#### Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission



#### SKIPJACK TUNA IN THE EASTERN PACIFIC OCEAN, 2021: INTERIM ASSESSMENT

Mark N. Maunder, Haikun Xu, Carolina Minte-Vera, Juan L. Valero, Cleridy E. Lennert-Cody, and Alexandre Aires-da-Silva

> 13<sup>a</sup> Reunión del Comité Científico Asesor - 16-20 de mayo de 2022 (por videoconferencia) 13<sup>th</sup> Meeting of the Scientific Advisory Committee - 16-20 May 2022 (by videoconference)

# Outline

- Motivation
- Auxiliary analyses
  - Growth estimation
  - Fishery definitions
  - Purse seine CPUE
- Stock assessment
  - Reference model assumptions
  - Sensitivity analyses
- Results
  - Reference model
  - Sensitivity analyses
  - Stock status
- Future research



# Motivation

- No reliable assessment for SKJ
  - Unknown if purse seine index is proportional to abundance
  - Unknown if purse seine selectivity is dome shape
  - No reliable aging data
- SPC uses longline data for skipjack
  - Provides estimates of dome shape selectivity
  - Possible index of abundance
- Echosounder buoy index
- Can do assessment without absolute age
  - New tagging data to estimate growth



# Growth - SAC-13 INF-J

- Growth cessation model
- No age data
  - Assume 37 cm is age 2 quarters
- Not tagging data for large fish
  - Fix Linf at 78 cm based on peak of longline length composition
- Variation of length-at-age
  - Estimated using multiple methods
  - Too low
    - Modes in young ages
    - Does not fit longline length compoistion data
  - CV: 0 = 0.09; 20 = 0.06
  - CV a linear function of length



#### Growth – SAC-13 INF-J





# Fishery definitions – SAC-13 INF-I

- Analysis
  - Length-composition data from Class-6 purse-seine vessel
  - Floating objects (OBJ) and on unassociated schools (NOA)
  - Regression tree methods
  - Latitude, longitude, quarter, cyclic quarter, year
  - Divided by mean composition for year-quarter to reduce recruitment effect
  - Compromise between explaining data and number of fisheries
- Results
  - First split -120 for both set types
  - Other splits differ
  - 3 splits, 4 fishery



# Fishery definitions: OBJ





# Fishery definitions: NOA





Lon

## Fishery definitions – SAC-13 INF-I

- DEL
  - Low catch levels
  - Two areas: north and south of the equator
- LL
  - Low catch levels
  - One area: whole EPO



# Indices of abundance

- Purse seine catch-per-set SAC-13 INF-K
  - Can't separate set types
  - No good measure of searching
  - OBJ and NOA
  - Spatio-temporal model
- Longline
  - Catch in number of fish per hook
  - Total catch divided by total number of hooks in a year-quarter
- Echosounder buoys FAD-06-03
  - Signal from satellite-linked GPS tracking echosounder buoys used in the purse-seine OBJ fishery
  - Provide a single biomass value without discriminating species or size composition of the fish
  - Useh fishery data on catch species composition and average size, to obtain the skipjack index



#### Indices of abundance



CIAT

IATT

Index-Índice

#### Indices of abundance: OBJ catch-per-set





# **Reference model assumptions**

- Single stock in the whole EPO
- Quarterly time step
- Longline selectivity is asymptotic, purse-seine selectivity is dome-shaped, modelled with splines
- Natural mortality based on Hampton (2000) and constant after a length of 65 cm.
- The asymptotic length is 78 cm.
- The age at 37 cm is 2 quarters.
- The CV of the length at age is a linear function of length and for age zero fish is 0.09 and for age 20 quarters is 0.06.
- Recruitment is independent of stock size
- Recruitment standard deviation of 0.6.
- Uses the longline and the echosounder buoy-based indices of relative
- Length compositions for the purse-seine OBJ index are used for the echosounder buoy index
- Index CVs average 0.2
- Length composition data OBJ/NOA = No. Wells; DEL =0.1 x No. Wells; LL = 0.1 x No fish



# Sensitivity analyses

- a) Lower asymptotic length. The asymptotic length is set at 73 cm.
- b) Higher asymptotic length. The asymptotic length is set at 83 cm.
- c) Lower variation of length at age. The CV for variation at the asymptotic length is fixed at 0.05.
- d) Higher variation of length at age. The CV for variation at the asymptotic length is fixed at 0.07.
- e) Including the improved estimates of catch for 2020 and 2021.
- f) Excluding the echosounder buoy index of abundance.
- g) No longline index of abundance.
- h) Inclusion of the purse-seine OBJ catch-per-set index.
- i) Inclusion of the purse seine NOA catch-per-set index.
- j) NOA asymptotic selectivity.
- k) OBJ asymptotic selectivity.
- I) Eastern assessment: east of -120
- m) High natural mortality for old fish.
- n) High fishing mortality for old individuals. The asymptotic length is fixed at 70 cm.



#### Reference model: Fit to indices of abundance



CLAT

# Reference model: Fit to indices of abundance



CLAT

# Reference model: Fit to length composition









### Reference model: Fit to indices of abundance





# Reference model: Spawning biomass ratio (SBR)





#### Reference model: R0 likelihood profile



#### Sensitivity analysis: Data





#### Sensitivity analysis: Asymptotic selectivity





Btarget = 0.3

| Steepness (h) | Bigeye      | Yellowfin   |
|---------------|-------------|-------------|
| 1.0           | 0.20 - 0.24 | 0.23 – 0.32 |
| 0.9           | 0.25 – 0.27 | 0.28 – 0.35 |
| 0.8           | 0.28 - 0.30 | 0.32 – 0.37 |
| 0.7           | 0.31 – 0.32 | 0.35 – 0.40 |



#### Stock status









#### Stock status: NOA asymptotic



N parameters are on or within 1% of min-max bound: 10; check results, variance may be suspect



#### Summary

- An assessment for skipjack was developed
- Longline data and an echosounder buoy based index of abundance were included
- The assessment is like those used to provide management advice for bigeye and yellowfin
- The length composition data from the longline fishery suggest that the purse seine fisheries have done-shape selectivities
- Sensitives to the assumptions were conducted
- The conclusion that the skipjack stock is healthy is generally robust to data usage and model assumptions



#### Future research

- Benchmark assessment in 2023
- Analyze tagging data and integrate it into assessment and management advice (SAC-13-08)
- Improve model
  - Investigations on stock structure and further evaluation of the eastern model
  - Refine the fishery definitions to remove bimodal and other undesirable length-composition distributions and selectivities
  - Investigate alternative selectivity patterns to avoid bimodal and other undesirable selectivity patterns
  - Consider the possibility of changes in selectivity as indicated by the catch curve analysis
  - Adjusting the length-composition data for shrinkage
  - Using the offshore OBJ length-composition data for the echosounder buoy index of abundance
  - Improve the estimates of natural mortality using the tagging data and other available information
  - Spatio-temporal modelling of the longline CPUE and composition data





# Questions

