,

Time consumed in making sets

An index of abundance of a species of fish is obtained from the catch per unit of effort. For a species which is fished by purse-seines, this should be the ratio of the catch to the time spent searching for fish. For skipjack (and yellowfin) the catch per unit of effort is presently defined as the ratio of the catch to the days of fishing. A portion of the days of fishing is devoted to making sets, rather than to searching for fish, and if this time is subtracted from the days of fish ing, there will be obtained an estimate of the time spent searching for fish, which is a better measure of the fishing effort. As a first step in determining whether it is worthwhile to make this correction, it is necessary to determine the time consumed in making sets in which various quantities of fish are caught.

For this purpose it is assumed that the relationship between the time consumed in making a set and the quantity of fish in that set is linear, and thus for the form

-12-

$$y_{ij} = a + bx_{ij}$$

where

 $\frac{y_{ij}}{x_{ij}}$ = time spent making a set in quarter j of year <u>i</u>, $\frac{x_{ij}}{x_{ij}}$ = quantity of fish caught in that set, and a and b = constants.

Data on sets in which pure skipjack were caught and on unsuccessful sets were used for this study. These were obtained from the abstracts made by Tuna Commission personnel of the fishermen's logbooks. The catches in short tons for the successful sets were tabulated at intervals of 5 tons, i.e. catches of 0.1 to 4.9 tons were tabulated as 2.5 tons, catches of 5.0 to 9.9 tons were tabulated as 7.5 tons, etc., and the times of the sets were tabulated in minutes. The data were not used when the times of the sets were not recorded in the logbooks. The data were tabulated by year and quarter of landing, which correspond fairly closely to the years and quarters in which the fish were actually caught. They were not tabulated by area or size class, however. If there were usable data for more than 50 sets for a given interval for a given year, the data for only 50 of them were used. These were distributed approximately equally among the four quarters and among the vessels which had usable data in their logbooks.

In Table 17 are shown the numbers of sets for which data were obtained for each quarter and year and the estimates of the values of the constants in the regressions. Analyses of covariance were conducted to determine if the slopes or levels of the regression differed among quarters within years or among years without regard to quarters. The results are shown in Table 18. The differences among quarters are significant in only two of the six years, and in neither case is the significance high. The difference among years is highly significant, however. It is apparent from Figure 2 that the time required to make a set has been reduced considerably during the 1961-1966 period.

Discussion and conslusions

Differences among years

Significant differences among years were found for the catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing. The first two factors are functions of the last three, whereas the last three may be related to the abundance of the fish. It is thus of interest to compare each of the

-13-

last three factors to indices of abundance of the fish. For this purpose the following indices were chosen: logged catch in Area 3 or in Areas 3, 4, and 5 combined (Table 7); total catch (Table 7); catches in pounds per day of fishing in the entire eastern Pacific Ocean standardized to Class-3 purse-seine vessels, which were as follows: 1961, 3286; 1962, 5252; 1963, 7299; 1964, 4852; 1965, 5451; 1966, 4715 (Anonymous 1965:Table 4; Anonymous 1967:Table 6; unpublished data of the Inter- American Tropical Tuna Commission).

The catch per successful set might be related to the techniques of fishing, to the sizes of the schools, or to some behavior characteristic of the fish which influences what portions of the schools are caught. It is unlikely that the first is the case, as the catches per successful set, though they differed significantly among years during 1961-1966, do not appear to have increased during that period. These were the first years of purse-seining for most of the fishermen, and they would be expected to have learned much about handling the gear during that period, but apparently they did not learn anything which enabled them to increase the catch per successful set. If the second or third is the case, it is worthwhile to compare the catches per successful set with the indices of abundance of the fish to see if they are related, since the sizes of the schools and/or the behavior of the fish may in turn be related to the abundance. For this purpose, the catches per successful set in Areas 3, 4, and 5 combined (Table 3) were used. The product-moment correlation coefficients for the catches per successful set with the three indices of abundance of the fish were calculated, with the following results:

	Correlation coefficient		Probability
logged catch in Areas 3, 4, and 5 combined-catch per successful se	t -0.028	4	>0.10
total catch and catch per successful set	0,204	4	>0.10
catch per day of fishing and catch pe successful set	r 0.026	4	>0.10

From these data there is no evidence that the catch per successful set is related to the abundance of the fish, and it can be inferred that the size of the schools and the behavior characteristic mentioned above (if it exsts) are not related to the abundance. However, it is stated by some fishermen that in years when skipjack are abundant, very large schools of them occur in Area 5, and they sometimes have to avoid these large schools and set on smaller ones because they cannot handle the very large schools. It is not known if this occurs frequently enough to invalidate the above inference.

The ratio of successful to total sets might be related to the techniques of fishing or to some behavior characteristic which influences the ease with which the schools (or portions of them) can be caught. If the latter is the case, it is worthwhile to compare the ratios of successful to total sets with the indices of abundance of the fish to see if they are related, since the behavior of the fish may in turn be related to the abundance. For this purpose, the ratios of successful to total sets for Area 5 (Table 5) were used. The product-moment correlation coefficients for the ratios of successful to total sets with the three indices of abundance of the fish were calculated, with the following results:

·	Correlation coefficient	Degrees of freedom	Probability
logged catch in Area 5-ratio of suc- cessful to total sets	-0,662	3	>0.10
total catch-ratio of successful to total sets	-0.798	3	>0.10
catch per day of fishing-ratio of successful to total sets	-0.712	3	>0.10

From these data there is no evidence that the ratio of successful to total sets is related to the abundance of the fish, and it can be inferred that the behavior characteristic (if it exists) which influences the ease with which the schools of fish may be caught is not related to the abundance. The increase in the ratios of successful to total sets in 1966 is believed to be due chiefly or entirely to improved techniques in capturing yellowfin tuna schooled with propoises. The ratio of successful to total sets increased much more in Area 2 (Tables 25 and 34) where the proportion of yellowfin in the catches is higher and where more porpoises occur, than in Area 5.

The sets per day of fishing might be related to the technique of fishing or to the numbers of schools of fish in the area. If the latter is the case, it is worthwhile to compare the number of sets per day of fishing with the indices of abundance of the fish to see if they are related, since the numbers of schools of fish in the area may in turn be related to the abundance. For this purpose the sets per day of fishing for Area 5 (Table 6) were used. The product-moment correlation coeffi-

-15-

cients for the sets per day of fishing with the three indices of abundance of the fish were calculated, with the following results:

	Correlation coefficient	Degrees of freedom	Probability
logged catch in Area 5-setsper day of fishing	0.852	3	<.0,10
total catch-sets per day of fishing	0.626	3	>0.10
catch per day of fishing-sets per day of fishing	0.573	3	>0.10

From these data there is some evidence that the number of sets per day of fishing is related to the abundance of the fish, and it can be inferred that when the fish are more abundant there are more schools of fish in the area.

In summary, it appears that when the fish are more abundant there are more schools of fish, but that the schools are about the same size as when the fish are less abundant. The same conclusion was reached by Broadhead and Orange (1960) for yellowfin tuna. More investigation of this is needed, however, when more data are available.

Differences among quarters

Significant differences among quarters were found for the catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing for Area 5 or for Areas 3, 4, and 5 combined. The catch per successful set has tended to be higher in the second and third quarters, while/ratio of successful to total sets and the sets per day of fishing were usually higher during the first and second quarters. The greatest difference among quarters was in the catch per successful set, which caused the catch per set and the catch per day of fishing also to be higher in the second and third quarters.

The differences in the catch per successful set, ratio of successful to total sets, and sets per day of fishing in different quarters could be due to differences in the abundance of the fish or to differences in their behavior. There appears to be no point in pursuing this further until more is known of the biology of the skipjack.

Year-quarter and quarter-size class interactions

Significant year-quarter or quarter-size class interactions were found for the catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing for Area 5, or for Areas, 3, 4, and 5 combined. This means that the

-16-

ratios among quarters within the years or among size classes within the quarters for these factors differed among the years or quarters involved. There appears to be no point in pursuing this further until more is known of the biology of the skipjack.

Differences among vessel size classes

It is evident from the foregoing analyses that in Area 5 the larger vessels do not make more sets per day than do the smaller ones, nor do they have higher ratios of successful to total sets. They catch greater amounts of fish per successful set, however, and for this reason make higher catches per set and higher catches per day of fishing. Actually there is a nearly-significant difference in the number of sets per day made by the larger vessels (Table 13), and this might become significant when data for more years are obtained. Thus the differences in the catches per day of fishing by the larger vessels may be due partly to their making more sets per day of fishing, but they are due chiefly to their catching greater amounts of fish per successful set.

It is of interest to determine whether the larger vessels make greater catches per successful set than do the smaller ones because the former set on larger schools of fish or because they catch larger portions of the schools that they set on. Examination of other characteristics of the vessels and gear is appropriate for this purpose. Data on the vessel speeds and the net lengths and depths are available for most of the vessels in the purse-seine fleet. These data, and data on the vessel capacities, are summarized in Table 19.

Product-moment correlation analyses were conducted to determine the relationships of each of these factors with the vessel capacities. The actual capacities, rather than the size classes, were used for this purpose. In Table 20 are shown the coefficients of correlation with vessel capacity for each factor for 1961 through 1966. All the coefficients are high, with probability levels of less than 1 percent, indicating that each of these factors is strongly correlated with vessel capacity.

Next the catches per successful set were correlated with the vessel capacities, vessel speeds, net lengths, and net depths. For this purpose the data used for Tables 3 and 4 were employed except that the data for the few vessels for which there were no data for the vessel and net characteristics were omitted, as were the data for the few sets in which the vessels were assisted by an airplane or helicopter. The latter were omitted because, as was shown previously, aircraft assistance tended to result in slightly higher catches per successful set, and such assistance

-17-

may not have been randomly distributed among vessels of different characteristics. The logarithmic transformation described previously was used for the data in this analysis. The results are summarized in Table 21. The correlation coefficients for all the strata combined were calculated by the method of Fisher (1958:204); these are also shown in Table 21. For this it is necessary to assume that the correlations are equal for each stratum. The catch per successful set is correlated about equally with each of the four factors. However, the correlations are much lower than those among the vessel and net characteristics, and most of them for the individual strata are not significant. Also shown in Table 21 are coefficients of multiple correlation involving all four vessel and net characteristics. The number of significant correlations is about the same for the multiple correlations as for each of the single correlations. This is not surprising, since the data in Table 20 indicate that the vessel and net characteristics are strongly correlated with one another. There is no way to ascertain from these data which of these factors, if any, is most influential in affecting the catch per successful set. The most conspicuous feature of the data is the low correlation of the catch per successful set with the vessel and net characteristics.

The above analyses have accomplished very little, except to demonstrate the low correlation of the catch per successful set with the vessel and net characteristics and to show that there would apparently be little or no advantage to substituting some other vessel or net characteristic for vessel capacity in studies involving the catch per unit of effort.

It will be noted that the larger vessels catch more fish per successful set when fishing on the southern group (Table 10), but not the northern group (Table 11), and that the catch per successful set is much higher in the south (Tables 3 and 4). The latter is probably because the schools are larger in the south than in the north. It appears that the vessels in the north (Size classes 3, 4, and 5) all set on schools of equal size and are able to catch equal portions of these schools. In the south, however, the larger vessels catch more fish per successful set, either because they set on larger schools of fish or because they catch larger portions of the schools they set on. If the latter is the case, it may be because the larger vessels are equipped with longer and/ or deeper nets. This is merely speculation, however, and better data would be needed for verification.

-18-

It was indicated previously that a nearly-significant difference was found in the sets per day made by vessels of different size classes (Table 13). The larger vessels tend to be faster (Table 20), which may enable them to make more sets per day. It would be worthwhile to examine the correlation between sets per day and vessel speed, but data for this purpose are not available.

It is the desire of the fishermen to achieve the highest possible earnings per year, of course, rather than the highest possible catch per successful set. Larger vessels make considerably higher catches per year than do the smaller ones, even though the catches per successful set and the catches per day of fishing in the same areas are nearly the same. When fishing in the same area, the larger vessels catch more fish per year because they spend less time travelling to and from port and unloading their catches. In addition, it is feasible for the larger vessels to travel to areas which are further from port and where the catches per unit of effort are higher. The economic merits of vessels of different sizes are discussed in detail by Green and Broadhead (1965).

Time consumed in making sets

In 1966 the average vessel capacity was 325 short tons (Table 19), From data in Tables 1, 3, 5, and 17 it is calculated that such a vessel fishing exclusively for skipjack in Area 5 on a single trip might have had the following results:

days of fishing - 40;

successful sets - 22, with 15 tons of fish in each set; unsuccessful sets - 13;

total time required for the successful sets - 45 hours;

total time required for the unsuccessful sets - 19 hours. Thus 64 hours (2-2/3 days) should be subtracted from the 40 days of fishing to get the time actually spent searching for fish. The amount of time to be subtracted in each case would depend on the numbers of successful and unsuccessful sets made and the distribution of the amounts of fish caught in the successful sets. If some of the effort was devoted to yellowfin instead of skipjack there would be introduced a considerable further complication. It is beyond the scope of this report to suggest procedures for subtracting the time consumed in making the sets.

-19-

Results

The differences among years, quarters, and size classes of the values of catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing were tested by analysis of variance to determine if they were significant. The model was assumed to be the same as that described for skipjack on pages 7-9.

Only the data for the first, second, and fourth quarters and for Class-3, Class-4, and Class-5 vessels are considered, since little fishing occurs in Area 2 in the third quarter and since vessels of the other size classes fish there only infrequently.

Catch per day of fishing

In Table 22 are shown the catches, days of fishing, and catches per day of fishing in Area 2 by year, quarter, and s ze class for 1961 through 1966. In Table 28 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per day of fishing. The results indicate significant differences for all three factors and for the year-quarter interaction.

Catch per set

In Table 23 are shown the catches, sets, and catches per set in Area 2 by year, quarter, and size class for 1962 through 1966. There were no data available for 1961 on the total number of sets, so the catches per set could not be calculated for that year. In Table 29 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per set. The results indicate significant differences for all three factors and for the year-quarter interaction.

Catch per successful set

In Table 24 are shown the catches, successful sets, and catches per successful set in Area 2 by year, quarter, and size class for 1961 through 1966. In Table 30 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the catch per successful set. The results indicate significant differences for all three factors and for the year-quarter interaction.

-20-

Ratio of successful to total sets

In Table 25 are shown the ratios of successful to total sets in Area 2 by year, quarter, and size class for 1962 through 1966. There were no data available for 1961 on the total number of sets, so the ratios of successful to total sets could not be calculated for that year. In Table 31 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the ratios of successful to total sets. As the range of values is 0.378 to 0.745, with only 3 of the 45 values above 0.700, no transformation of the data is needed (Steel and Torrie 1960:158). The results indicate significant differences for the years and size classes. In contrast to the catch per day of fishing, catch per set, and catch per successful set, however, there were no significant differences for the quarters and year-quarter interaction.

Sets per day of fishing

In Table 26 are shown the sets, days of fishing, and sets per day of fishing in Area 2 by year, quarter, and size class for 1962 through The data were taken from Tables 22 and 23. It is evident from the 1966. Data and Methods section that different criteria were used to determine whether or not the available logbook data were used for these tables. In most cases more data were usable for Table 22 than for Table 23, as can be seen by the fact that the catches in Table 22 are in most cases higher than those in the equivalent strata of Table 23. Therefore the numbers of sets in Table 23 were adjusted to correct for this discrepancy. This adjustment was made by multiplying the numbers of sets for each stratum by the ratio of the catch in Table 22 to the catch in Table 23 for that stratum, The adjusted numbers of sets are shown in Table 26. In Table 32 are shown the results of an analysis of variance to determine if there were significant differences among years, quarters, or size classes in the numbers of sets per day of fishing. The results indicate significant differences for the years, size classes, and year-size class interaction. Thus they are similar to the results for the ratio of successful to total sets except for the year-size class interaction, but in contrast to those for the catch per day of fishing, catch per set, and catch per successful set.

Types of schools

The/principal types of schools of yellowfin are recognized by the fishermen, those in which the fish are schooled with porpoises, those which are caught in sets made at night, those which are caught in sets made

-21-

around floating objects, and those which do not fit into any of the other three categories. The last are termed "school fish." In Tables 33, 34, and 35 are shown the catch per set, catch per successful set, and ratio of successful to total sets for each of these types of school. The values in these tables are less than those in Tables 23, 24, and 25 because the types of schools the vessels set on were sometimes not specified in the logbooks, and the data for such sets are omitted from Tables 33, 34, and 35. In addition, the sets made with the assistance of aircraft are omitted from these tables.

The average catch per successful set is considerably higher for school fish than for porpoise fish, but the opposite is true for the ratio of successful to total sets, and the result is that the catch per set is about the same for school fish and propoise fish. The average catch per successful set is intermediate for the night sets, but the ratio of successful to total sets is very high, which results in the highest catch per set.

About 60 percent of the yellowfin caught in Area 2 are caught in schools mixed with poppoises. The catch per set, catch per successful set, and ratio of successful to total sets were calculated by year, quarter, and size class for fish schooled with porpoises only, and analyses of variance were conducted to determine if significant differences existed among the above factors. The results were quite similar to those for all schools combined (Tables 29, 30, and 31), differing only as follows for the catch per set: year-quarter interaction significant at the 1-percent instead of the 5-percent level; quarter-size class interaction significant at the 1-percent level.

Aircraft assistance

The use of airplanes and helicopters to search for schools of tuna for purse-seine vessels, and to direct the fishing operations, is discussed on page 11.

Catch per successful set

To determine the effect of aircraft assistance on the catch per successful set, the data were examined for each year-quarter-size class stratum for which there were at least 10 successful sets for which the vessels were assisted by aircraft and 10 for which they did not receive such assistance. Airplanes and helicopters were not separated from one another, since there were so few data for helicopters. The distribution of the weights of yellowfin in purse-seine sets is reverse J-shaped (Orange, Schaefer, and Larmie 1957; Figure 9; Broadhead and Orange 1960; Figure 5)

-22-

so the logarithmic transformation of Bartlett (1947) to make the frequency distributions more nearly normal is appropriate. This was accomplished by $\underline{x}' = \log_{10}(\underline{x} + 1)$, where $\underline{x} = \text{catch per successful set}$. Single-classification analyses of variance were made for each stratum to determine if there were significant differences between the assisted and non-assisted sets. The results are summarized in Table 36. Of the eight tests, six showed the catch per successful set to be greater at the 5-percent level for aircraft-assisted sets and two showed no significant difference. The results of the eight tests were combined, using the method of Winer (1962: 44-45). For this it is necessary to assume that aircraft assistance has the same effect on the catch per successful set in each year-quarter-size class stratum. The values of t for Winer's equation are the square roots of the values of F in Table 36. The value of \underline{z} for the combined data is 5.85, which indicates at the 1-percent level that assistance by aircraft increases the catch per successful set,

Ratio of successful to total sets

In Table 37 are shown the ratios of successful to total sets by year, quarter, and whether or not assistance was received from aircraft. In Table 38 are shown the results of an analysis of variance to determine if there were significant differences among quarters or whether or not assistance was received from aircraft. Because of the shortage of data for aircraft-assisted sets, the data for the fourth quarter are omitted and the data for the different years and size classes are combined. The arcsine transformation described by Bartlett (1947) was used for the data, as one of the four values is greater than 0.700 (Steel and Torrie 1960: 158). The results indicate no significant difference between the assisted and non-assisted sets.

Time consumed in making sets

The purpose of investigating the time consumed in making sets for skipjack, and the model and procedures employed, are described on pages 12 and 13. The purpose, model, and procedures are the same for yellowfin.

In Table 39 are shown the numbers of sets for which data were obtained for each quarter and year and the estimates of the values of the constants in the regressions. Analyses of covariance were conducted to determine if the slopes or levels of the regressions differed among quarters within years or among years without regard to quarters. The results are shown in Table 40. The differences among quarters are significant in five of the six years. The difference among years is also significant, and is greater than those among quarters. It is apparent from Figure 3

-23-

that the time required to make a set has been reduced considerably during the 1961-1966 period.

Discussion

Differences among years

Significant differences among years were found for the catch per day of fishing, catch per set, catch per successful set, ratio of successful to total sets, and sets per day of fishing. The first two factors are functions of the last three, whereas the last three may be related to the abundance of the fish. It is thus of interest to compare each of the last three factors to indices of abundance of the fish. For this purpose the following indices were chosen: logged catch in Area 2 (Table 27); total catch (Table 27); catches in pounds per day of fishing in the entire eastern Pacific Ocean standardized to Class-3 purse-seine vessels, which were as follows: 1961, 10,590; 1962, 6,277; 1963, 6,421; 1964, 9,407;1965, 7,507; 1966, 9,168 (Anonymous 1965: Table 4; Anonymous 1967:Table 6; unpublished data of the Inter-American Tropical Tuna Commission).

The catch per successful set (Table 24) might be related to the techniques of fishing, to the sizes of the schools, or to some behavior characteristic of the fish which influences what portions of the schools are caught. It is unlikely that the first is the case, as the trend is downward, and the fishermen have not been compelled by law to reduce the efficiency of their gear. If the second or third is the case, it is worthwhile to compare the catches per successful set with the indices of abundance of the fish to see if they are related, since the sizes of the schools and/or the behavior of the fish may in turn be related to the abundance. The product-moment correlation coefficients for the catches per successful set with the three indices of abundance of the fish were calculated, with the following results:

	Correlation coefficient	Degrees of freedom	Probability
logged catch in Area 2-catch per successful set	0.572	4	> 0.10
total catch and catch per success- ful set	0,381	4	>0.10
catch per day of fishing-catch per successful set	0,098	4	>0.10

From these data there is no evidence that the catch per successful set is related to the abundance of the fish, and it can be inferred that the size of the schools and the behavior characteristic mentioned above (if it exists) are not related to abundance. The ratio of successful to total sets (Table 25) might be related to the techniques of fishing or to some behavior characteristic which influences the ease with which the schools (or portions of them) can be caught. If the latter is the case, it is worthwhile to compare the ratios of successful to total sets with the indices of abundance of the fish to see if they are related, since the behavior of the fish may in turn be related to the abundance. The product-moment correlation coefficients for the ratios of successful to total sets with the three indices of abundance of the fish were calculated, with the following results:

	Correlation coefficient	Degrees of freedom	Probability
logged catch in Area 2-ratio of suc- cessful to total sets	-0.279	3	≥0,10
total catch-ratio of successful to total sets	0.501	3	> 0.10
catch per day of fishing-ratio of successful to total sets	0.719	3	>0,10

From these data there is no evidence that the ratio of successful to total sets is related to the abundance of the fish, and it can be inferred that the behavior characteristic (if it exists) which influences the ease with which the. schools of fish may be caught is not related to the abundance. The increase in this ratio during the 1962-1966 period is due entirely to improved techniques in capturing yellowfin tuna schooled with porpoises, as can be seen from Table 35.

The sets per day of fishing (Table 26) might be related to the techniques of fishing or to the numbers of schools of fish in the area. If the latter is the case, it is worthwhile to compare the number of sets per day of fishing with the indices of abundance of the fish to see if they are related, since the numbers of schools of fish in the area may in turn be related to the abundance. The product-moment correlation coefficients for the sets per day of fishing with the three indices of abundance of the fish were calculated, with the following results:

	Correlation coefficient	Degrees of freedom	Probability
logged catch in Area 2-sets per day of fishing	0.809	3	<0.10
total catch-sets per day of fishing	0,520	3	>0.10
catch per day of fishing-sets per day of fishing	0.744	3	>0.10

-25-

From these data there is some evidence that the number of sets per day of fishing is related to the abundance of the fish, and it can be inferred that when the fish are more abundant there are more schools of fish in the area.

In summary, it appears that when the fish are more abundant, there are more schools of fish, but that the schools are about the same size as when the fish are less abundant. The same conclusion was reached by Broadhead and Orange (1960). More investigation of this is needed, however, when more data are available.

Differences among quarters

Significant differences among quarters were found for the catch per day of fishing, catch per set, and catch per successful set, but not for the ratio of successful to total sets or sets per day of fishing. The catch per successful set has tended to be highest in the second quarter and lowest in the fourth quarter, which results in the same pattern for the catch per day of fishing and the catch per set. In Table 34 it can be seen that the catches per successful set are also highest in the second quarter and lowest in the fourthquarter for the porpoise and night schools. The differences could be due to differences in the abundance of the fish or to differences in their behavior. There appears to be no point in pursuing this further until more is known of the biology of the yellowfin.

Year-quarter and year-size class interactions

Significant year-quarter or year-size class interactions were found for the catch per day of fishing, catch per set, catch per successful set, and sets per day. This means that the ratios among quarters within years or among the size classes within the years differed among the years. There appears to be no point in pursuing this further until more is known of the biology of the yellowfin.

Differences among vessel size classes

It is evident from Tables 24 and 25 that in Area 2 the larger vessels catch more fish per successful set and have higher ratios of successful to total sets than do the smaller ones. For this reason, they make higher catcher per set and higher catches per day of fishing. The number of sets per day of fishing is about the same for all size classes of vessels, however (Table 26).

It is of interest to determine whether the larger vessels make greater catches per successful set than do the smaller ones because the former set on larger schools of fish or because they catch larger portions

-26-

of the schools that they set on. Examination of other characteristics of the vessels and gear is appropriate for this purpose. Data on the vessel speeds and the net lengths and depths are available for most of the vessels in the purse-seine fleet. These data, and data on the vessel capacities, are summarized in Table 19.

Product-moment correlation analyses were conducted to determine the relationships of each of these factors with the vessel capacities. The actual capacities, rather than the size classes, were used for this purpose. In Table 20 are shown the coefficients of correlation with vessel capacity for each factor for 1961 through 1966. All the coefficients are high, with probability levels of less than 1 percent, indicating that each of these factors is strongly correlated with vessel capacity.

Next the catches per successful set were correlated with the vessel capacities, vessel speeds, net lengths, and net depths. For this purpose the data used for Table 24 were employed except that the date for the few vessels for which there were no data for the vessel and net characteristics were omitted, as were the data for the sets in which the vessels were assisted by an airplane or helicopter. The latter were omitted because, as was shown previously, aircraft assistance tended to result in higher catcher per successful set, and such assistance may not have been randomly distributed among vessels of different characteristics. The logarithmic transformation described previously was used for the data in this analysis. The results are summarized in Table 41. The correlation coefficients for all the strata combined were calculated by the method of Fisher (1958:204); these are also shown in Table 41. For this it is necessary to assume that the correlations are equal for each stratum. The catch per successful set is correlated most strongly with vessel capacity. However, all the correlations are much lower than those among vessel and net characteristics, and most of them for the individual strata are not Also shown in Table 41 are coefficients of multiple corresignificant. lation involving all four vessel and net characteristics. The number of significant correlations is about the same as for each of the single correlations. This is not surprising, since the data in Table 20 indicate that the vessel and net characteristics are strongly correlated with one another. There is no way to ascertain from these data which of these factors, if any, is most influential in affecting the catch per successful The most conspicuous feature of the data is the low correlation of set. the catch per successful set with the vessel and net characteristics.

-27-

1

The above analyses have accomplished very little, except to demonstrate the low correlation of the catch per successful set with the vessel and net characteristics and to show that there would apparently be little or not advantage to substituting some other vessel of net characteristics for vessel capacity in studies involving the catch per unit of effort.

The larger vessels catch more fish per successful set either because they set on larger schools of fish or because they catch larger portions of the schools they set on. If the latter is the case, it may be because the larger vessels are equipped with longer and/or deeper nets. This is merely speculation, however, and better data would be needed for verification. The higher ratios of successful to total sets attained by the larger vessels are believed to be the result of their employment of better equipment for capturing yellowfin schooled with porpoises.

Time consumed in making sets

It can be seen from Figures 2 and 3 that the time consumed in making sets for skipjack and yellowfin is about the same. It is fortunate that this is so, because if it were not, when both species are caught in a single trip, as is usually the case, it would be more difficult to subtract the time consumed in making sets from the days of fishing to find the time actually spent searching for fish.

CONCLUSIONS

The catch per day of fishing is probably the best available index of the abundance of skipjack and yellowfin, since it is a function of both the size of the schools and the number of schools in the area. (It is a function also of the portions of the schools which are caught and the ease with which these portions are captured. These, however, are manifestations of the vulnerability of the fish to capture and the techniques of fishing rather than the abundance.)

Two corrections should be applied to the effort (days of fishing) data, however, before dividing it into the catch to obtain the catch per day of fishing. First, a method should be devised to determine toward which species the unsuccessful sets are directed. The method used in the present report, for which it is assumed that the ratios of successful to total sets for each species is the same in a given stratum, is considered to be unsatisfactory. If and when such a method is obtained, the days of fishing in each stratum should be assigned as skipjack, yellowfin, and bigeye days, in accordance with the portions of the total sets directed

-28-

toward each of these species. Second, the days of fishing should be adjusted by subtracting the time actually spent making the sets. When the remainder is divided into the catch, the new index of abundance might be called the "catch per day of searching."

The catch per day of fishing, catch per set, and catch per successful set differ in most cases among years, quarters, and size classes of ' vessels. The difference among the size classes are so slight for skipjack, however, that perhaps they can be ignored. The ratio of successful to total sets and the sets per day of fishing differ among years for both yellowfin and skipjack, among quarters but not size classes for skipjack, and among size classes but not quarters for yellowfin. Significant differences exist àmong many of the interactions.

The use of aircraft for assistance in finding schools of fish and setting upon them increases the catch per successful set slightly, and may also increase the ratio of successful to total sets. The data for the sets for which such assistance was received and those for the sets for which such assistance was not received were not separated in the summaries on which most of the analyses in this report were based. This is probably of no consequence, since assistance was received for so few sets. It would be advisable in the future to separate the data for the aircraftassisted sets from the other, however, since the use of aircraft may increase, and such assistance is not likely to be randomly distributed in time and space.

It appears that when the fish are more abundant, the numbers of schools are greater but the sizes of the schools are about the same. It is necessary that this be true if the model of Paloheimo and Dickie (1964) is to be used with these data. Therefore, this should be investigated further.

There is no evidence that any of the following has increased for skipjack in Area 5 during the 1962-1966 period: catch per successful set (Table 3); ratio of successful to total sets (Table 5); sets per day of fishing (Table 6). It is therefore concluded that the fishing power of the vessel for skipjack has probably not increased during this period either. For yellowfin in A_rea 2 during the same period neither the catch per successful set (Table 24) nor the sets per day of fishing (Table 26) has increased. The ratio of successful to total sets has increased for porroise schools, however, (Table 35), and thus the fishing power of the vessels has increased for yellowfin.

-29-

FIGURE 1. Map of the eastern Pacific Ocean, showing the areas used for the present study -30-

FIGURE 2. Regressions of the times of the sets on the quantities of fish caught in them for pure skipjack schools

FIGURE 3. Regression of the times of the sets on the quantities of fish caught in them for pure yellowfin schools

-32-

Catch of skipjack tuna per day of fishing in Area 5. The three columns under each TABLE 1. size class refer to catch, days of fishing, and catch per day of fishing, respectively.

Year

Size Class

بين مركز برين (روز روز روز روز روز روز روز روز روز روز	4		5	6	TOTAL
1961 3 4 1	14222.0353164.0424120.0.234165.5153471.5	6.5020.440183.55327.5235710.96907	$\begin{array}{cccc} 0.0 & - \\ 187.0 & 21.5 \\ 139.0 & 3.8 \\ 279.5 & 8.4 \\ 605.5 & 11.4 \end{array}$	$\begin{array}{cccc} 0 & 0.0 \\ 1059 & 48.0 \\ 645 & 54.0 \\ 1396 & 126.0 \\ 3100 & 228.0 \end{array}$	$\begin{array}{ccccccc} - & 142 & 22.0 & 6.5 \\ 22.1 & 8430 & 399.0 & 21.1 \\ 11.9 & 1601 & 313.0 & 5.1 \\ 11.1 & 4987 & 571.0 & 8.7 \\ 13.6 & 15160 & 1305.0 & 11.6 \end{array}$
2 2 1962 3 5 4	.063269.5.696375.0.289511.0.780308.0.8281463.5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	285.5 6.9 393.5 7.5 411.5 9.8 594.0 2.4 1684.5 6.2	1548202.53535349.04258370.01206378.5105471300.0	7.64589757.56.110.191981117.58.211.5135911292.510.53.234101280.52.78.1307884448.06.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	469416.5593372.5839126.0850355.07511270.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4230405.08596449.05849383.03214679.5218891916.5	10.4119161375.58.719.1192121294.514.815.39544750.012.74.772041899.03.811.4478765319.09.0
2 1 1964 3 4 1	.332.225.5.017165.0494144.0.028188.0.871722.5	5.919696.25793.410705.58125.44430	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3356437.04073610.03050379.05863594.0163422020.0	7.76657901.57.46.75669947.06.08.04614709.06.59.97703840.09.28.1246433397.57.3
23 196533 4	193230.0216271.0389367.0875253.06731121.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	200.0 9.0 215.0 9.7 466.0 11.7 308.0 3.3 1189.0 8.7	5062535.58878677.06667597.04644780.5252512590.0	9.58053965.58.313.1141881163.012.211.2155131430.010.85.965491341.54.99.7443034900.09.0
2 2 1966 3 1 4	.629485.02791399.5.475233.5.646202.0.5411320.0	3.425367.038886.330283.21525.09604	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 1 (page 2)

Year quarter				S:	ize Class							
		4	• .		5	·····		66			TOTAL	
1 2 1961- 3 1966 4 Total	8828 17666 12910 5413 44817	1648.5 1747.0 1501.5 1471.5 6368.5	5.4 10.1 8.6 3.7 7.0	12498 19569 15987 8915 56969	1899.0 1858.5 1837.0 2196.5 7791.0	6.6 10.5 8.7 4.1 7.3	18204 32491 25159 19281 95135	2221.5 2687.5 2412.5 2993.5 10315.0	10.4 6.4	69726 54056 33609	5769.0 6293.0 5751.0 6661.5 24474.5	6.9 11.1 9.4 5.0 8.0
TABLE 2. Catch of skipjack tuna per set in Area 5. The three columns under each size class refer to catch, sets, and catch per set, respectively.

Year quarter

Size Class

	4			5			6	·····	<u>T</u>	OTAL	
1 963 2 1788 1962 3 4237 4 640 Total 7628	314 507 231	2.6 5.7 8.4 2.8 5.4	1892 2769 3761 1360 9782	366 380 398 531 167 5	5.2 7.3 9.4 2.6 5.8	1344 3414 4330 1242 10330	289 490 457 342 1578	4.7 7.0 9.5 3.6 6.5	4199 7971 12328 3242 27740	1025 1184 1362 1104 4675	4.1 6.7 9.1 2.9 5.9
1 1760	333	5.3	4079	636	6.4	4136	542	7.6	9975	1511	6.6
2 2997	421	7.1	5819	681	8.5	8464	692	12.2	17280	1794	9.6
1963 3 621	36	17.2	1516	196	7.7	6106	482	12.7	8243	714	11.5
4 752	292	2.6	2987	1009	3.0	3193	690	4.6	6932	1991	3.5
Total 6130	1082	5.7	14401	2522	5.7	21899	2 406	9.1	42430	6010	7.1
1 1296	259	5.0	1857	338	5.5	3311	594	5.6	6464	1191	5.4
2 945	145	6.5	472	111	4.3	3760	607	6.2	5177	863	6.0
ن 1964 3 410	99	4.1	899	180	5.0	2917	344	8.5	4226	623	6.8
س 4 1003	134	7.5	708	54	13.1	5834	532	11.0	7545	720	10.5
ا Total 3654	637	5.7	3936	683	5.8	15822	2077	7.6	23412	3397	6.9
1 1010	224	4.5	1812	256	7.1	5040	679	7.4	7862	1159	6.8
2 2538	298	8.5	1705	323	5.3	8907	943	9.4	13150	1564	8.4
1965 3 2945	247	11.9	5323	519	10.3	6701	605	11.1	14969	1371	10.9
4 958	340	2.8	984	333	3.0	4416	850	5.2	6358	1523	4.2
Total 7451	1109	6.7	9824	1431	6.9	25064	3077	8.1	42339	5617	7.5
1 1362	492	2.8	2258	677	3.3	4240	948	4.5	7860	2117	3.7
2 2373	423	5.6	3444	555	6.2	6426	950	6.8	12243	1928	6.4
1966 3 1518	188	8.1	1899	300	6.3	5054	870	5.8	8471	1358	6.2
4 645	159	4.1	123	37	3.3	2920	412	7.1	3688	608	6.1
Total 5898	1262	4.7	7724	1569	4.9	18640	3180	5.9	32262	6011	5.4
1 6391	1678	3.8	$11898 \\ 14209 \\ 13398 \\ 6162 \\ 45667$	2 273	5.2	18071	3052	5.9	36360	7003	5.2
2 10641	1601	6.6		2050	6.9	30971	3682	8.4	55821	7333	7.6
1962-3 9731	1077	9.0		1593	8.4	25108	2758	9.1	48237	5428	8.9
1966 4 3998	1156	3.5		1964	3.1	17605	2826	6.2	27765	5946	4.7
Total 30761	5512	5.6		7880	5.8	91755	12318	7.4	16 81 83	25710	6.5

TABLE 3. Catch of skipjack tuna per successful set in Areas 3, 4, and 5 combined. The three columns under each size class refer to catch, successful sets, and catch per successful set, respectively.

Year

quarter

Size Class

		4			5	and the second secon		6	وينار والمحاور والمحاود والمحاور والمحاور	<u>T0</u>	TAL	********
1	255	8	31.9	25	1	25.0	0	0	-	280	9	31.1
2	3188	122	26.1	4520	178	25.4	1508	55	27.4	9216	355	26.0
1961 3	1499	95	15.8	2028	110	18.4	877	58	15.1	4404	263	16.7
4	2106	174	12.1	2862	173	16.5	1589	87	18.3	6557	434	15.1
Total	7048	399	17.7	9435	462	20.4	3974	200	19.9	20457	1061	19.3
1	1960	180	10.9	1729	128	13.5	954	84	11.4	4643	392	11.8
2	2105	108	19.5	3613	155	23.3	3377	181	18.7	9095	444	20.5
1962 3	4421	221	20.0	4522	212	21.3	4017	205	19.6	12960	638	20.3
4	1522	97	15.7	1241	111	11.2	1261	88	14.3	4024	296	13.6
Total	10008	606	16.5	11105	606	18.3	9609	558	17.2	30722	1770	17.4
1 2 4 1963 3 4 1953 1 4 Total	2198 3332 590 1028 7148	182 201 16 117 516	12.1 16.6 36.9 8.8 13.9	3967 6207 1494 2965 14633	216 317 53 264 850	18.4 19.6 28.2 11.2 17.2	3345 8129 6094 2700 20268	185 271 195 173 824	18,1 30,0 31.3 15.6 24,6	9510 17668 8178 6693 42049	583 789 264 554 2190	16.3 22.4 31.0 12.1 19,2
1	1254	89	14.1	1781	118	15.1	2993	141	21.2	6028	' 348	17.3
2	948	43	22.0	1343	80	16.8	3844	224	17.1	6135	347	17.7
1964 3	665	51	13.0	1597	118	13.5	2668	87	30.7	4930	256	19.3
4	1145	44	26.0	1267	51	24.8	5461	166	32.9	7873	261	30.2
Total	4012	227	17.7	5988	367	16.3	14966	618	24.2	24956	1212	20.6
1	1086	65	16.7	1781	88	20.2	4725	201	23.5	7592	354	21.4
2	2976	132	22.5	2077	119	17.5	8792	318	27.6	13845	569	24.3
1965 3	2827	93	30.4	5234	233	22.5	6492	233	27.9	14553	559	26.0
4	917	87	10.5	953	90	10.6	3865	243	15.9	5735	420	13.7
Total	7806	377	20.7	10045	530	19.0	23874	995	24.0	41725	19 02	21.9
1	1269	124	10.2	2117	167	12.7	4193	324	12.9	7579	615	12.3
2	2107	120	17.6	2719	173	15.7	5901	271	21.8	10727	564	19.0
1966 3	1285	67	19.2	1803	104	17.3	4234	213	19.9	7322	384	19.1
4	494	32	15.4	123	9	13.7	2646	107	24.7	3263	148	22.0
Total	5155	343	15.0	6762	453	14.9	16974	915	18.6	28891	1711	16.9

Table 3 (page 2)

Year
quarter

Size Class

	4			5			6	ТОТ	AL	
1 8022	648	12.4	11400	718	15.9	16210	935	17.3 35632	2301	15.5
2 14656	726	20.2	20479	1022	20.0	31551	1320	23.9 66686	3068	21.7
1961-3 11287	543	20.8	16678	830	20.1	24382	991	24.6 52347	2364	22.1
1966 4 7212	551	13.1	9411	698	13.5	17522	864	20.3 34145	2113	16.2
Total 41177	2468	16.7	57968	3268	17.7	89665	4110	21.8 188810	9846	19.2

-37-

-

TABLE 4.

4. Catch of skipjack tuna per successful set in Area 1. The three columns under each size class refer to catch, successful sets, and catch per successful set, respectively.

Ye: qu ar				Size Class									
			3	3		4			5	TOTAL			
1961	3 4 Fotal	419 468 887	69 53 122	6.1 8.8 7.3	191 333 524	33 39 72	5.8 8.5 7.3	91 15 106	7 6 13	13.0 2.5 8.2	701 816 1517	109 98 207	6.4 8.3 7.3
1962	3 4 Fotal	455 99 554	65 12 77	7.0 8.3 7.2	611 92 703	82 14 96	7.5 6.6 7.3	392 21 413	57 3 60	6.9 6.9	1458 212 1670	204 29 233	7.1 7.3 7.2
1963 [3 4 Fotal	1283 1036 2319	117 103 220	11.0 10.1 10.5	1063 824 1887	92 67 159	11.6 12.3 11.9	1444 319 1763	$ 111 \\ 30 \\ 141 $	13.0 10.6 12.5	3790 2179 5969	320 200 520	11.8 10.9 11.5
	3 4 Fotal	766 238 1004	84 26 110	9.1 9.2 9.1	993 39 1032	127 3 130	7.8 - 7.9	389 127 516	45 16 61	8.6 7.9 8.5	2148 404 2552	256 45 301	8.4 9.0 8.5
20 10 1965	3 4 Fotal	747 534 1281	102 46 148	7.3 11.6 8.7	459 233 692	65 22 87	7.1 10.6 8.0	311 157 468	26 18 44	12.0 8.7 10.6	1517 924 2441	193 86 279	7.9 10.7 8.7
1966	3 4 Total	749 13 762	78 6 84	9.6 2.2 9.1	297 21 318	38 10 48	7.8 2.1 6.6	154 0 154	16 0 16	9.6 9.6	1200 34 1234	132 16 148	9.1 2.1 8.3
1961- 1966	- 3 4 Total	4419 2388 6807	515 246 761	8.6 9.7 8.9	3614 1542 5156	437 155 592	8.3 9.9 8.7	2781 639 3420	262 73 335	10.6 8.8 10.2	10814 4569 15383	1214 474 1688	8.9 9.6 9.1

TABLE 5. Ratios of successful to total sets in Area 5. The three columns under each size class refer to successful sets, total sets, and ratio of successful to total sets, respectively.

Q Year t	uar- er		4			Size clas	SS		6			Total	
1962	2 3 4	191 193 256 155 795	376 319 508 245 1448	0.508 0.605 0.504 0.633 0.549	193 231 216 345 985	369 389 401 536 1695	0.523 0.594 0.539 0.644 0.581	183 296 267 212 958	319 498 458 350 1625	0.574 0.594 0.583 0.606 0.590	567 720 739 712 2738	1064 1206 1367 1131 4768	0.533 0.597 0.541 0.630 0.574
1963	2 3 4	200 200 20 119 539	335 421 36 300 1092	0.597 0.475 0.556 0.397 0.494	330 350 68 468 1216	643 682 196 1023 2544	0.513 0.513 0.347 0.457 0.478	289 329 209 294 1121	552 692 483 692 2419	0.524 0.475 0.433 0.425 0.463	819 879 297 881 2876	1530 1795 715 2015 6055	0.535 0.490 0.415 0.437 0.475
ن 1964 آ	2 3 4	178 63 38 76 355	259 145 99 134 637	0.687 0.434 0.384 0.567 0.557	231 52 108 29 420	338 115 184 54 691	0.683 0.452 0.587 0.537 0.608	373 294 191 280 1138	594 609 346 535 2084	0.628 0.483 0.552 0.523 0.546	782 409 337 385 1913	1191 869 629 723 3412	0.657 0.471 0.536 0.533 0.561
1965	2 3 4	101 130 129 112 472	224 298 248 340 1110	0.451 0.436 0.520 0.329 0.425	143 167 277 133 720	256 324 520 336 1436	0.520 0.515 0.533 0.396 0.501	366 450 304 314 1434	679 943 606 851 3079	0.539 0.477 0.502 0.369 0.466	610 747 710 559 2626	1159 1565 1374 1527 5625	0.526 0.477 0.517 0.366 0.467
1966	2 3 4	261 329 119 96 805	493 424 188 161 1266	0.529 0.776 0.633 0.596 0.636	393 394 185 23 995	679 555 302 37 1573	0.579 0.710 0.613 0.622 0.633	594 643 514 262 2013	948 951 872 414 3185	0.627 0.676 0.589 0.633 0.632	1248 1366 818 381 3813	2120 1930 1362 612 6024	0.589 0.708 0.601 0.623 0.633
1962- 1966	2 3 4	9 31 915 562 558 966	1687 1607 1079 1180 5553	0.552 0.569 0.521 0.473 0.534	1290 1194 854 998 4336	2285 2065 1603 1986 7939	0.565 0.578 0.533 0.503 0.546	1805 2012 1485 1362 6664	3092 3693 2765 2842 12392	0.584 0.545 0.537 0.479 0.538	4026 4121 2901 2918 13966	7064 7365 5447 6008 25884	0.570 0.560 0.533 0.486 0.540

TABLE 6. Sets per day of fishing in Area 5. The three columns under each size class refer to adjusted sets, days of fishing, and sets per day, respectively.

Year	Quar- ter		1.		S	ize class			,		Total	
1962	1 2 3 4 Fotal	407 474 634 282 1797	4 269.5 375.0 511.0 308.0 1463.5	1.51 1.26 1.24 0.92 1.23	384 407 430 558 1779	5 285.5 393.5 411.5 594.0 1684.5	1.35 1.03 1.04 0.94 1.06	332 510 448 332 1622	6 202.5 349.0 370.0 378.5 1300.0	1.64 1.46 1.21 0.88 1.25	1123 757.5 1391 1117.5 1512 1292.5 1172 1280.5 5198 4448.0	1.48 1.24 1.17 0.92 1.17
1963 1	1 2 3 4 Fotal	656 644 107 330 1737	416.5 372.5 126.0 355.0 1270.0	1.58 1.73 0.85 0.93 1.37	655 708 239 1059 26 <u>6</u> 1	554.0 473.0 241.0 864.5 2132.5	1.18 1.50 0.99 1.22 1.25	553 706 463 697 2419	405.0 449.0 383.0 679.5 1916.5	1.37 1.57 1.21 1.03 1.26	1864 1375.5 2058 1294.5 809 750.0 2086 1899.0 6817 5319.0	1.36 1.59 1.08 1.10 1.28
1964 0	1 2 3 4 Fotal	267 157 119 137 680	225.5 165.0 144.0 188.0 722.5	1.18 0.95 0.83 0.73 0.94	358 137 214 62 771	239.0 172.0 186.0 58.0 655.0	1.50 0.80 1.15 1.07 1.18	600 656 361 532 2149	437.0 610.0 379.0 594.0 2020.0	1.37 1.08 0.95 0.90 1.06	1225 901.5 950 947.0 694 709.0 731 840.0 3600 3397.5	1.36 1.00 0.98 0.87 1.06
1965 1	1 2 3 4 fotal	264 378 284 309 1235	230.0 271.0 367.0 253.0 1121.0	1.15 1.39 0.77 1.22 1.10	253 397 535 350 1535	200.0 215.0 466.0 308.0 1189.0	1.26 1.85 1.15 1.14 1.29	679 943 599 892 3113	535.5 677.0 597.0 780.5 2590.0	1.27 1.39 1.00 1.14 1.20	1196 965.5 1718 1163.0 1418 1430.0 1551 1341.5 5883 4900.0	1.24 1.48 0.99 1.16 1.20
1966 1	1 2 3 4 Fotal	590 499 182 159 1430	485.0 399.5 233.5 202.0 1320.0	1.22 1.25 0.78 0.79 1.08	758 627 477 46 1908	$\begin{array}{r} 620.5 \\ 418.0 \\ 393.5 \\ 92.5 \\ 1524.5 \end{array}$	1.22 1.50 1.21 0.50 1.25	901 940 809 416 3066	641.5 554.5 629.5 435.0 2260.5	1.40 1.70 1.29 0.96 1.36	2249 1747.0 2066 1372.0 1468 1256.5 621 729.5 6404 5105.0	1.29 1.51 1.17 0.85 1.25
1962- 1966 1	1 2 - 3 4 Fotal	2184 2152 1326 1217 6879	1626.5 1583.0 1381.5 1306.0 5897.0	1.34 1.36 0.96 0.93 1.17	2408 2276 1895 2075 8654	1899.0 1671.5 1698.0 1917.0 7185.5	1.27 1.36 1.12 1.08 1.20	3065 3755 2680 2869 12369	2221.5 2639.5 2358.5 2867.5 10087.0	1.38 1.42 1.14 1.00 1.23	7657 5747.0 8183 5894.0 5901 5438.0 6161 6090.5 27902 23169.5	1.33 1.39 1.09 1.01 1.20

TABLE 7. Logged catches of skipjack in each area, and total catches of skipjack in the eastern Pacific Ocean, for 1961-1966. The data were obtained from Anonymous (1967: Table 3) and unpublished data of the Inter-American Tropical Tuna Commission.

Area	1961	1962	1963	1964	1965	1966
1	6,600	5,200	10,100	5,500	9,300	5,300
2	700	1,800	4,100	7,900	1,700	1,500
3	12,600	7,100	7,100	5,700	2,100	400
4	3,300	9,400	1,700	1,100	1,700	3,800
5	24,700	35,200	51,000	26,500	47,200	38,600
Total logged catch	48,000	58,700	74,000	46,700	62,200	49,500
Total catch	76,400	78,400	106,100	65,300	86,100	66,800

-41-

Source of variation	Degrees of freedom	Sums of squares	Mean squares F	Degrees of freedom	Proba- bility
Years (Y)	4	106.15	26.54 8.1	4 4,24	<0.01
Quarters (Q)	3	241.30	80.43 24.6	6 3,24	<0.01
Size classes	(s) 2	77.77	38,88 11.9	2 2,24	<0.01
Y x Q	12	262.22	21.85 6.7	0 12,24	<0.01
Y x S	8	25.38	3.17 0.9	7 8,24	>0.05
Q x S	6	14.98	2.50 0.7	7 6,24	>0.05
Residual	24	78.27	3.26		
Total	59	806.08			

.

TABLE 8. Analysis of variance for the catch per day of fishing by years, quarters, and size classes for Area 5.

. .

4 i

4 i

Source of variation	Degrees of freedom	Sums of squares	Mean squares	F	Degrees of freedom	Proba- bility
Years (Y)	24.	54.30	13.58	4.73	4,24	<0.01
Quarters (Q)	3	160.28	53,43	18.60	3,24	<0.01
Size classes (S)	2	25.30	12.65	4.40	2,24	<0.05
YxQ	12	202.51	16.88	5.88	12.24	<0.01
YxS	8	15.03	1.88	0.65	8.24	>0.05
QxS	6	23.50	3.92	1.36	6,24	>0.05
Residual	24	68.93	2.87			
Total	59	549.86				

TABLE 9. Analysis of variance for the catch of skipjack per set by years, quarters, and size classes for Area 5.

TABLE 10. Analysis of variance for the catch of skipjack per successful set by years, quarters, and size classes for Areas 3, 4, and 5 combined.

,

1

1 .

Source of variation	Degree s of freedom	Sums of squares	Mean squares	F	Degrees of freedom	Proba- bility
Years (Y)	4	215.04	53.76	4.12	4,24	<0.05
Quarters (Q)	3	596.95	198.98	15.24	3,24	<0.01
Size classes	(S) 2	229.90	114.95	8.81	2,24	<0.01
Y x Q	12	925.27	77.11	5.91	12,24	<0.01
Y x S	8	112.60	14.07	1.08	8,24	>0.05
QxS	6	70.61	11.77	0.90	6,24	>0.05
Residual	24	313.32	13.06			
Total	59	2463.69				

Source of variation	Degrees of freedom	Sums of squares	Mean squares	F	Degrees of freedom	Proba- bility
Years (Y)	5	133.08	26.62	5.95	5,7	<0.05
Quarters (Q)	l	21.92	21.92	4.90	1,7	<0.05
Size classes	(S) 2	3.07	1.54	0.34	2,7	>0.05
YхQ	5	64.85	12.97	2.90	5,7	>0.05
YхS	10	15.81	1.58	0.35	10,7	>0.05
Q x S	2	48.69	24.35	5.44	2,7	<0.05
Residual	7	31.32	4.47			
Total	32	220.02				

TABLE 11. Analysis of variance for the catch per successful set by years, quarters, and size classes for Area 1.

TABLE 12. Analysis of variance for the ratio of successful to total sets by years, quarters, and size classes for Area 5.

Source of variation	Degrees of freedom	Sums of squares	Mean squares	5 F	Degrees of freedom	Proba- bility
Years (Y)	4	0.2325	0.0581	24.02	4,24	<0.01
Quarters (Q)	3	0.0219	0.0073	3.02	3,24	<0.05
Size classes	(S) 2	0.0014	0.0007	0.28	2,24	>0.05
ΥxQ	12	0.1680	0.0140	5.79	12,24	<0.01
YxS	8	0.0153	0.0019	0.79	8,24	>0.05
QxS	6	0.0029	0.0005	0.20	6,24	>0.05
Residual	24	0.0580	0.0024			
Total	59	0.5000				

TABLE 13. Analysis of variance for the sets per day of fishing by years, quarters, and size classes for Area 5.

Source of variation	Degrees of freedom	Sums of squares	Mean squares		egrees of freedom	Proba- bility
Years (Y)	4	0.3553	0.08882	3.74	4,24	<0,05
Quarters (Q)	3	1,9383	0.64611	27.20	3,24	<0.01
Size classes (S) 2	0.1614	0.08069	3.397	2,24	>0.05
Y x Q	12	1.0392	0.08660	3.65	12,24	<0.01
Y x S	8	0.3576	0.04470	1.88	8,24	>0.05
QxS	6	0.0986	0.01643	0.69	6,24	>0.05
Residual	24	0,5701	0.02375			
Total	59	4.5204				

1

TABLE 14. Analyses of variance for the catch per successful set for the sets by vessels assisted by aircraft and by those not receiving such assistance.

<u>Group</u>	Year	Quar- ter	Size class	Aircraft assistance	Geometric mean per successful	Sampl size		Degrees of freedom	Prob- ability
South- ern	1961	4	4	no yes total	7.6 6.8 7.5	161 13 174	0.13	1,172	>0.05
	1961	4	5	no yes total	9.4 4.6 9.0	163 10 173	3.73	1,171	<0.05
	1962	1	4	no yes total	6.6 10.8 6.9	163 17 180	3.58	1,178	>0.05
	1962	2	4	no yes total	11.1 15.0 11.5	96 12 108	0.65	1,106	>0.05
-48-	1962	2	5	no yes total	14.2 14.4 14.2	138 17 155	0.00	1,153	>0.05
	1963	1	4	no yes total	7.9 8.9 8.0	162 20 182	0,25	1,180	>0.05
	1963	1	5	no yes total	11.0 11.8 11.1	202 13 215	0.05	1,213	>0.05
	1963	1	6	no yes total	10.7 12.2 10.9	162 23 185	0.27	1,183	>0.05
	1963	2	5	no yes total	12.1 19.8 12.7	284 33 317	7.15	1,315	<0.01

Table 14 (Page 2)

Group	Year	Quar- ter	Size class	Aircraft assistance	Geometric mean of c per successful set	Sample size		Degrees of freedom	Proba- bility
South- ern	1963	2	6	no yes total	18.3 32.4 19.4	246 25 271	6.56	1,269	<0.05
	1964	2	4	no yes total	13.8 7.6 12.0	33 10 43	1.80	1,41	>0.05
	1964	2	5	no yes total	9.6 15.8 10.9	60 20 80	4.02	1,78	<0.05
	1964	2	6	no yes total	9.9 7.5 9.7	213 12 225	0.70	1,223	>0.05
I	1965	2	5	no yes total	10.6 11.9 10.8	104 15 119	0.14	1,117	>0.05
49	1965	2	6	no yes total	14.7 26.6 16.0	273 45 318	10.72	1,316	<0.01
	1966	1	5	no yes total	7.7 14.6 8.0	$157 \\ 10 \\ 167$	3.67	1,165	>0.05
	1966	1	6	no yes total	7.9 16.5 8.2	303 21 324	11.01	1,322	<0.01
	1966	2	6	no yes total	14.6 19.1 14.8	258 13 271	0.93	1,269	>0,05
North- ern	1963	3-4	3-5	no yes total	7.9 10.5 8.1	479 41 520	3.34	1,518	>0.05
	1964	3-4	3-5	no yes total	6.5 9.6 6.8	271 30 301	6.41	1,299	<0.05

Table 14 (Page 3)

Group	Year	ų.			Geometric mean of catch e per successful set plus	nple Lze F	Degrees of freedom	Proba- bility
North- ern	1965	3-4	3-5	no yes total	6.0 9.4 6.3	51 28 5.78 79	1,277	<0.05
	1966	3-4	3-5	no yes total	5.2 7.6 5.5	23 25 3.27 48	1,146	>0.05

•

.....

TABLE 15. Ratios of successful to total sets in Area 5, according to whether the vessels were assisted by aircraft. The three columns under each category refer to successful sets, total sets, and ratio of successful to total sets, respectively.

•	Year	Quarter	Not	: assist aircraf			Assis airci	ted by raft		Total		
	1962	1 2 3 4 Total	558 690 733 697 2678	1052 1166 1359 1103 4680	0.530 0.592 0.539 0.632 0.572	9 30 6 15 60	12 40 8 28 88	0.750 0.750 0.750 0.536 0.682	567 720 739 712 2738	1064 1206 1367 1131 4768	0.533 0.597 0.541 0.630 0.574	
	1963	1 2 3 4 Total	764 807 297 881 2749	1466 1676 713 2015 5870	0.521 0.482 0.417 0.437 0.468 1	55 72 0 0 127	64 119 2 0 185	0.859 0.605 0.000 - 0.686	819 879 297 881 2876	1530 1795 715 2015 6055	0.535 0.490 0.415 0.437 0.475	
511	1964	1 2 3 4 Total	779 406 337 385 1907	1188 866 629 723 3406	0.656 0.469 0.536 0.533 0.560	3 0 0 6	3 3 0 6	1.000 1.000 - 1.000	782 409 337 385 1913	1191 869 629 723 3412	0.657 0.471 0.536 0.533 0.561	
	1965	1 2 3 4 Total	600 656 710 559 2525	1146 1435 1374 1527 5482	0.524 0.457 0.517 0.366 0.461 1	10 91 0 0	13 130 0 143	0.769 0.700 - 0.706	610 747 710 559 2626	1159 1565 1374 1527 5625	0.526 0.477 0.517 0.366 0.467	
:	1966	1 2 3 4 Total	1187 1321 810 364 3682	2043 1874 1353 589 5859	0.581 0.705 0.599 0.618 0.628 1	61 45 8 17 31	77 56 9 23 165	0.792 0.804 0.889 0.739 0.794	1248 1366 818 381 3813	2120 1930 1362 612 6024	0.589 0.708 0.601 0.623 0.633	
	1962 - 1966	1 2 3 4 Total	3888 3880 2887 2886 13541	6895 7017 5428 5957 25297		241 14 32	169 348 19 51 587	0.817 0.693 0.737 0.627 0.724	4026 4121 2901 2918 13966	7064 7365 5447 6008 25884	0.570 0.560 0.533 0.486 0.540	

TABLE 16. Analysis of variance for the ratio of successful to total sets in Area 5 by years and whether the vessels were assisted by aircraft.

Source of variation	Degrees of freedom	Sums of squares	Mean squares	F	Degrees of freedom	Proba- bility
Years	3	0.02578	0.00859	4.88	3,3	>0.05
Aircraft	1	0.07466	0.07466	42.42	1,3	<0.01
Residual	3	0.00527	0.00176			
Total	7	0.10573				

Year	Quarter	Sample size	a	b	Year	quarter	Sample size	a.	b
1961	1				1964	1	159	91.2	2.784
	2	73	84.9	4.400		2	152	88.9	3,111
	3	178	81.3	4.488		3	131	90.7	2.668
	4	139	85.2	3.909		4	135	105.2	2.754
	Total	390	82.1	4.359		Total	577	93.8	2.830
1962	1	150	88.3	3.613	1965	1	170	75.2	3.467
	2	137	97.6	2.475		2	157	88.0	2.915
	3	212	70.1	3.679		3	225	79.2	3.158
	4	94	84.4	3.461		4	150	85.0	3,105
	Total	593	83.7	3.387		Total	702	81.9	3.156
1963	1	123	84.1	3.856	1966	1	1.03	86.8	2.224
	2	212	95.2	2.920		2	137	89.8	2,315
	3	238	69.4	3,660		3	161	78.2	2.755
	4	76	75.1	3.383		4	87	95.8	2.472
	Total	649	83.3	3,336		Total	528	84.6	2.565

TABLE 17. Constants in the regressions of the times of the sets on the quantities of fish caught in them.

- **1**

• .

TABLE 18. Comparisons by analysis of covariance of the regressions of the times of the sets on the quantities of fish caught in them. The significance of the <u>F</u> values is indicated as follows: **, <1 percent; *, 1-5 percent.

		Martin and Date of the State of	Slope	Ele	vation
Comparison	Year	F	Degree of freedom	F	Degreed of freedom
Quarters within years	1961	0.77	2,384	0.41	2,386
	1962	3.75*	3,585	2 11	
	1963	3.33*	3,641		
	1964	0.73	3,569	1.42	3,572
	1965	1.20	3,694	0,28	3,697
	1966	0.75	3,520	0.50	3,523
Years		16.26**	5,3427	tim.	

4 .

TABLE 19. Summary of the characteristics of the purse-seine vessels of the tuna fleet of the eastern Pacific Ocean. The vessel capacities are expressed in short tons, the vessel speeds in knots, and the net lengths and net depths in fathoms.

Year	Number of vessels	Vesse Mean	l capacity Range	Vess <u>Mean</u>	el sp e ed Range	Net <u>Mean</u>	length Range	Net o Mean	lepth Range
1961	122	240	35-725	9.8	8.0-14.6	432	260-550	41	31-52
1962	121	272	100-750	10.0	8.0-14.6	447	370-550	42	31-52
1963	126	303	103-1023	10.1	8.0-14.6	455	370-590	43	31-54
1964	123	314	103-1068	10.2	8.3-14.6	459	370-590	43	31-54
1965	119	318	103-1068	10.2	8.3-14.6	460	370-590	43	31-54
1966	115	325	103-1097	10.1	8.0-14.6	471	370-600	24 24	31-58
17			.					- -	

ა კ ს

TABLE 20.

1 :

Coefficients of correlation for vessel speed, net length, and net depth with vessel capacity.

Year	Number of vessels	Vessel speed with vessel capacity	Net length with vessel capacity	Net depth with ves. cap.
1961	122	0.788	0.829	0.728
1962	121	0.786	0.772	0.654
1963	126	0.825	0.814	0.679
1964	123	0,831	0.790	0.670
1965	119	0.834	0.794	0.678
1966	115	0.753	0.751	0.534
Mean		0,803	0.792	0.657

COEFFICIENTS OF CORRELATION

TABLE 21.	Coefficients of correlation for catch per successful set with vessel capacity. vessel
	speed, net length, and net depth. The significance of the coefficients of correlation
	is indicated as follows: **,<1 percent; *, 1-5 percent.

Area	Year	Quarter	Sample size	Vessel capacity	Vessel speed	Net length	Net depth	Multiple
5	1961	2 3 4	341 251 398	-0.052 -0.026 0.081	-0.053 0.009 0.162**	-0.095 -0.049 -0.019	-0.063 -0.003 0.053	0.107 0.077 0.257**
	1962	1 2 3 4	371 404 624 284	0.021 -0.056 -0.017 -0.076	0.043 -0.023 0.022 -0.040	-0.013 -0.057 0.015 -0.178**	-0.054 -0.039 0.013 -0.106	0.084 0.062 0.058 0.196*
	1963	1 2 3 4	526 725 264 552	0.064 0.185** -0.077 0.155**	0.087* 0.163** -0.047 0.152**	0.020 0.130** -0.068 0.144**	0.089* 0.140** -0.041 0.152**	0.158* 0.202** 0.083 0.193**
1521	1964	1 2 3 4	348 304 256 261	0.099 0.077 0.350** 0.097	0.105* -0.009 0.290** 0.095	0.091 0.082 0.229** 0.127*	0.121* 0.108 0.153* 0.141*	0.148 0.121 0.367** 0.144
	1965	1 2 3 4	346 477 509 402	0.080 0.153** 0.031 0.146**	0.082 0.140** -0.033 0.143**	0.066 0.088 0.011 0.149**	0.105* 0.068 0.031 0.054	0.118 0.174** 0.125 0.196**
	1966	1 2 3 4	562 522 377 136	0.064 0.135** 0.019 0.066	0.071 0.058 0.065 0.083	0.098* 0.072 0.077 0.037	0.042 -0.003 0.069 0.027	0.106 0.170** 0.127 0.100
1	1961 1962 1963 1964 1965 1966	3-4 3-4 3-4 3-4 3-4 3-4	206 226 479 271 247 123	-0.007 -0.028 0.118** 0.084 0.121 0.032	-0.079 -0.076 0.086 -0.002 0.157* 0.058	0.060 -0.048 -0.003 0.030 0.074 -0.012	0.175* 0.046 0.012 0.124* 0.070 0.095	0.189 0.140 0.174** 0.160 0.159 0.158
Total			10792	0.078**	0.067**	0.045**	0.054**	

-52-

TABLE 22. Catch of yellowfin tuna per day of fishing in Area 2. The three columns under each size class refer to catch, days of fishing, and catch per day of fishing, respectively.

	Quar-				Size Cl	ass						
	Year ter	3			4				5		Total	
	1 4372 1961 2 2276 4 1464 Total 8112	696.5 507.5 511.0 1715.0	6.3 4.5 2.9 4.7	4830 2111 1193 8134	478.0 357.0 333.0 1168.0	10.1 5.9 3.6 7.0	2416 1318 331 4065	201.5 170.0 160.5 532.0	12.0 7.8 2.1 7.6	11618 5705 2988 20311	1376.0 1034.5 1004.5 3415.0	8.4 5.5 3.0 5.9
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	446.0 492.0 208.5 1146.5	2.4 4.3 3.1 3.3	595 2846 955 4396	232.0 309.0 233.0 774.0	2.6 9.2 4.1 5.7	242 759 631 1632	94.5 150.0 106.5 351.0	2.6 5.1 5.9 4.6	1893 5725 2234 9852	772.5 951.0 548.0 2271.5	2.5 6.0 4.1 4.3
ן זיז	1 1620 1963 2. 2715 4 466 Total 4801	448.0 396.5 225.0 1069.5	3.6 6.8 2.1 4.5	1470 2659 555 4684	340.0 273.0 387.0 1000.0	4.3 9.7 1.4 4.7	2061 1399 580 4040	270.5 214.5 184.5 669.5	7.6 6.5 3.1 6.0	5151 6773 1601 13525	1058.5 884.0 796.5 2739.0	4.9 7.7 2.0 4.9
8		462.5 316.5 189.5 968.5	4.4 8.0 3.6 5.4	4198 5560 2253 12011	750.5 477.0 529.5 1757.0	5.6 11.7 4.3 6.8	4751 4502 1103 10356	566.5 356.0 293.5 1216.0	8.4 12.6 3.8 8.5	10971 12608 4040 27619	1779.5 1149.5 1012.5 3941.5	6.2 11.0 4.0 7.0
	1 1326 1965 2 760 4 256 Total 2342	452.5 221.0 142.5 816.0	2.9 3.4 1.8 2.9	1524 2472 1199 5195	429.5 431.5 398.5 1259.5	3.5 5.7 3.0 4.1	934 788 182 1904	220.5 192.5 101.0 514.0	4.2 4.1 1.8 3.7	3784 4020 1637 9441	1102.5 845.0 642.0 2589.5	3.4 4.8 2.5 3.6
	1 1081 1966 2 510 4 336 Total 1927	353.5 102.0 139.5 595.0	3.1 5.0 2.4 3.2	1552 386 468 2406	444.5 106.0 123.5 674.0	3.5 3.6 3.8 3.6	41 369 62 472	71.0 84.0 25.0 180.0	0.6 4.4 2.5 2.6	2674 1265 866 4805	869.0 292.0 288.0 1449.0	3.1 4.3 3.0 3.3
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2859.0 2035.5 1416.0	4.0 5.4 2.7	14169 16034 6623	2674.5 1953.5 2004.5	5.3 8.2 3.3	9135 2889	1424.5 1167.0 871.0	7.3 7.8 3.3	36091 36096 1 336 6	6958.0 5156.0 4291.5	5.2 7.0 3.1
	Total 26258	6310.5	4.2	36826	6632.5	5.6	22469	3462.5	6.5	85553	16405.5	5.2

Size Class

-

-

TABLE 23. Catch of yellowfin tuna per set in Area 2. The three columns under each size class refer to catch, sets, and catch per set, respectively.

Quar-				Size (Jass						
ter	3			2	<u>+</u>		5			Total	
2 2201 4 398	- 388 3 113	3.2 5.7 3.5 4.4	712 2865 790 4367	166 268 161 595	4.3 10.7 4.9 7.3	242 752 788 1782	54 81 126 261	4.5 9.3 6.3 6.8	1938 5818 1976 9732	526 737 400 1663	3.7 7.9 4.9 5.9
2 2379 4 413	443 249	3.8 5.4 1.7 4.0	1448 2529 509 4486	257 314 266 837	5.6 8.1 1.9 5.4	1956 1375 578 3909	264 170 166 600	7.4 8.1 3.5 6.5	4922 6283 1500 12705	917 927 681 2525	5.4 6.8 2.2 5.0
2 2238 4 682	412 207	3.9 5.4 3.3 4.4	3967 5598 2038 11603	882 712 564 2158	4.5 7.9 3.6 5.4	4631 4302 1085 10018	748 543 307 1598	6.2 7.9 3.5 6.3	10461 12138 3805 26404	2106 1667 1078 4851	5.0 7.3 3.5 5.4
2 721 4 251	. 233 . 51	3.0 3.1 4.9 3.2	1382 2293 1170 4845	416 388 291 1095	3.3 5.9 4.0 4.4	919 773 174 1866	195 130 51 376	4.7 5.9 3.4 5.0	3531 3787 1595 8913	1019 751 393 2163	3.5 5.0 4.1 4.1
2 557 4 331	148 133	2.6 3.8 2.5 2.9	1519 556 426 2501	454 130 110 694	3.3 4.3 3.9 3.6	40 369 61 470	17 46 18 81	2.4 8.0 3.4 5.8	2417 1482 818 4717	796 324 261 1381	3.0 4.6 3.1 3.4
2 8096 4 2075	1624 753	3.4 5.0 2.8 3.9	9028 13841 4933 27802	2175 1812 1392 5379	4.2 7.6 3.5 5.2	7788 7571 2686 18045	1278 970 668 2916	6.1 7.8 4.0 6.2	23269 29508 9694 62471	5364 4406 2813 12583	4.3 6.7 3.4 5.0
	$\begin{array}{c} ter \\ 1 & 984 \\ 2 & 2201 \\ 4 & 398 \\ 0 tal 3583 \\ 1 & 1518 \\ 2 & 2379 \\ 4 & 413 \\ 0 tal 4310 \\ 1 & 1863 \\ 2 & 2238 \\ 4 & 682 \\ 0 tal 4310 \\ 1 & 1863 \\ 2 & 2238 \\ 4 & 682 \\ 0 tal 4783 \\ 1 & 1230 \\ 2 & 721 \\ 4 & 251 \\ 0 tal 2202 \\ 1 & 858 \\ 2 & 557 \\ 4 & 331 \\ 0 tal 1746 \\ 1 & 6453 \\ 2 & 8096 \\ 4 & 2075 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ter31984 306 3.2 712 2 2201 388 5.7 2865 4 398 113 3.5 790 otal 3583 807 4.4 4367 1 1518 396 3.8 1448 2 2379 443 5.4 2529 4 413 249 1.7 509 otal 4310 1088 4.0 4486 1 1863 476 3.9 3967 2 2238 412 5.4 5598 4 682 207 3.3 2038 otal 4783 1095 4.4 11603 1 1230 408 3.0 1382 2 721 233 3.1 2293 4 251 51 4.9 1170 otal 2202 692 3.2 4845 1 858 325 2.6 1519 2 557 148 3.8 556 4 331 133 2.5 426 otal 1746 606 2.9 2501 1 6453 1911 3.4 9028 2 8096 1624 5.0 13841 4 2075 753 2.8 4933	ter31984306 3.2 71216622201388 5.7 28652684398113 3.5 790161otal3583807 4.4 4367 59511518396 3.8 144825722379443 5.4 25293144413249 1.7 509266otal43101088 4.0 448683711863476 3.9 396788222238412 5.4 55987124682207 3.3 2038564otal47831095 4.4 11603215811230408 3.0 13824162721233 3.1 2293388425151 4.9 1170291otal2202692 3.2 484510951858325 2.6 1519 454 2557148 3.8 5561304331133 2.5 426 110otal1746606 2.9 2501694164531911 3.4 90282175280961624 5.0 13841181242075753 2.8 49331392	4ter3419843063.27121664.3222013885.7286526810.743981133.57901614.9otal35838074.443675957.3115183963.814482575.6223794435.425293148.144132491.75092661.9otal431010884.044868375.4118634763.939678824.5222384125.455987127.946822073.320385643.6otal478310954.41160321585.4112304083.013824163.327212333.122933885.94251514.911702914.0otal22026923.2484510954.418583252.615194543.325571483.85561304.343311332.54261103.9otal17466062.925016943.61645319113.4902821754.2	4ter3419843063.27121664.3242222013885.7286526810.775243981133.57901614.9788otal 35838074.443675957.31782115183963.814482575.61956223794435.425293148.1137544132491.75092661.9578otal 431010884.044868375.43909118634763.939678824.54631222384125.455987127.9430246822073.320385643.61085otal 478310954.41160321585.410018112304083.013824163.391927212333.122933885.97734251514.911702914.0174otal 22026923.2484510954.4186618583252.615194543.34025571483.85561304.336943311332.54261103.961<	45ter3451984306 3.2 712166 4.3 242 54 22201388 5.7 286526810.7752814398113 3.5 790161 4.9 788126otal3583807 4.4 4367595 7.3 178226111518396 3.8 1448257 5.6 195626422379443 5.4 2529314 8.1 13751704413249 1.7 509 266 1.9 578 166otal43101088 4.0 4486837 5.4 390960011863476 3.9 3967882 4.5 463174822238412 5.4 5598712 7.9 43025434682207 3.3 2038564 3.6 1085307otal47831095 4.4 116032158 5.4 10018159811230408 3.0 1382416 3.3 9191952721233 3.1 2293388 5.9 773 1304251 51 4.9 1170291 4.0 174 51 otal2202692 3.2 4845 1095 4.4 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

M1 α :

Catch of yellowfin tuna per successful set in Area 2. The three columns under each TABLE 24. size class refer to catch, successful sets, and catch per successful set, respectively.

-	Quai	r-				Si	ze class					
Year	v		3				4		5		Total	
1961	1 2 4 Total	4422 2200 1378 8000	332 158 166 656	13.3 13.9 8.3 12.2	4533 2017 1151 7701	260 152 138 550	17.4 13.3 8.3 14.0	2527 1202 331 4060	138 70 58 266	$ 18.3 \\ 17.2 \\ 5.7 \\ 15.3 $	11482 730 5419 380 2860 362 19761 1472	15.7 14.3 7.9 13.4
1962	1 2 4 Total	984 2196 323 3503	122 160 43 325	8.1 13.7 7.5 10.8	712 2742 773 4227	94 146 89 329	7.6 18.8 8.7 12.8	203 639 788 1630	34 30 79 143	6.0 21.3 10.0 11.4	1899 250 5577 336 1884 211 9360 797	7.6 16.6 8.9 11.7
1963 4	1 2 4 Total	1415 2024 305 3744	194 202 63 459	7.3 10.0 4.8 8.2	1271 2409 411 4091	130 164 73 367	9.8 14.7 5.6 11.1	1878 1265 513 3656	157 86 58 301	$ \begin{array}{r} 12.0 \\ 14.7 \\ 8.8 \\ 12.1 \end{array} $	4564 481 5698 452 1229 194 11491 1127	9.5 12.6 6.3 10.2
î 1964	1 2 4 Total	1686 1943 682 4311	195 181 96 472	8.6 10.7 7.1 9.1	3470 4578 1821 9869	388 346 258 992	8.9 13.2 7.1 9.9	3803 3836 1059 8698	363 289 138 790	10.5 13.3 7.7 11.0	8959 946 10 357 816 3562 492 22878 2254	9.5 12.7 7.2 10.1
1965	1 2 4 Total	1085 696 209 1990	200 129 25 354	5.4 5.4 8.4 5.6	1343 2193 954 4490	247 239 129 615	5.4 9.2 7.4 7.3	919 681 161 1761	127 81 31 239	7.2 8.4 5.2 7.4	3347 574 3570 449 1324 185 8241 1208	5.8 8.0 7.2 6.8
1966	1 2 4 Total	524 504 329 1357	121 84 67 272	4.3 6.0 4.9 5.0	822 509 423 1754	179 66 79 324	4.6 7.7 5.4 5.4	33 369 61 463	8 29 13 50	4.1 12.7 4.7 9.3	1379 308 1382 179 813 159 3574 646	4.5 7.7 5.1 5.5
1961 1966	4	10116 9563 3226 22905	1164 914 460 2538	8.7 10.5 7.0 9.0	12151 14448 5533 32132	1298 1113 766 3177	9.4 13.0 7.2 10.1	9363 7992 2913 20268	827 585 377 1789	11.3 13.7 7.7 11.3	31630 3289 32003 2612 11672 1603 75305 7504	9.6 12.3 7.3 10.0
	TOPAT	~~>\)		7.0	<u>مر</u> ± مر	J±11	ΤΫ́Τ	20200	109	رويدي	+007 000	±0,0

TABLE 25. Ratios of successful to total sets in Area 2. The three columns under each size class refer to successful sets, total sets, and ratio of successful to total sets, respectively.

- - - -

.

Year	Quar-	•	3			Size (5			Tôtel	
1962 T	1 2 4 Yotal	125 163 52 340	306 389 113 808	0.408 0.419 0.460 0.421	94 156 108 358	166 268 161 595	0.566 0.582 0.671 0.602	39 34 87 160	54 81 129 264	0.722 0.420 0.674 0.606	258 353 247 858	526 738 403 1667	0.490 0.478 0.613 0.515
1963 T	1 2 4 Yotal	209 233 95 537	398 451 251 1100	0.525 0.517 0.378 0.488	139 176 114 429	257 314 266 837	0.541 0.561 0.429 0.513	171 97 76 344	267 171 166 604	0.640 0.567 0.458 0.570	519 506 285 1310	922 936 683 2541	0.563 0.541 0.417 0.516
1964 5 T	1 2 4 Yotal	237 217 114 568	478 412 207 1097	0.496 0.527 0.551 0.518	458 445 309 1212	887 712 564 2163	0.516 0.625 0.548 0.560	444 356 183 983	757 552 312 1621	0.587 0.645 0.587 0.606	1139 1018 606 2763	2122 1676 1083 4881	0.537 0.607 0.560 0.566
רי 1965	1 2 4 Cotal	223 136 35 394	412 234 51 697	0.541 0.581 0.686 0.565	259 255 164 678	416 388 294 1098	0.623 0.657 0.558 0.617	127 87 32 246	195 131 51 377	0.651 0.664 0.627 0.653	609 478 231 1318	1023 753 396 2172	0.595 0.635 0.583 0.607
1966 T	1 2 4 Yotal	198 93 70 361	336 148 133 617	0.589 0.628 0.526 0.585	301 74 82 457	454 130 110 694	0.663 0.569 0.745 0.659	11 29 13 53	17 46 18 81	0.647 0.630 0.722 0.654	510 196 165 871	807 324 261 1392	0.632 0.605 0.632 0.626
1962 - 1966 T	1 2 4 otal	992 842 366 2200	1930 1634 755 4319	0.514 0.515 0.485 0.509	1251 1106 777 3134	2180 1812 1395 5387	0.574 0.610 0.557 0.582	792 603 391 1786	1290 981 676 2947	0.614 0.615 0.578 0.606	3035 2551 1534 7120	5400 4427 2826 12653	0.562 0.576 0.543 0.563

TABLE 26. Sets per day of fishing in Area 2. The three columns under each size class refer to adjusted sets, days of fishing, and sets per day, respectively.

Size Class

	Quer-					Offic .	01000						
Yea	r ter		3				4		5			Tôtel	
196	1 2 4 Total	327 372 184 883	$446.0 \\ 492.0 \\ 208.5 \\ 1146.5$	0.73 0.76 0.88 0.77	139 265 195 599	232.0 309.0 233.0 774.0	0.60 0.86 0.84 0.77	54 82 101 237	94.5 150.0 106.5 351.0	0.57 0.55 0.95 0.68	719 480	772.5 951.0 548.0 2271.5	0.67 0.76 0.88 0.76
196	$\begin{array}{c}1\\3\\4\\\text{Total}\end{array}$	424 505 281 1210	448.0 396.5 225.0 1069.5	0.95 1.27 1.25 1.13	262 330 290 882	340.0 273.0 387.0 1000.0	0.77 1.21 0.75 0.88	277 173 166 616	270.5 214.5 184.5 669.5	1.02 0.81 0.90 0.92	963 1008 737 2708	1058.5 884.0 796.5 2739.0	0.91 1.14 0.93 0.99
196	$\begin{array}{c}1\\4\\4\\Total\end{array}$	519 470 207 1196	462.5 316.5 189.5 968.5	1.12 1.48 1.09 1.23	935 705 626 2266	750.5 477.0 529.5 1757.0	1.25 1.48 1.18 1.29	770 570 313 1653	566.5 356.0 293.5 1216.0	1.36 1.60 1.07 1.36		1779.5 1149.5 1012.5 3941.5	1.25 1.52 1.13 1.30
196	$\begin{array}{c}1\\5\\4\\Total\end{array}$	441 245 52 738	452.5 221.0 142.5 816.0	0.97 1.11 0.36 0.90	458 419 297 1174	429.5 431.5 398.5 1259.5	1.07 0.97 0.75 0.93	199 133 54 386	220.5 192.5 101.0 514.0	0.90 0.69 0.53 0.75	1098 797 403 2298	1102.5 845.0 642.0 2589.5	1.00 0.94 0.63 0.89
196	$\begin{array}{c}1\\2\\4\\Total\end{array}$	410 136 136 682	353.5 102.0 139.5 595.0	1.16 1.33 0.97 1.15	4 <i>6</i> 3 90 121 674	444.5 106.0 123.5 674.0	1.04 0.85 0.98 1.00	17 46 18 81	71.0 84.0 25.0 180.0	0.24 0.55 0.72 0.45	890 272 275 1437	869.0 292.0 288.0 1449.0	1.02 0.93 0.95 0.99
196 196		2121 1728 860 4709	2162.5 1528.0 905.0 4595.5	0.98 1.13 0.95 1.02	2257 1809 1529 5595	2196.5 1596.5 1671.5 5464.5	1.03 1.13 0.91 1.02	1317 1004 652 2973	1223.0 997.0 710.5 2930.5	1.08 1.01 0.92 1.01	5695 4541 3041 13277	5582.0 4121.5 3287.0 12990.5	1.02 1.10 0.93 1.02

TABLE 27. Logged catches of yellowfin in each area, and total catches of yellowfin in the eastern Pacific Ocean, for 1961-1966. The data were obtained from Anonymous (1967: Table 3) and unpublished data of the Inter-American Tropical Tuna Commission.

Area	1961	1962	1963	1964	1965	1966
1	14,500	14,300	14,700	14,000	16,200	10,500
2	22,200	11,300	15,100	30,800	10,700	5,800
3	48,500	10,900	13,100	18,400	24,400	10,200
4	11,300	13,200	1,800	3,500	16,700	26,500
5	6,800	18,500	13,800	18,300	12,600	29,300
Total logged catch	103,300	68,200	58,500	85,000	80,600	82,300
Total catch	115,400	87,000	72.700	101,900	90,000	90,900

-63-

£ .

Source of variation	Degrees of freedom	Sums of squares	Mean squares	I F	Degrees of freedom	Proba- bility
Years (Y)	5	99.90	19.98	9.62	5,20	<0.01
Quarters (Q)	2	110.28	55.14	26.56	2,20	<0.01
Size classes (S)	2	22.69	11.35	5.47	2,20	<0.05
Y x Q	10	107.20	10.72	5.16	10,20	<0.01
Y x S	10	17.64	1.76	0.85	10,20	>0.05
Q x S	4	8,62	2.16	1.04	4,20	>0.05
Residual	20	41.52	2.08			
Total	53	407.85				

TABLE 28. Analysis of variance for the catch per day of fishing by years, quarters, and size classes for Area 2.

.

Source of variation	Degrees of freedom	Sums of squares	Mean square		Degreed of freedom	Proba- bility
Years (Y)	4	22.36	5.69	5.95	4,16	<0.01
Quarters (Q)	2	77.06	38.53	40.29	2,16	<0.01
Size classes (S)	2	29.08	14.54	15.20	2,16	<0.01
Y x Q	8	28,23	3.53	3.69	8,16	<0.05
Y ж S	8	4.75	0.59	0.62	8,16	>0.05
Q x S	4	9.41	2.35	2.46	4,16	>0.05
Residual	16	15.30	0,96			
Total	44	186.60				

TABLE 29. Analysis of variance for the catch per set by years, quarters and size classes for Area 2.

Source of variation	Degrees of freedom	Sums of squares	Mean squares		grees of reedom	Proba- bility
Years (Y)	5	299.79	59.96	22.13	5,20	<0.01
Quarters (Q)	2	279.65	139.83	51.62	2,20	<0.01
Size classes (S)	2	45.73	22.86	8,44	2,20	<0.01
Y x Q	10	204.18	20.42	7.54	10,20	<0.01
Y x S	10	13.84	1.38	0.51	10,20	>0.05
Q x S	4	30.93	7.73	2.85	4,20	>0.05
Residual	20	54.18	2.71			
Total	53	928.30				

1. 8

TABLE 30. Analysis of variance for the catch per successful set by years, quarters, and size classes for Area 2.

Source of variation	Degrees of freedom	Sums of squares	Mean square	s F	Degrees of freedom	Proba- bility
Years (Y)	4.	0.0946	0.0236	5.79	4,16	<0.01
Quarters (Q)	2	0,0006	0,0003	0.07	2,16	>0.05
Size classes (S)	2	0.0707	0.0353	8.66	2,16	<0.01
Y x Q	8	0.0761	0.0095	2.33	8,16	>0.05
YxS	8	0.0286	0.0036	0.88	8,16	>0.05
Q x S	24.	0,0118	0.0030	0.73	4,16	>0.05
Residual	16	0.0653	0.0041			
Total	44	0.3476				

1

TABLE 31. Analysis of variance for the ratio of successful to total sets by years, quarters, and size classes for Area 2.

Source of variation	Degrees of freedom	Sums of squares	Mean squares	Degrees of F freedom	Proba- bility
Years (Y)	4.	1.6486	0.4122	14.87 4,16	<0.01
Quarters (Q)	2	0.1934	0.0967	3.49 2,16	>0.05
Size classes (S)	2	0.3131	0.1566	5.65 2,16	<0.05
Y x Q	8	0.5690	0.0711	2.57 8,16	>0.05
Y x S	8	0.5864	0.0733	2.64 8,16	<0.05
Q x S	4	0,0988	0.0247	0.89 4,16	>0.05
Residual	16	0.4436	0.0277		
Total	44	3.8529			

TABLE 32. Analysis of variance for the sets per day of fishing by years, quarters, and size classes for Area 2.

TABLE 33. Catch of yellowfin tuna per set by school type in Area 2. The three columns under each size class refer to catch, sets, and catch per set, respectively.

<u></u>	"Sc	hool F	ish"	P	orpois	е		Night_	<u> </u>	Floa	ating	object	
1962	954	223	4.3	3665	692	5,3	3614	412	8.8	57	3	19.0	
1963	2212	498	4,4	4513	1112	4.1	3177	420	7.6	0	5	0.0	
1964	3934	804	4.9	13237	2755	4.8	1780	411	4.3	38	8	4.8	
1965	450	175	2.6	5134	1389	3.7	1351	212	6.4	27	11	2.5	
1966	518	156	3.3	1879	824	2.3	633	203	3,1	6	7	0.9	
Total	8068	1856	4.3	28428	6772	4.2	10555	1658	6.4	128	34	3.8	
<u></u>													

TYPE OF SCHOOL

. . TABLE 34.

Catch of yellowfin tuna per successful set by school type in Area 2. The three columns under each size class refer to catch, successful sets, and catch per successful set, respectively.

TYPE OF SCHOOL

Year	Quar- ter		. <u>001</u> f	ish"	F	orpois	e		Nigh	t	_Floa	ting	object		Totel	
1962	1 2 4 Total	136 599 219 954	16 37 21 74	8.5 16.2 10.4 12.9	646 2987 32 3665	122 175 12 309	5.3 17.1 2.7 11.9	905 1232 1477 3614	69 77 153 299	13.1 16.0 9.7 12.1	0 0 57 57	0 0 3 3	- 19.0 19.0	1687 4818 1785 8290	207 289 189 685	8.1 16.7 9.4 12.1
1963	1 2 4 Total	352 1742 118 2212	31 114 10 155	11.4 15.3 11.8 14.3	1425 2299 789 4513	206 223 131 560	6.9 10.3 6.0 8.1	2337 665 175 3177	195 35 23 253	12.0 19.0 7.6 12.6	0 0 0	0 0 0		4114 4706 1082 9902	432 372 164 968	9.5 12.7 6.6 10.2
	1 2 4 Total	312 3424 198 3934	28 195 8 231	11.1 17.6 24.8 17.0	6618 4417 2202 13237	701 435 333 1469	9.4 10.2 6.6 9.0	1006 225 489 1720	102 22 55 179	9.9 10.2 8.9 9.6	28 10 0 38	2 1 0 3	14.0 10.0 	7964 8076 2889 18929	833 653 396 1882	9.6 12.4 7.3 10.1
70 1 1965	1 2 4 Total	5 262 183 450	5 16 9 30	1.0 16.4 20.3 15.0	2587 1917 630 5134	447 306 114 867	5.8 6.3 5.5 5.9	244 843 264 1351	40 63 25 128	$\begin{array}{c} 6.1 \\ 13.4 \\ 10.6 \\ 10.6 \end{array}$	27 0 0 27	4 0 0 4	6.8 - 6.8	2863 3022 1077 6962	496 385 148 1029	5.8 7.8 7.3 6.8
1966	1 2 4 Total	109 328 81 518	12 32 3 47	9.1 10.3 27.0 11.0	514 692 673 1879	157 109 145 411	3.3 6.3 4.6 4.6	598 9 26 633	101 1 2 104	5.9 9.0 13.0 6.1	6 0 6	3 0 0 3	2.0 - 2.0	1227 1029 780 3036	273 142 150 565	4.5 7.2 5.2 5.4
1962 1966	4	914 6355 799 8068	92 394 51 537	9.9 16.1 15.7 15.0	11790 12312 4326 28428	1633 1248 735 3616	7.2 9.9 5.9 7.9	5090 2974 2431 10495	507 198 258 963	10.0 15.0 9.4 10.9	61 10 57 128	9 1 3 13	6.8 10.0 19.0 9.8	17855 21651 7613 47119	2241 1841 1047 5129	8.0 11.8 7.3 9.2

TABLE 35. Ratios of successful to total sets by school type in Area 2. The three columns under each size class refer to successful sets, total sets, and ratio of successful to total sets, respectively.

<u></u>	"S	chool 1	fish"		Porpoi	se		Nigh	t	F10	oating	object
1962	93	223	0.417	311	692	0.449	327	412	0.794	3	3	1.000
1963	226	498	0.454	596	1112	0,536	299	420	0.712	2	5	0.400
1 964	385	804	0.479	1620	2755	0.588	274	411	0.667	4	8	0.500
1965	51	175	0.291	901	1389	0.649	148	212	0.698	8	11	0.727
1966	64	156	0.410	557	824	0.676	133	203	0.655	6	7	0.857
Total	819	1856	0.441	3985	6772	0.588	1181	1658	0.712	23	34	0.676
Total	819	1856	0.441	3985	6772	0.588	1181	1658	0.712	23	34	0.676

TYPE OF SCHOOL

. . .

				Geometric mean of catch per			Degrees	
	Quar-	Size	Aircraft	successful	Sample		of	Prob-
Year	ter	class	assistance	set plus 1	size	F -	freedom	
1961	1	3	no	9.2	231			
		~	yes	11.6	101	5.18	1,330	< 0.05
			total	9.8	332	<u> </u>	,	1 - H ²
				10.0	7.0.7			
1961	1	4	no	10.9	181	0 1 2	1 0 4 0	
			yes	15.9	79	9.15	1,258	< 0.01
			total	12,2	260			
1961	1	5	no	10.9.	94			
		-	yes	15.7	44	4.35	1,136	< 0.05
			total	12.3	138		1 -	
1961	2	3	no	9.5	145			
1901	6	ر	yes	15.5	13	3.33	1,156	> 0.05
			total	⊥J•J 9•9	158	2.22	JUU	> 0.05
			totar	7•7	TJO			
1961	2	4	no	10.3	135			
			yes	8.7	17	0.56	1,150	> 0.05
			total	10.1	152			
1961	4	3	no	5.5	154			
	•	2	yes	10.3	12	4.89	1,164	< 0.05
			total	5.8	166			
5				·				
1961	4	4	no	5.7	127		_	
			yes	11.9	11	6.95	1,136	< 0.01
			total	6.1	138			
1964	2	4	no	8.5	329			
		•	yes	18.2		10.52	1,344	< 0,01
			total	8.8	346			1

TABLE 36. Analyses of variance for the catch per successful set for . the sets by vessels assisted by aircraft and by those not receiving such assistance

TABLE 37. Ratios of successful to total sets in Area 2, according to whether the vessels were assisted by aircraft. The three columns under each category refer to successful sets, total sets, and ratio of successful to total sets, respectively.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Quar-	No	t assis	ted by	A	ssist	•		₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	Måndaturpassina killeri konserte usen kan som en segarte
Year	ter	Landshine of the South States	aircra	ft	Waa dan Walancia walayo dagar	aircr	aft	i Xana da tana mingkangi katalan katan	Total	L ST BELIN STATE OF STATE AND AND A STATE OF STATE
1962	1 2 4 Total	252 347 246 845	517 725 402 1644	0.487 0.479 0.612 0.514	6 6 1 13	9 13 1 23	0.667 0.462 1.000 0.565	258 353 247 858	526 738 403 1667	0.490 0.478 0.613 0.515
1963	1 2 4 Total	519 498 285 1302	922 924 683 2529	0.563 0.539 0.417 0.515	0 8 0 8	0 12 0 12	0.667	519 506 285 1310	922 936 683 2541	0.563 0.541 0.417 0.516
1964	1 2 4 Total	1116 980 606 2702	2074 1626 1083 4783	0.538 0,603 0.560 0.565	23 38 0 61	48 50 0 98	0.479 0.760 0.622	1139 1018 606 2763	2122 1676 1083 4881	0.537 0.607 0.560 0.566
1965	1 2 4 Total	609 473 231 1 <b>3</b> 13	1023 748 396 2167	0.595 0.632 0.583 0.606	0 5 0 5	0 5 0 5	1.000	609 478 231 1318	1023 753 396 2172	0.595 0.635 0.583 0.607
1966	1 2 4 Total	510 188 165 863	807 314 261 1382	0.632 0.599 0.632 0.624	0 8 0 8	0 10 0 10	0.800	510 196 165 871	807 324 261 1392	0.632 0.605 0.632 0.626
1962- 1966	- 1 2 4 Total	3006 2486 1533 7025	5343 4337 2825 12505	0.563 0.573 0.543 0.562	29 65 1 95	57 90 1 148	0.509 0.722 1.000 0.642	3035 2551 1534 7120	5400 4427 2826 12653	0.562 0.576 0.543 0.563

Source of variation	Degrees of freedom	Sums of squares	Mean squares	E	Degrees of freedom	Prob- abibity
Quarters	1	0.01335	0.01335	1.20	1,1	>0.05
Aircraft	1	0.00263	0.00263	0,24	1,1	>0.05
Residual	1	0.01112	0.01112			
Total	3	0.02711				

TABLE 38. Analysis of variance for the ratio of successful to total sets in Area 2 by quarters and whether the vessels were assisted by aircraft

Year	Quar- ter	Sample size	a	Ъ	Year	Quar- ter	Sample size	a	b
1961	1	252	95.3	4,260	1964	1	193	123.3	2,546
	2	212	60.2	5.203		2	183	90.5	3.573
	3	132	96.6	4.615		3	147	.76,5	4.158
	4.	153	93.2	3.970		4	141	109.2	3.451
	Total	749	85.9	4.516		Total	664	103.9	3,281
1962	1.	143	77.0	5.434	1965	1	150	80,6	4.968
	2	207	80.9	4,205		2	163	111,2	3.129
	3	109	85.5	3.000		3	133	110,8	3.952
	4	96	72.3	4.527		4	130	143.4	3.399
	Total	555	78.4	4.433		Tota1	576	113.3	3.704
1963	1	173	77.0	3.710	1966	1.	143	99.0	4.021
	2	174	82.2	4.142		2	189	89.6	3.896
	3	129	69.5	4.103		3	165	106.3	3.901
	4	42	54.9	4.507		4	46	176.4	2.541
	Total	518	74.6	4.051		Tota1	543	102.9	3.818

TABLE 39. Constants of the regressions of the times of the sets on the quantities of fish caught in them

TABLE 40, Comparisons by analysis of covariance of the regressions of the times of the sets on the quantities of fish caught in them. The significance of the <u>F</u> values is indicated as follows: **, <1 percent; *, 1-5 percent.

		Sl	ope	El	evation
Comparison	Year	F	Degrees of freedom	F	Degrees of freedom
Quarters within years	1961	3 "94**	3,741		prod
	1962	5.76**	3,547	deres.	-
	1963	0.88	3,510	1.95	3,513
	1964	7.16**	3,656	şahan	<b></b>
	1965	6,33**	3,568		<b>e</b>
	1966	1,98	9,535	3.18*	3,538
Years		11.69**	5,3593		-

TABLE 41. Coefficients of correlation for catch per successful set with vessel capacity, vessel speed, net length, and net depth. The significance of the coefficients of correlation is indicated as follows: **, *1 percent; *, 1-5 percent.

Year	Quar- ter	Sample size	Vessel capacity	Vessel speed	Net length	Net depth	Multiple
<u>1961</u>	1	<u> </u>	0,112*	0,086	0.075	0.024	0,115
	2	350	0.106*	0,096	0,011	0.010	0,138
	4	328	0.115*	0.118*	0.099	0.043	0.140
1962	1	244	0.147*	0,069	0.173**	0.065	0.190
	2	330	0,210**	0.159**	0.150**	0.073	0.229**
	4	210	0,021	0,038	0.056	0.138*	0.150
1963	1	481	0,103*	0,030	0,080	0,090	0.133
	2	444	0,090	0.048	0.048	0.052	0,091
	4	194	0,202**	0.146*	0.184%*	0.057	0,241*
1964	1	937	0.097**	0.117**	0.092**	0,057	0,138
	2	788	0.073**	0,003	0.027	0.021	0.126
	4	492	0.053	0.022	0.001	0.015	0.126
1965	1	570	0,140**	0.068	0.056	0.016	0.169
	2	439	0.140**	0.051	0.079	0.048	0.152
	4	184	0.132	0,059	0.138	0.089	0.163
1966	1	232	0.073	0,024	0.013	0.127	0,146
	2	122	0.205*	0.210*	0.154	0,111	0,232
	4	130	0.090	0,114	0.027	0.053	0.160
Total	*	6980	0.109**	0.072**	0,072**	0.058**	₩₩₩₩₩₩₽₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

- Alverson, F. G. 1963. Distribution of fishing effort and resulting tuna catches from the eastern tropical Pacific Ocean, by quarters of the year, 1959-1962 [in English and Spanish]. Inter-Amer. Trop. Tuna Comm., Bull., 8(6):317-379.
- Anonymous. 1965. Annual report of the Inter-American Tropical Tuna Commission, 1964 [in English and Spanish]. La Jolla, California. 98 p. ..1967. Ibid., 1966:138 p.
- Bartlett, M.S. 1947. The use of transformations. Biometrics,  $\underline{3}$  (1):  $\underline{39-52}$ .
- Broadhead, G.C. 1962. Recent changes in the efficiency of vessels fishing for yellowfin tuna in the eastern Pacific Ocean [in English and Spanish]. Inter-Amer. Trop. Tuna Comm., Bull.,  $\underline{6}(7)$ :281-332.

, and A. R. Marshall. 1961. New methods of purse-seining for tuna in the eastern Pacific Ocean. Gulf Carib. Fish. Inst., Proc.,13:67-73.

- , and C. J. Orange. 1960. Species and size relationships within schools of yellowfin and skipjack tuna, as indicated by catches in the eastern tropical Pacific Ocean [in English and Spanish]. Inter-Amer. Trop. Tuna Comm., Bull., <u>4</u>(7):447-492.
- Calkins, T.P. 1963. An examination of fluctuations in the "concentration index" of purse-seiners and baitboats in the fishery for tropical tunas in the eastern Pacific, 1951-1961 [in English and Spanish]. Ibid., <u>8</u>(5):255-316.
  - . 1965. Variation in size of yellowfin tuna (<u>Thunnus alba-</u> <u>cares</u>) within individual purse-seine sets [in English and Spanish]. <u>Ibid.</u>, <u>10(8):461-524</u>.
- Dixon, W.J. (editor). 1961. BIMD Computer Programs Manual. Division of Biostatistics, Department of Preventive Medicine and Public Health, School of Medicine, Univ. of California, Los Angeles.
- . 1965. BMD Biomedical Computer Programs, revised edition. Ibid.:vii, 620 p.
- Fisher, R.A. 1958. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh:xv, 356 p.
- Green, R.E., and G.C. Broadhead. 1965. Costs and earnings of tropical tuna vessels based in California. U.S. Bur. Comm. Fish., Fish. Ind. Res., 3(1):29-45.

- McNeely, R.L. 1961. Purse seine revolution in tuna fishing. Pacif. Fisherman, 59(7):27-58.
- Orange, C.J., and G.C. Broadhead. 1959. 1958-1959--a turning point for tuna purse seine fishing? <u>Ibid.</u>, <u>57</u>(7):20, 22, 25, 27.

, M.B. Schaefer, and F.M. Larmie. 1957. Schooling habits of yellowfin tuna (<u>Neothunnus macropterus</u>) and skipjack (<u>Katsuwonus</u> <u>pelamis</u>) in the eastern Pacific Ocean as indicated by purse-seine catch records, 1946-1955 [in English and Spanish]. Inter-Amer. Trop. Tuna Comm., Bull., <u>2</u>(3):81-126.

- Paloheimo, J.E., and L.M. Dickie. 1964. Abundance and fishing success. Cons. Per. Int. Explor. Mer, Rapp. P.-V. Reun., 155:152-163.
- Paulik, G.J., and L. E. Gales. 1965. Weighted linear regression for two variables, IBM 709, Fortran II. Amer. Fish. Soc., Trans., 94(2):196.
- Schaefer, M.B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean [in English and Spanish]. Inter-Amer. Trop. Tuna Comm., Bull., 2(6):245-285. , B.M. Chatwin, and G.C. Broadhead. 1961. Tagging and re-

covery of tropical tunas, 1955-1959 [in English and Spanish]. <u>Ibid.</u>, 5(5):341-455.

- Shimada, B.M., and M.B. Schaefer. 1956. A study of changes in fishing effort, abundance, and yield for yellowfin and skipjack tuna in the eastern tropical Pacific Ocean [in English and Spanish]. <u>Ibid.</u>, <u>1</u> (7):347-469.
- Steel, R.G.D., and J.H. Torrie. 1960. Principles and Procedures of Statistics with Special Reference to the Biological Sciences. Mc-Graw-Hill Book Company, Inc., New York:xvi, 481 p.
- Veldman, D.J. 1962. Single classification analysis of variance. Univ. of Texas, unpublished: 3 p.
- Winer, B.J. 1962. Statistical Principles in Experimental Design. Mc-Graw-Hill Book Company, New York:x, 672 p.

-79-