COMISIÓN INTERAMERICANA DEL ATÚN TROPICAL

82ª REUNIÓN

LA JOLLA, CALIFORNIA (EE.UU.) 4-8 DE JULIO DE 2011

DOCUMENTO IATTC-82-05

LOS ATUNES Y PECES PICUDOS EN EL OCÉANO PACÍFICO ORIENTAL EN 2010

A.	La pesquería de atunes y peces picudos en el Océano Pacífico oriental	3
B.	Atún aleta amarilla	52
C.	Atún barrilete	64
D.	Atún patudo	67
E.	Atún aleta azul del Pacífico	79
F.	Atún albacora	84
G.	Pez espada	87
	Marlín azul	
I.	Marlín rayado	93
	Consideraciones ecosistémicas	

INTRODUCCIÓN

El presente informe contiene un resumen de la pesquería de atunes en el Océano Pacífico oriental (OPO), evaluaciones de las poblaciones principales de atunes y peces picudos que son explotadas en la pesquería, y una evaluación del ecosistema pelágico en el OPO, en 2010.

El informe se basa en datos disponibles al personal de la CIAT en mayo de 2011. Las secciones F (atún albacora) y H (marlín azul) son esencialmente iguales a las secciones correspondientes del <u>Informe de la Situación de la Pesquería 8</u>, publicado en 2010, salvo actualizaciones de las figuras. La Sección I (marlín rayado) se basa en datos disponibles al personal de la CIAT en octubre de 2010.

Se expresa el peso de capturas y descartes en toneladas métricas (t). En las tablas, 0 en una casilla significa ningún esfuerzo o una captura de menos de 0,5 t; - significa que no se tomaron datos, y * significa datos faltantes o no disponibles. Se usan las siglas siguientes:

Especies:

ALB	Atún albacora (Thunnus alalunga)	PBF	Atún aleta azul del Pacífico (Thunnus
BET	Atún patudo (<i>Thunnus obesus</i>)		orientalis)
BIL	Peces picudos istiofóridos no identificados	SFA	Pez vela del Indo-Pacífico (Istiophorus
BKJ	Atún barrilete negro (Euthynnus lineatus)		platypterus)
BLM	Marlín negro (Makaira indica)	SKJ	Atún barrilete (Katsuwonus pelamis)
BUM	Marlín azul (Makaira nigricans)	SKX	Elasmobranquios no identificados
BZX	Bonito (Sarda spp.)	SSP	Marlín trompa corta (Tetrapturus
CAR	Chondrichthyes, peces cartilaginosos nep ¹		angustirostris)
CGX	Carángidos (Carangidae)	SWO	Pez espada (Xiphias gladius)
DOX	Dorados (Coryphaena spp.)	TUN	Atunes no identificados
MLS	Marlín rayado (<i>Kajakia audax</i> ²)	YFT	Atún aleta amarilla (Thunnus albacares)
MZZ	Osteichthyes, peces marinos nep		

¹ no especificado en otra partida

² antes *Tetrapturus audax*

	le pesca:
FPN	Almadraba
GN	Red de transmalle
HAR	Arpón
LL	Palangre
LP	Caña
LTL	Curricán
LX	Sedal y anzuelo
OTR	Otras ³
NK	Desconocido
PS	Red de cerco
RG	Deportivo
TX	Red de arrastre
Areas	oceánicas:
EPO	Océano Pacífico oriental
WCPO	Océano Pacífico occidental y central
Tipos o	de lance:
DEL	Delfín
NOA	Peces no asociados
OBJ	Objeto flotante
	FLT: Natural
	FAD: Plantado
Evalua	ción de poblaciones:
MSY	Rendimiento máximo sostenible
В	Biomasa
C	Captura
CPUE	Captura por unidad de esfuerzo
F	Coeficiente de mortalidad por pesca
S	Índice de biomasa reproductora
SBR	Cociente de la biomasa reproductora
SSB	Biomasa de la población reproductora
	• • • • • • • • • • • • • • • • • • • •

Bande	rgs.
Danue	Miembros de la CIAT
BLZ	Belice
CAN	Canadá
CHN	China
COL	
CRI	Costa Rica
ECU	Ecuador
ESP	
	España Guatamala
GTM JPN	Guatemala
KOR	Japón Papública da Coras
MEX	República de Corea México
NIC	
PAN	Nicaragua Panamá
PER	Perú
SLV	
TWN	Taipei Chino Estados Unidos de América
USA VEN	
VEN	Venezuela Venuetu
<u>vui</u>	Vanuatu Otras banderas
BMU	
BOL	Bolivia
CHL	Chile
_	
COV	Congo Islas Cook
COK CYM	
CYP	Islas Caimón
	*
FSM	Estados Federados de Micronesia Honduras
HND	Liberia
LBR	
NLD	Países Bajos
NZL	Nueva Zelanda
PRT	Portugal
PYF	Polinesia Francesa
RUS	Rusia
SEN	Senegal
VCT	St. Vicente y Granadinas
UNK	Desconocido

³ Usado para agrupar artes conocidas

A. LA PESQUERÍA DE ATUNES Y PECES PICUDOS EN EL OCÉANO PACÍFICO ORIENTAL

1.	Capturas y descargas de atunes, peces picudos, y especies asociadas	3
1.1.	Capturas por especie	4
	Distribución de las capturas de atunes	
	Composición por tamaño de las capturas de atunes	
	Capturas de atunes y bonitos, por bandera y arte	
2.	Esfuerzo de pesca	10
	Pesca de cerco	
2.2.	Pesca palangrera	10
	Las flotas	
	Las flotas de cerco y de caña	
	Otras flotas del OPO	

En esta sección se presenta un resumen de las pesquerías de las especies amparadas por la Convención de la CIAT (los atunes y otros peces capturados por buques atuneros) en el Océano Pacífico oriental (OPO). Las más importantes de éstas son los escómbridos (familia Scombridae), que incluyen los atunes, bonitos, carites y caballas. Las especies principales de atunes capturadas son el aleta amarilla, barrilete, patudo y albacora, con capturas menores de los atunes aleta azul del Pacífico y barrilete negro y de melvas; se capturan también otros escómbridos, como el bonito y el peto.

Esta sección abarca también otras especies capturadas por buques atuneros en el OPO: peces picudos (pez espada, marlines y pez vela), carángidos (jureles y salmón), dorado, elasmobranquios (tiburones y rayas) y otros peces.

La mayor parte de las capturas es realizada por las flotas de cerco y palangrera; la flota cañera y varias pesquerías artesanales y recreacionales toman un pequeño porcentaje de las capturas totales.

Se dispone de datos detallados de las pesquerías cerquera y cañera; los datos de las pesquerías palangreras, artesanales y recreacionales son incompletos.

El <u>Registro Regional de Buques</u> de la CIAT contiene detalles de los buques autorizados para pescar atunes en el OPO. La CIAT cuenta con registros detallados de la mayoría de los buques cerqueros y cañeros que pescan atunes aleta amarilla, barrilete, patudo y/o aleta azul del Pacífico en el OPO. El Registro es incompleto para buques pequeños. Incluye la mayoría de los buques palangreros grandes (eslora total >24 m) que pescan en el OPO y en otros océanos.

Los datos en el presente informe provienen de varias fuentes, entre ellas los cuadernos de bitácora de los buques, datos de observadores, registros de descargas provistos por empresas enlatadoras y otros procesadores, registros de importaciones y exportaciones, informes de los gobiernos y otras entidades, y estimaciones derivadas del programa de muestreo de especies y composición por talla.

1. CAPTURAS Y DESCARGAS DE ATUNES, PECES PICUDOS, Y ESPECIES ASOCIADAS

Estimar la captura total de una especie de pez es difícil, por varios motivos. Pescado es descartado en el mar, y los datos de algunas artes de pesca son incompletos. Desde 1993 los observadores han tomado datos sobre pescado descartado en el mar por buques cerqueros de más de 363 toneladas métricas (t) de capacidad de acarreo, lo cual permite una estimación más precisa de las cantidades totales de pescado capturadas por la flota de cerco. Las estimaciones de la cantidad total de la captura que se descarga (en lo sucesivo la "captura retenida") se basan principalmente en datos de descarga. A partir del <u>Informe de la Situación de la Pesquería 3</u>, que describe la pesquería en 2004, los datos de descargas de buques cerqueros y cañeros son ajustados con base en las estimaciones de composición por especies para los atunes aleta amarilla, barrilete, y patudo. El programa actual de muestreo de composición por especies,

descrito en la Sección 1.3.1, comenzó en 2000, y por lo tanto los datos de captura de 2000-2010 son ajustados con base en las estimaciones obtenidas para cada año, por bandera. Para ajustar los datos de captura de los años previos, se aplicó la proporción media de especies de las estimaciones de 2000-2004, por bandera, y se sumó para todas las banderas. En general, esto ha incrementado las capturas estimadas de patudo, y reducido aquéllas de aleta amarilla y barrilete. Todos estos ajustes son preliminares, y podrían ser mejorados en el futuro. Todos los datos de 2010 de la flotas cerquera y cañera son provisionales.

Se obtienen los datos de las capturas retenidas de la mayoría de los buques palangreros grandes de los gobiernos de las naciones que pescan atunes en el OPO. Los buques palangreros, particularmente los más grandes, dirigen su esfuerzo principalmente hacia los atunes patudo, aleta amarilla, y albacora, o el pez espada. Los datos de los buques palangreros pequeños, artesanales y otros que pescan atunes, peces picudos, dorado, y tiburones en el OPO fueron obtenidos directamente de los gobiernos, de los cuadernos de bitácora, o de informes publicados por los gobiernos. Los datos del Pacífico occidental y central (WCPO) fueron provistos por el Programa de Pesquerías Oceánicas de la Secretaría de la Comunidad del Pacífico (SPC). Todos los datos de captura en el OPO con palangre y otras artes en 2009 y 2010 son preliminares.

Los datos de todas estas fuentes fueron compilados en una base de datos por el personal de la CIAT y resumidos en el presente informe. En los últimos años, el personal de la CIAT ha incrementado sus esfuerzos por compilar datos sobre las capturas de atunes, peces picudos, y otras especies capturadas con otras artes, como curricán, arpón, y red de transmalle, y artes recreacionales. En la Tabla A-1 se presentan las capturas totales de aleta amarilla, barrilete, y patudo en el Océano Pacífico entero, estimadas de todas las fuentes mencionadas; son tratadas en mayor detalle en las secciones siguientes.

En la Tabla A-2 se presentan estimaciones de las capturas anuales retenidas y descartadas de atunes y otras especies capturadas por buques atuneros en el OPO durante 1980-2009. En las Tablas A-3a-e se presentan las capturas de atunes aleta amarilla, patudo, y barrilete, por arte y bandera, durante 1980-2009, y en la Tabla A-4 se resumen por bandera las capturas cerqueras y cañeras de atunes y bonitos durante 2008-2009. No se restringió la pesca del atún en el OPO durante 1988-1997, pero las capturas de la mayoría de las especies fueron afectadas por las restricciones de la pesca durante partes, o la totalidad, del segundo semestre del año durante 1998-2009. Además, la reglamentación de aquellos cerqueros que dirigen su esfuerzo hacia atunes asociados con delfines afectó el modo de operación de esos buques, especialmente desde fines de los años 1980 (ver Sección 4).

Las capturas fueron afectadas también por perturbaciones climáticas, tales como los importantes eventos de El Niño que ocurrieron durante 1982-1983 y 1997-1998. Estos redujeron la vulnerabilidad de los peces a la captura con red de cerco debido a la mayor profundidad de la termoclina, pero aparentemente no tuvieron ningún efecto sobre las capturas palangreras. El reclutamiento de aleta amarilla suele ser mayor después de un evento de El Niño.

1.1. Capturas por especie

1.1.1. Atún aleta amarilla

En la Tabla A-1 se presentan las capturas anuales de aleta amarilla durante 1961-2010. En general, las capturas han aumentado durante este período en el OPO y en el Pacífico occidental y central. En el OPO, el Niño de 1982-1983 causó una reducción de las capturas en esos años, mientras que las capturas en el resto del Pacífico aparentemente no fueron afectadas. Aunque el alcance del Niño de 1997-1998 fue mayor, no tuvo el mismo efecto sobre las capturas de aleta amarilla en el OPO. La captura de aleta amarilla en el OPO en 2002, 443 mil t, estableció un récord, pero durante 2004-2009 disminuyó sustancialmente, y la captura en 2010, 256 mil t, fue mayor que las capturas durante 2006-2009, pero menor que aquéllas durante 1996-2005. En el Pacífico occidental y central alcanzaron 341 mil t en 1990 y un pico de 425 mil t en 1998, y siguieron altas hasta 2001 (405 mil t); aumentaron a 417 mil t en 2003, y disminuyeron a 384 mil t en 2004, aumentaron a 540 mil t en 2008, y disminuyeron de nuevo en 2009, a

416 mil t.

En la Tabla A-2a se presentan las capturas retenidas anuales de aleta amarilla en el OPO por buques cerqueros y cañeros durante 1981-2010. La captura retenida anual media durante 1995-2009 fue 267 mil t (amplitud: 167 a 413 mil t); la estimación preliminar de la captura retenida en 2010, 251 mil t, fue 6% más que aquélla de 2009, pero 6% menos que el promedio de 1995-2009. Los descartes medios de aleta amarilla en el mar durante 1995-2009 se cifraron en un 2% (amplitud: 1 a 3%) de la captura total cerquera (capturas retenidas más descartes) de la especie (Tabla A-2a).

En la Tabla A-2a se presentan las capturas retenidas anuales de aleta amarilla en el OPO por buques palangreros durante 1981-2010. Durante 1995-2009 fueron relativamente estables, con un promedio de unas 17 mil t (amplitud: 6 a 30 mil t), o un 6% de las capturas retenidas totales de la especie. El aleta amarilla es capturado también por buques de pesca recreacional, incidentalmente en redes de transmalle, y en pesquerías artesanales. En la columna de 'Otras artes' (OTR) de la Tabla A-2a se presentan estimaciones de estas capturas; durante 1995-2009 fueron en promedio unas mil t.

1.1.2. Atún barrilete

En la Tabla A-1 se presentan las capturas anuales de barrilete durante 1981-2010. La mayoría de la captura de barrilete en el Océano Pacífico proviene del Pacífico occidental y central. La mayor captura anual registrada en esa región, unos 1,8 millones de toneladas, ocurrió en 2009, y la captura total récord en el OPO, 310 mil t, ocurrió en 2006.

En la Tabla A-2a se presentan las capturas retenidas anuales de barrilete en el OPO por buques cerqueros y cañeros durante 1981-2010. La captura retenida anual media durante 1995-2009 fue 205 mil t (amplitud: 107 a 297 mil t). La estimación preliminar de la captura retenida de barrilete en 2010, 147 mil t, es 28% menos que el promedio de 1995-2009, y 51% menos que la captura retenida récord previa de 2006. Los descartes medios anuales de barrilete en el mar durante 1995-2009 se cifraron en un 9% (amplitud: 3 a 19%) de la captura total de la especie (Tabla A-2a).

Se capturan pequeñas cantidades de barrilete con palangre y otros tipos de arte (Tabla A-2a).

1.1.3. Atún patudo

En la Tabla A-1 se presentan las capturas anuales de patudo durante 1981-2010. En general, las capturas en el OPO y en el Pacífico occidental y central han aumentado, pero con fluctuaciones considerables. Las capturas en el OPO alcanzaron 105 mil t en 1986, y desde entonces han fluctuado entre unas 73 y 148 mil t, con la mayor captura en 2000. En el Pacífico occidental y central, las capturas de patudo aumentaron a más de 77 mil t a fines de la década de 1970, disminuyeron en los años 1980, y luego aumentaron, con fluctuaciones menores, hasta 1999, cuando llegaron a más de 112 mil t. Aumentaron de forma importante en 2006, a 125 mil t, y en 2007, 2008, y 2009, se cifraron en 119, 133, y 121 mil t, respectivamente.

Antes de 1994 la captura retenida media anual de patudo por buques cerqueros en el OPO fue alrededor de 8 mil t (amplitud: 1 a 15 mil t) (Tabla A-2a). Con el desarrollo de dispositivos agregadores de peces (plantados) colocados en el agua por los pescadores para atraer atunes, las capturas retenidas anuales de patudo aumentaron de 35 mil t en 1994 a entre 44 y 95 mil t durante 1995-2009. La estimación preliminar de la captura retenida en el OPO en 2010 es de 58 mil t. Los descartes medios anuales de patudo en el mar durante 1995-2009 se cifraron en un 4% de la captura cerquera de la especie (amplitud: 1 a 9%). Los buques cañeros capturaron pequeñas cantidades de patudo en algunos años (Tabla A-2a).

Durante 1981-1994, antes del incremento en el uso de plantados y las mayores capturas cerqueras de patudo resultantes, las capturas palangreras de patudo en el OPO variaron de 46 a 104 mil t, con un promedio de 76 mil t, un 90%, en promedio, de las capturas retenidas de esta especie en el EPO. Durante 1995-2009, las capturas anuales retenidas de las pesquería palangreras oscilaron entre unas 26 y 74 mil t (promedio: 46 mil t), en promedio un 41% de la captura total de patudo en el OPO (Tabla A-2a). La estimación preliminar de la captura palangrera en el OPO en 2010 es de 23 mil t (Tabla A-2a).

Se capturan pequeñas cantidades de patudo con otros tipos de arte (Tabla A-2a).

1.1.4. Atún aleta azul

En la Tabla A-5 se presentan las capturas de aleta azul del Pacífico en el Océano Pacífico entero, por bandera y arte. Los datos, obtenidos del Comité Científico Internacional sobre los Atunes y Especies Afines en el Océano Pacífico Norte (ISC), son desglosados por nación o entidad pesquera, sin tener en cuenta la región del Pacífico donde fue capturado el pescado.

En la Tabla A-2a se presentan las capturas de atún aleta azul del Pacífico en el OPO durante 1981-2010, por arte de pesca. Durante 1995-2009 la captura anual retenida de la especie en el OPO por buques cerqueros y cañeros fue en promedio 4.000 t (amplitud: 700 t a 10 mil t). La estimación preliminar de la captura retenida de aleta azul en 2010, 7,7 mil t, es 3.700 t mayor que el promedio de 1995-2009. Pequeñas cantidades de aleta azul son descartadas en el mar por buques cerqueros (Tabla A-2a).

1.1.5. Atún albacora

En la Tabla A-6 se presentan las capturas de albacora en el Océano Pacífico entero, por arte y zona (al norte y al sur de la línea ecuatorial). En la Tabla A-2a se presentan las capturas de albacora en el OPO, por arte de pesca. Una porción importante de la captura de la especie es tomada con curricán, incluido en otras artes (OTR) en la Tabla A-2a. Los datos de capturas fuero obtenidos de datos de la CIAT en el caso del OPO, y de datos compilados por la SPC en el caso del Pacífico occidental y central.

1.1.6. Otros atunes y especies afines

Los atunes aleta amarilla, barrilete, y patudo forman el componente más importante de las capturas retenidas de la flota cerquera y cañera en el OPO, pero otros atunes y especies afines, como el barrilete negro, bonito, peto, y las melvas, contribuyen a la captura general de la región. En la Tabla A-2a se presentan estimaciones de las capturas anuales retenidas y descartadas de estas especies durante 1981-2010. Las capturas incluidas en la categoría de atunes no identificados (TUN) en la Tabla A-2a contienen algunas capturas reportadas por especie (melvas o petos) junto con los atunes no identificados. La captura retenida total de estas otras especies en estas pesquerías fue de unas 6 mil toneladas en 2010, más que el promedio de 1995-2009 de unas 5 mil t (amplitud: 1.000 t a 19 mil t).

El barrilete negro es también capturado con otras artes en el OPO, principalmente en la pesca artesanal costera. El bonito es asimismo capturado en las pesquerías artesanales, y ha sido reportado como captura por buques palangreros en algunos años.

1.1.7. Peces picudos

En la Tabla A-2b se presentan datos de captura de los peces picudos (pez espada, marlín azul, negro, rayado y trompa corta, y pez vela).

En general, los delfines, tortugas marinas, ballenas tiburón, y peces pequeños son los únicos animales capturados en la pesquería de cerco que son liberados vivos. En versiones previas del presente informe, todos los peces picudos capturados en esas pesquerías son clasificados como descartados muertos. Si la gran mayoría de los individuos o especies capturados incidentalmente es descartada, la diferencia entre las capturas y los descartes no son significativas para esas especies, pero a medida que aumenta la tasa de retención de especies antes descartadas, parte de la captura incidental cambia a ser captura, y la distinción se vuelve importante. Como resultado de una revisión en 2010, esto ha sido aclarado en la Tabla A-2b con una columna adicional de captura retenida al lado de la columna de descartes.

El pez espada es capturado en el OPO con palangres a gran escala y artesanales, red de transmalle, arpón y, de vez en cuando, por buques recreacionales. La captura palangrera anual media de pez espada durante 1995-2009 fue 11 mil t, pero durante 2001-2004 unas 17 mil t. No queda claro si esto se debe a una mayor abundancia de la especie o a un aumento del esfuerzo dirigido hacia la misma.

Los demás peces picudos son capturados con palangres a gran escala y artesanales y por artes

recreacionales. Las capturas palangreras anuales medias de marlín azul y marlín rayado durante 1995-2009 fueron unas 4 mil y 2 mil t, respectivamente. Se capturan cantidades menores de otros peces picudos con palangre.

Desgraciadamente, se cuenta con muy poca información sobre las capturas recreacionales de peces picudos, pero se cree que son sustancialmente menores que las capturas comerciales de todas estas especies.

Se capturan pequeñas cantidades de peces picudos con red de cerco; algunos son retenidos, y otros son considerados descartados, aunque es posible que parte de esta captura sea descargada sin ser reportada. Se incluyen estos datos en la Tabla A-2b.

1.1.8. Otras especies

En la Tabla A-2c se presentan datos de las capturas y descartes de carángidos (jureles y salmón), dorado, elasmobranquios (tiburones y rayas) y otros peces capturados en el OPO.

En la Tabla A-2c se clasifican en retenidas o descartadas las capturas incidentales de otras especies en la pesquería de cerco. Como resultado de una revisión en 2010, se modificó la asignación de las capturas en estas categorías.

Las capturas de dorado son descargadas principalmente en puertos de América Central y del Sur. Aunque en algunos años se capturas más que 10 mil t de la especie, rara vez se informa del tipo de arte.

1.2. Distribución de las capturas de atunes

1.2.1. Capturas cerqueras

En las Figuras A-1a, A-2a, y A-3a ilustran las distribuciones anuales medias de las capturas cerqueras de aleta amarilla, barrilete y patudo, por tipo de lance, en el OPO durante 2005-2009, y en las Figuras A-1b, A-2b, y A3b estimaciones preliminares para 2010. Las capturas de aleta amarilla fueron mayores en las áreas costera frente a México y Centroamérica y en las áreas costeras frente a Baja California; fueron algo menores en las áreas costeras al sur de 10°N en lances sobre objetos flotantes y no asociados. En 2010 las capturas de barrilete no asociado fueron algo menores en las areas al norte de 10°N y en las areas costeras frente a Ecuador y Peru, con respecto las distribuciones anuales medias de 2005-2009. Se observaron capturas de barrilete algo mayors in lances sobre objetos flotantes en el area de altura ecuatorial desde aproximadamente 130°O hasta 150°O. Las capturas de patudo en 2010 fueron muy similares a la distribución annual media de las capturas durante 2005-2009, con capturas ligeramente mayores observadas en el área de altura ecuatorial entre aproximadamente 140°O y 150°O. Las capturas de patudo fueron mayores en el área ecuatorial desde 90°O hasta 110°O.

No se captura a menudo patudo al norte de aproximadamente 7°N, y las capturas de la especie han disminuido en las zonas costeras de América del Sur desde hace varios años. Con el desarrollo de la pesquería sobre plantados, arriba descrita, la importancia relativa de las zonas costeras ha disminuido, mientras que la de las zonas de altura ha aumentado. La mayoría de las capturas de patudo provienen de lances sobre plantados entre 5°N y 5°S.

1.2.2. Capturas palangreras

Las bases de datos de la CIAT contienen datos sobre las distribuciones espacial y temporal de las capturas en el OPO de las flotas palangreras de aguas lejanas de China, la República de Corea, España, Estados Unidos, Japón, Polinesia Francesa, Taipei Chino, y Vanuatu. Los atunes patudo y aleta amarilla forman la mayor parte de las capturas de la mayoría de estos buques. En la Figura A-4 se ilustra la distribución de las capturas de atunes de estas dos especies por buques de palangre de Corea, Japón, y Taipei Chino en el Océano Pacífico durante 2005-2009. Se presentan datos de la pesquería palangrera japonesa en el OPO durante 1956-2003 en los Boletines de la CIAT que describen esa pesquería.

1.3. Composición por tamaño de las capturas de atunes

1.3.1. Las pesquerías de cerco, de caña, y recreacional

Las muestras de frecuencia de talla son la fuente básica de los datos usados para estimar la composición por talla y edad de las distintas especies de peces en las descargas. Esta información es necesaria para obtener estimaciones de la composición de las poblaciones por edad, usadas para varios propósitos, entre ellos el modelado integrado que el personal ha usado en los últimos años. Los resultados de estudios de este tipo han sido descritos en diversos Boletines de la CIAT, en sus Informes Anuales de 1954 a 2002, y en sus Informes de Evaluación de Poblaciones.

Las muestras de frecuencia de talla de aleta amarilla, barrilete, patudo, aleta azul del Pacífico y, ocasionalmente, barrilete negro de las capturas de buques cerqueros, cañeros, y recreacionales en el OPO son tomadas por el personal de la CIAT en puertos de descarga en Ecuador, Estados Unidos, México, Panamá, y Venezuela. El muestreo de las capturas de aleta amarilla y barrilete fue iniciado en 1954, el de aleta azul en 1973, y el de patudo en 1975, y continúa actualmente.

En el <u>Informe Anual de la CIAT de 2000</u> y los Informes de Evaluación de Stocks 2 y 4 se describen los métodos de muestreo de las capturas de atún. En breve, se selecciona para el muestreo pescado en las bodegas de buques cerqueros y cañeros solamente si todo el pescado en la bodega fue capturado durante un solo mes, en un solo tipo de lance (delfín, objeto flotante, o no asociado), y en la misma zona de muestreo. Se clasifican estos datos por pesquería (Figura A-5), con base en las evaluaciones más recientes de las poblaciones realizadas por el personal.

En este informe se presentan datos de pescado capturado durante 2005-2010. Para cada especie, excepto el aleta azul y el barrilete negro, se presentan dos histogramas de frecuencia de talla: el primero presenta los datos por estrato (arte de pesca, tipo de lance, y zona) para 2010, y el segundo ilustra los datos combinados para cada año del período de 2005-2010. En el caso del aleta azul, se ilustran las capturas comerciales y recreacionales de 2005-2010 combinadas. En el caso del barrilete negro, los histogramas ilustran as capturas por artes comerciales durante 2005-2010. Hubo muy poca captura por buques cañeros en 2010, y no se obtuvo ninguna muestra de los mismos.

Para la evaluación de las poblaciones de aleta amarilla se definen nueve pesquerías de cerco (cuatro asociadas con objetos flotantes, tres asociadas con delfines, dos de atunes no asociados) y una de caña (Figura A-5). La última abarca todas las 13 zonas de muestreo. De las 723 bodegas muestreadas, 555 contenían aleta amarilla. En la Figura A-6a se ilustran las composiciones por talla estimadas del pescado capturado durante 2010. La mayoría de la captura de aleta amarilla fue tomada en lances asociados con delfines y en lances no asociados. La mayoría del aleta amarilla grande (>100 cm) fue capturada durante todo el año en la pesquería sobre delfines costera, durante los trimestres segundo y tercero en la pesquería asociada con delfines del norte, y durante los trimestres primero y segundo en la pesquería sobre delfines del sur. Fueron también capturados aletas amarillas grandes principalmente en los trimestres primero y segundo en la pesquería no asociada del sur. Fueron capturadas pequeñas cantidades de aleta amarilla en todas las pesquerías sobre objetos flotantes, principalmente en los trimestres primero, segundo, y cuarto.

En la Figura A-6b se ilustra la composición por talla estimada del aleta amarilla capturado por todas las pesquerías combinadas durante 2005-2010. El peso medio del aleta amarilla capturado en 2010 (9,0 kg) fue considerablemente menor que aquéllos de 2009 (15,1 kg).

Para la evaluación de las poblaciones de barrilete se definen siete pesquerías de cerco (cuatro asociadas con objetos flotantes, dos de atunes no asociados, una asociada con delfines) y una de caña (Figura A-5). Las dos últimas abarcan todas las 13 zonas de muestreo. De las 723 bodegas muestreadas, 326 contenían barrilete. En la Figura A-7a se ilustran las composiciones por talla estimadas del pescado capturado durante 2010. Fueron capturadas grandes cantidades de barrilete de entre 40 y 50 cm de talla en las pesquerías sobre objetos flotantes del norte, ecuatorial, y del sur durante el año entero, y en la pesquería sobre objetos flotantes costera durante el primer semestre. Barrilete de mayor tamaño, de entre 60 y 70 cm, fue capturado principalmente en la pesquería no asociada del sur durante los trimestres primero,

segundo, y tercero, en la pesquería sobre objetos flotantes ecuatorial durante los trimestres primero, tercero, y cuarto, y en la pesquería sobre objetos flotantes del sur durante los trimestres segundo y tercero.

En la Figura A-7b se ilustra la composición por talla estimada del barrilete capturado por todas las pesquerías combinadas durante 2005-2010. El peso medio del barrilete en 2010 (2,1 kg) es ligeramente mayor que en 2009 (2,0 kg), pero menor que aquéllos de los cuatro años previos.

Para la evaluación de las poblaciones de patudo se definen seis pesquerías de cerco (cuatro asociadas con objetos flotantes, una de atunes no asociados, una asociada con delfines) y una de caña (Figura A-5). Las tres últimas abarcan todas las 13 zonas de muestreo. De las 723 bodegas muestreadas, 163 contenían patudo. En la Figura A-8a se ilustran las composiciones por talla estimadas del pescado capturado durante 2010. En 2000 la mayor parte de la captura provino de lances sobre objetos flotantes en la zona ecuatorial, pero desde 2001 hasta 2003 provino de lances sobre objetos flotantes en la zona sur. En 2010 las pesquerías sobre objetos flotantes norte y sur capturaron cantidades casi iguales de patudo durante todo el año. Fue capturado patudo de tamaño menor, de entre 40 y 80 cm de talla, durante todo el año en las pesquerías sobre objetos flotantes del norte y del sur. Fue capturado patudo más grande (>100 cm) durante los trimestres primero, segundo. y cuarto en la pesquería sobre objetos flotantes del sur, y en el cuarto trimestre en la pesquería sobre objetos flotantes del norte

En la Figura A-8b se ilustra la composición por talla estimada del patudo capturado por todas las pesquerías combinadas durante 2005-2010. El peso medio del patudo en 2010 (5,2 kg) fue menor que en durante 2007-2009.

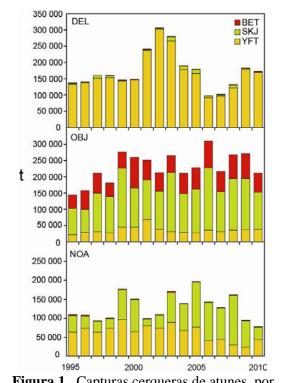
El aleta azul del Pacífico es capturado con red de cerco y con artes recreacionales frente a California y Baja California, entre 23°N y 35°N, aproximadamente, principalmente entre mayo y diciembre. Durante 2010 fue capturado entre 26°N y 32°N desde junio hasta agosto. La mayor parte de las capturas comerciales y recreacionales fue lograda en julio y agosto. Antes de 2004 se reportaban las tallas del pescado en las capturas comercial y recreacional por separado, pero durante 2004-2010 el pequeño tamaño de las muestras imposibilitó la estimación de la composición por talla por separado. Se combinaron por tanto las tallas del pescado en las capturas comercial y recreacional de aleta azul para cada año del período de 2004-2010. El peso medio del pescado capturado durante 2010 fue ligeramente mayor que aquél de 2009. En la Figura A-9 se presentan las composiciones por talla estimadas.

El barrilete negro es capturado incidentalmente por pescadores que dirigen su esfuerzo hacia los atunes aleta amarilla, barrilete, y patudo. La demanda de la especie es baja, y la mayoría de las capturas es desechada en el mar, pero a veces se retienen pequeñas cantidades, mezcladas con las especies más deseadas. En 2010 se tomaron 22 muestras de barrilete negro; en la Figura A-10 se ilustra la composición estimada por talla de la especie en cada año del período de 2005-2010.

1.3.2. La pesquería de palangre

En las Figuras A-11 y A-12 se ilustra la composición estimada por talla de las capturas de aleta amarilla y patudo por la pesquería palangrera japonesa en el OPO durante 2005-2009. El peso promedio del aleta amarilla en 2009 (43,5 kg) fue considerablemente mayor que aquél de 2008 (38,2 kg), pero en el caso del patudo disminuyó de 43,1 kg a 47,1 kg en 2008. En los Boletines de la CIAT que describen esta pesquería se presenta información sobre la composición por talla del pescado capturado en el OPO durante 1958-2003.

1.4. Capturas de atunes y bonitos, por bandera y arte


En las Tablas A-3a-e se detallan las capturas retenidas anuales de atunes y bonitos en el OPO durante 1981-2010, clasificadas por bandera y arte. Las tablas incluyen todas las capturas conocidas de atunes, compiladas de varias fuentes, entre ellas los cuadernos de bitácora de los buques, datos de observadores, registros de descargas provistos por empresas enlatadoras y otros procesadores, registros de importaciones y exportaciones, informes de los gobiernos y otras entidades, y estimaciones derivadas del programa de muestreo de especies y composición por talla. En <u>el sitio web de la CIAT</u> se presenta

información similar de años anteriores a 2001 sobre los atunes y bonitos, y datos históricos de atunes, peces picudos, tiburones, carángidos, dorado, y peces misceláneos. En la Tabla A-4 se resumen las capturas cerqueras y cañeras de atunes y bonitos en 2009 y 2010, por bandera. De las 471 mil t de atunes y bonitos capturadas en 2010, el 32% fue capturado por buques ecuatorianos, y el 26% por buques mexicanos. Otros países con capturas importantes de atunes y bonitos en el OPO incluyen Panamá (13%), Venezuela (8%), y Nicaragua (4%).

2. ESFUERZO DE PESCA

2.1. Pesca de cerco

En la Tabla A-7 se presentan estimaciones del número de lances cerqueros de cada tipo (asociados con delfines, asociados con objetos flotantes (naturales y plantados), y no asociados) en el OPO durante 1995-2010 y de las capturas retenidas de esos lances (Figura 1). Se calcularon las estimaciones para los buques de ≤363 t de capacidad de acarreo con datos de bitácora en la base de datos estadística de la CIAT, y aquéllos para los buques de >363 t de capacidad de acarreo a partir de las bases de datos de observadores de la

Figura 1. Capturas cerqueras de atunes, por especie y tipo de lance, 1995-2010.

CIAT y de los programas de observadores de la CIAT, Colombia, Ecuador, Estados Unidos, México, Nicaragua, Panamá, la Unión Europea y Venezuela. El número de lances sobre atunes asociados con objetos flotantes y no asociados fue máximo entre mediados de los años 1970 y principios de los 1980. A pesar de la oposición a la pesca de atunes asociados con delfines, y de la decisión de las enlatadoras de EE.UU. de no comprar atún capturado en viajes en los cuales se realizaron lances sobre delfines, el número de lances sobre delfines disminuyó tan sólo moderadamente a mediados de los años 1990, y en 2003 fue el mayor jamás registrado.

Hay dos tipos de objetos flotantes, los "naturales" (que también incluyen desperdicios y otros objetos artificiales), que se encuentran en el mar por casualidad, del punto de vista de los pescadores, y los que son construidos por pescadores con el propósito específico de atraer peces. Se conocen estos últimos como plantados, dispositivos agregadores de peces (DAP), o FAD (del inglés *fish-aggregating device*). Hace unos 15 años que se usan extensamente los plantados, y su importancia relativa ha aumentado en ese período, mientras que la de los objetos "naturales" ha disminuido, tal como indican los datos en la Tabla A-8.

2.2. Pesca palangrera

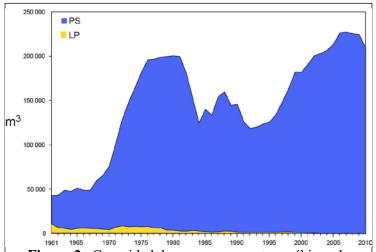
En la Tabla A-9 se presentan el esfuerzo nominal de los buques palangreros en el OPO, en miles de anzuelos, y sus capturas reportadas de las especies principales de atunes.

3. LAS FLOTAS

3.1. Las flotas de cerco y de caña

El personal de la CIAT mantiene registros detallados del arte de pesca, bandera, y capacidad de acarreo de la mayoría de los buques que pescan atunes aleta amarilla, barrilete, patudo, y/o aleta azul del Pacífico con red de cerco o caña en el OPO. La flota aquí descrita incluye buques cerqueros y cañeros que pescaron alguna de estas cuatro especies en el OPO durante el año entero o parte del mismo.

Históricamente, se usaron las estimaciones de la capacidad de acarreo de buques individuales provistas


por el armador o astillero, en toneladas de pescado, hasta que los registros de descarga indicasen que era preciso modificarlas.

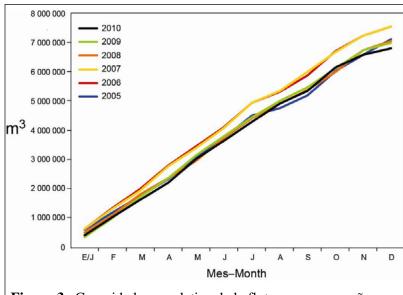
Desde 2000, el personal de la CIAT usa el volumen de bodegas, en metros cúbicos (m³), en lugar de peso, en toneladas (t), para medir la capacidad de acarreo de los buques. Ya que la densidad de carga de pescado en una bodega puede variar, medir la capacidad de acarreo en peso es subjetivo, ya que un cargamento de pescado metido en una bodega a densidad alta pesa más que uno cargado a densidad menor. El uso de volumen como medida de capacidad elimina este problema.

El personal de la CIAT comenzó a reunir datos sobre la capacidad en volumen en 1999, pero todavía no ha obtenido esta información para todos los buques. En el caso de buques para los cuales no se dispone de información fidedigna sobre el volumen de bodega, se convirtió la capacidad estimada en toneladas en metros cúbicos.

Hasta aproximadamente 1960 predominaron en la pesca atunera en el OPO los buques cañeros, que faenaban en zonas costeras y cerca de islas y bancos de alta mar. Hacia fines de los años 1950 y a principios de los 1960, la mayoría de los buques cañeros grandes fue convertida a arte de cerco, y para 1961 este arte predominaba en la pesquería del OPO. Entre 1961 y 2010, el número de buques cañeros se redujo de 93 a 3, y su volumen de bodega total disminuyó de unos 11.000 m³ a unos 255 m³. Durante el mismo período el número de cerqueros aumentó de 125 a 200, y su volumen total de bodega de unos 32.000 m³ a 210.000 m³, un promedio de unos 1.050 m³ por buque. Previamente ocurrió un pico en el número y volumen total de bodega de la flota cerquera entre mediados de los años 1970 y principios de los 1980, cuando llegó a haber 282 buques, y el volumen total de bodega alcanzó unos 195.000 m³, un promedio de unos 700 m³ por buque (Tabla A-10 y Figura 2).

Las tasas de captura en el OPO fueron bajas durante 1978-1981, debido a la concentración del esfuerzo de pesca sobre peces pequeños, y la situación se vio agravada por un evento importante de El Niño que comenzó a mediados de 1982 y persistió hasta fines de 1983, y que causó que los peces fueran menos vulnerables a la captura. Luego disminuyó el volumen total de bodegas de los buques de cerco y caña, debido al retiro de buques o a su traslado a otras zonas de pesca, principalmente el Pacífico occidental, y en 1984 alcanzó el nivel más bajo desde 1971, unos 122.000 m³. A principios de 1990 la industria enlatadora de Estados Unidos decidió no comprar más atún capturado en viajes en los que se pescaran atunes asociados con delfines. Esto llevó a que muchas embarcaciones de Estados Unidos abandonasen el OPO, y a una disminución consecuente en la flota a 117.000 m³ en 1992. Con la mayor participación de buques de otras naciones en la pesquería, el volumen total de bodega ha aumentado progresivamente

Figura 2. Capacidad de acarreo, en metros cúbicos de volumen de bodega, de las flotas de cerco y de caña en el OPO, 1961-2010


desde 1992, y en 2010 fue de unos 210 mil m³.

En las Tablas A-11a y A-11b se presentan los datos finales de 2009 y preliminares de 2010 del número y volumen total de bodega de los buques cerqueros y cañeros que pescaron atunes en el OPO. En 2010 predominaron las flotas de Ecuador y México, con el 29% y 22%, respectivamente, del volumen de bodega total, seguidos por Panamá (16%), Venezuela (11%), Colombia (7%), España (5%), El Salvador y Nicaragua (4 y 3%, respectivamente), y Guatemala y Vanuatu (2%).

En la Figura 3 se compara la capacidad acumulativa en el mar durante 2010 con

los cinco años anteriores.

En la Tabla A-12 se presentan los mensuales valores mínimos, y máximos del volumen total de bodega en el mar (VEM), en miles de m³, de los buques cerqueros y cañeros que pescaron atunes en el OPO durante 2000-2009, junto con los valores de 2010. Los valores mensuales son los promedios de las estimaciones de la VEM calculadas semanalmente por el personal de la CIAT. La pesca fue reglamentada en algunos de los últimos cuatro meses del año durante 1998-2010, por lo que los valores de la VEM de septiembrediciembre de 2010 no comparables con los valores medios

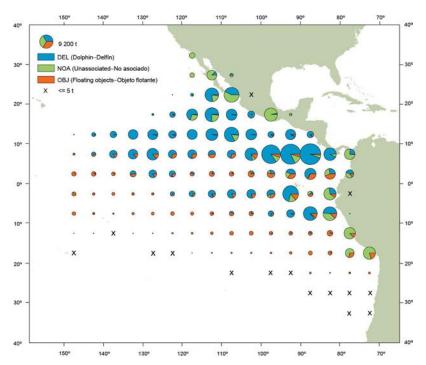
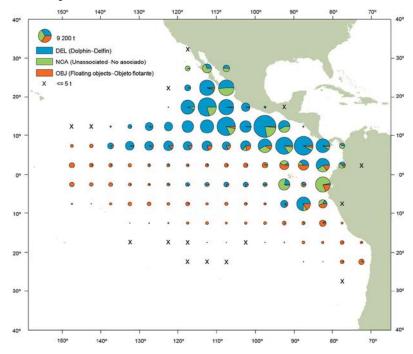


Figura 3. Capacidad acumulativa de la flota cerquera y cañera en el mar, por mes, 2005-2010


del período correspondiente durante 1998-2010. Durante 2000-2009 y 2010 el valor medio del VEM fue 129 mil m³ (61% de la capacidad total) y 132 mil m³ (63% de la capacidad total), respectivamente.

3.2. Otras flotas del OPO

El Registro Regional de Buques de la CIAT, disponible en el <u>sitio web de la Comisión</u>, contiene información sobre otros tipos de buques que pescan atunes en el OPO. El Registro es incompleto para buques pequeños. En algunos casos, particularmente con respecto a los buques palangreros grandes, el Registro Regional contiene información de buques que están autorizados para pescar no sólo en el OPO, sino también en otros océanos, y que posiblemente no hayan pescado en el OPO en 2010, o jamás.

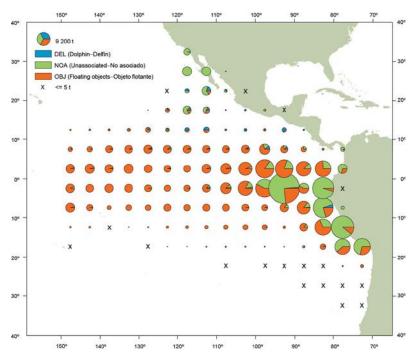


FIGURE A-1a. Average annual distributions of the purse-seine catches of yellowfin, by set type, 2005-2009. The sizes of the circles are proportional to the amounts of yellowfin caught in those 5° by 5° areas. **FIGURA A-1a.** Distribución media anual de las capturas cerqueras de aleta amarilla, por tipo de lance, 2005-2009. El tamaño de cada círculo es proporcional a la cantidad de aleta amarilla capturado en la cuadrícula de 5° x 5° correspondiente.

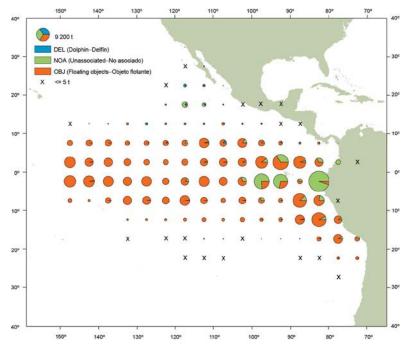


FIGURE A-1b. Annual distributions of the purse-seine catches of yellowfin, by set type, 2010. The sizes of the circles are proportional to the amounts of yellowfin caught in those 5° by 5° areas. **FIGURA A-1b.** Distribución anual de las capturas cerqueras de aleta amarilla, por tipo de lance, 2010. El tamaño de cada círculo es proporcional a la cantidad de aleta amarilla capturado en la cuadrícula de 5°

x 5° correspondiente.

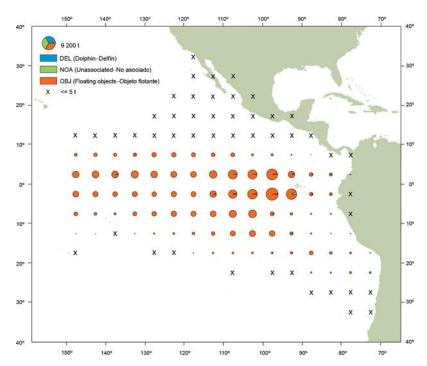


FIGURE A-2a. Average annual distributions of the purse-seine catches of skipjack, by set type, 2005-2009. The sizes of the circles are proportional to the amounts of skipjack caught in those 5° by 5° areas. **FIGURA A-2a.** Distribución media anual de las capturas cerqueras de barrilete, por tipo de lance, 2005-2009. El tamaño de cada círculo es proporcional a la cantidad de barrilete capturado en la cuadrícula de 5° x 5° correspondiente.

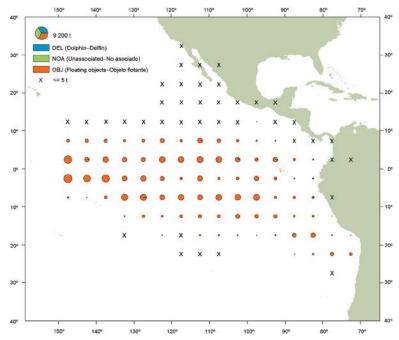


FIGURE A-2b. Annual distributions of the purse-seine catches of skipjack, by set type, 2010. The sizes of the circles are proportional to the amounts of skipjack caught in those 5° by 5° areas.

FIGURA A-2b. Distribución anual de las capturas cerqueras de barrilete, por tipo de lance, 2010. El tamaño de cada círculo es proporcional a la cantidad de barrilete capturado en la cuadrícula de 5° x 5° correspondiente.

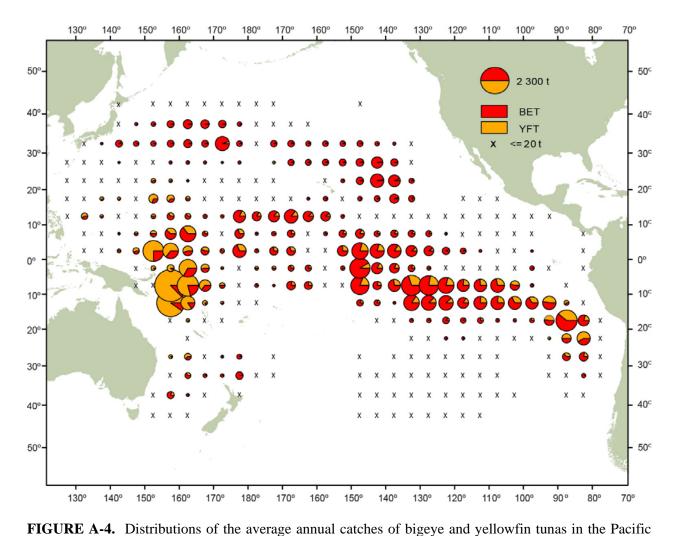


FIGURE A-3a. Average annual distributions of the purse-seine catches of bigeye, by set type, 2005-2009. The sizes of the circles are proportional to the amounts of bigeye caught in those 5° by 5° areas. **FIGURA A-3a.** Distribución media anual de las capturas cerqueras de patudo, por tipo de lance, 2005-2009. El tamaño de cada círculo es proporcional a la cantidad de patudo capturado en la cuadrícula de 5° x 5° correspondiente.

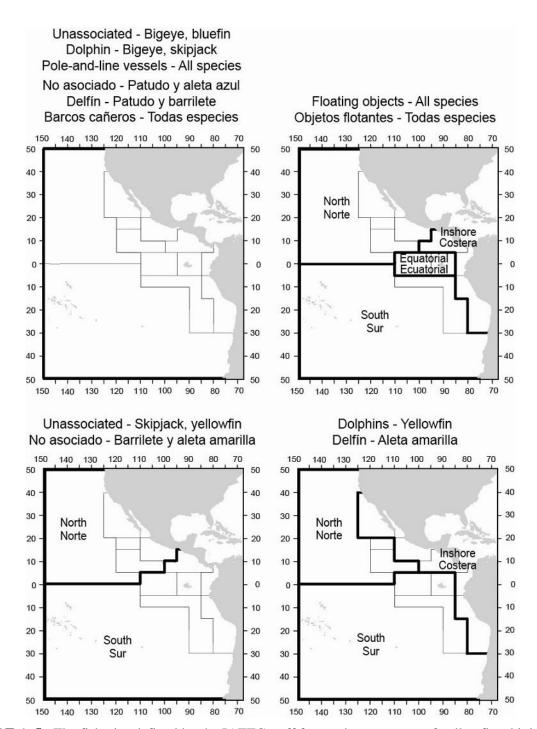

FIGURE A-3b. Annual distributions of the purse-seine catches of bigeye, by set type, 2010. The sizes of the circles are proportional to the amounts of bigeye caught in those 5° by 5° areas.

FIGURA A-3b. Distribución anual de las capturas cerqueras de patudo, por tipo de lance, 2010. El tamaño de cada círculo es proporcional a la cantidad de patudo capturado en la cuadrícula de 5° x 5° correspondiente.

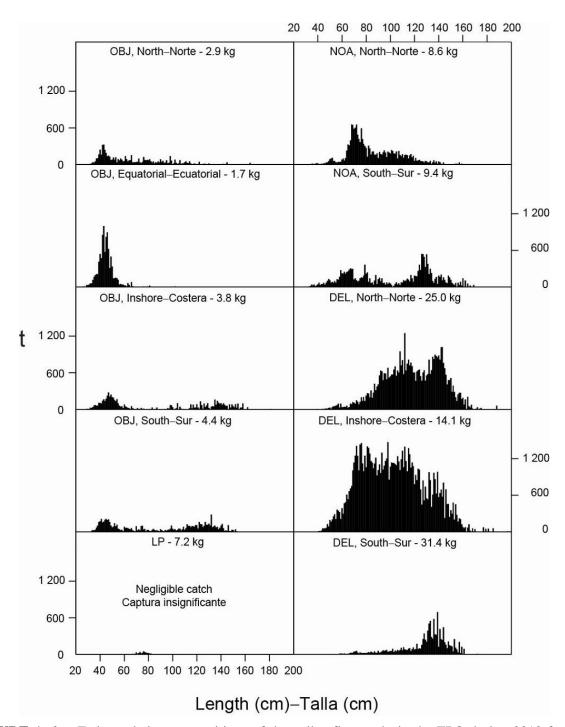

Ocean, in metric tons, by Chinese Taipei, Japanese and Korean longline vessels, 2005-2009. The sizes of the circles are proportional to the amounts of bigeye and yellowfin caught in those 5° by 5° areas.

FIGURA A-4. Distribución de las capturas anuales medias de atunes patudo y aleta amarilla en el Océano Pacifico, en toneladas métricas, por buques palangreros de Corea, Japón y Taipei Chino 2005-2009. El tamaño de cada círculo es proporcional a la cantidad de patudo y aleta amarilla capturado en la cuadrícula de 5° x 5° correspondiente.

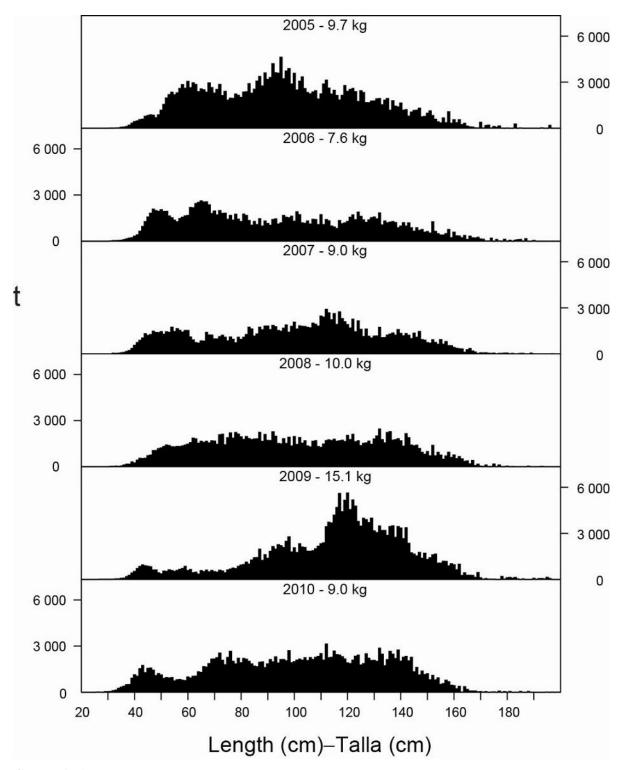

FIGURE A-5. The fisheries defined by the IATTC staff for stock assessment of yellowfin, skipjack, and bigeye in the EPO. The thin lines indicate the boundaries of the 13 length-frequency sampling areas, and the bold lines the boundaries of the fisheries.

FIGURA A-5. Las pesquerías definidas por el personal de la CIAT para la evaluación de las poblaciones de atún aleta amarilla, barrilete, y patudo en el OPO. Las líneas delgadas indican los límites de las 13 zonas de muestreo de frecuencia de tallas, y las líneas gruesas los límites de las pesquerías.

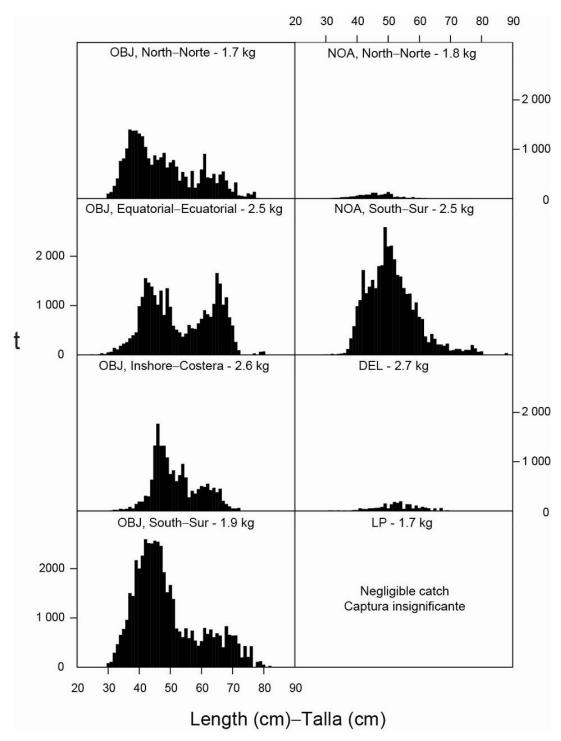

FIGURE A-6a. Estimated size compositions of the yellowfin caught in the EPO during 2010 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-6a. Composición por tallas estimada del aleta amarilla capturado en el OPO durante 2010 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

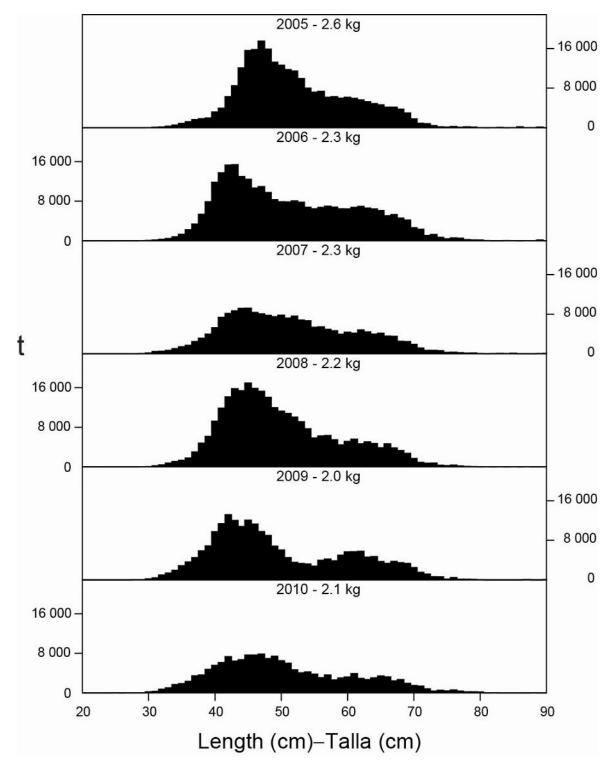

FIGURE A-6b. Estimated size compositions of the yellowfin caught by purse-seine and pole-and-line vessels in the EPO during 2005-2010. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-6b. Composición por tallas estimada del aleta amarilla capturado por buques cerqueros y cañeros en el OPO durante 2005-2010. En cada recuadro se detalla el peso promedio de los peces en las muestras.

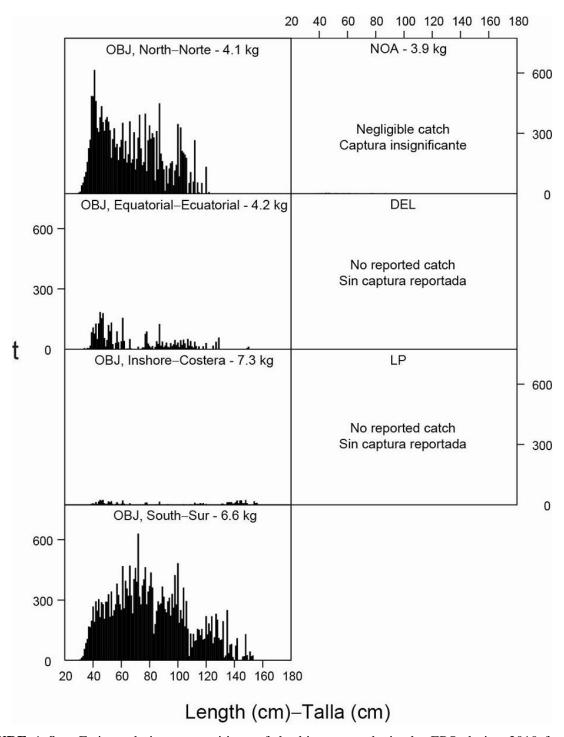

FIGURE A-7a. Estimated size compositions of the skipjack caught in the EPO during 2010 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-7a. Composición por tallas estimada del barrilete capturado en el OPO durante 2010 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

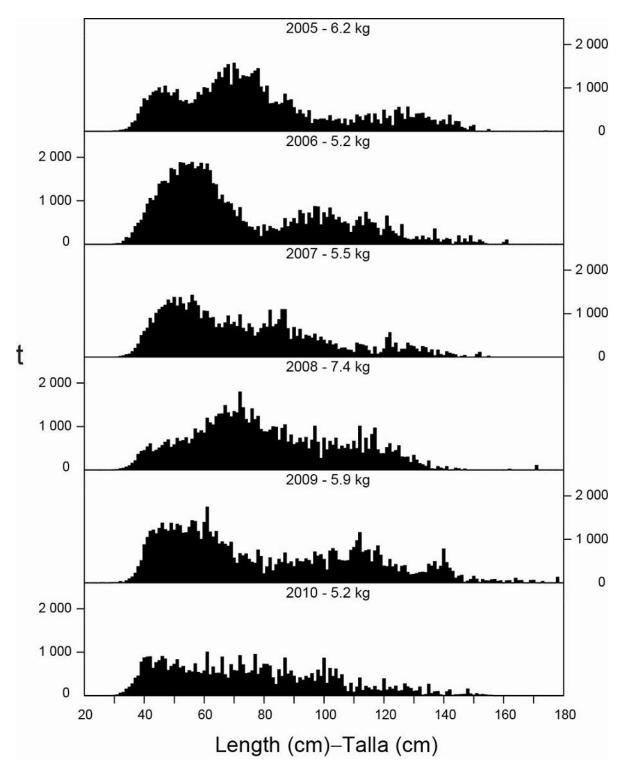

FIGURE A-7b. Estimated size compositions of the skipjack caught by purse-seine and pole-and-line vessels in the EPO during 2005-2010. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-7b. Composición por tallas estimada del barrilete capturado por buques cerqueros y cañeros en el OPO durante 2005-2010. En cada recuadro se detalla el peso promedio de los peces en las muestras.

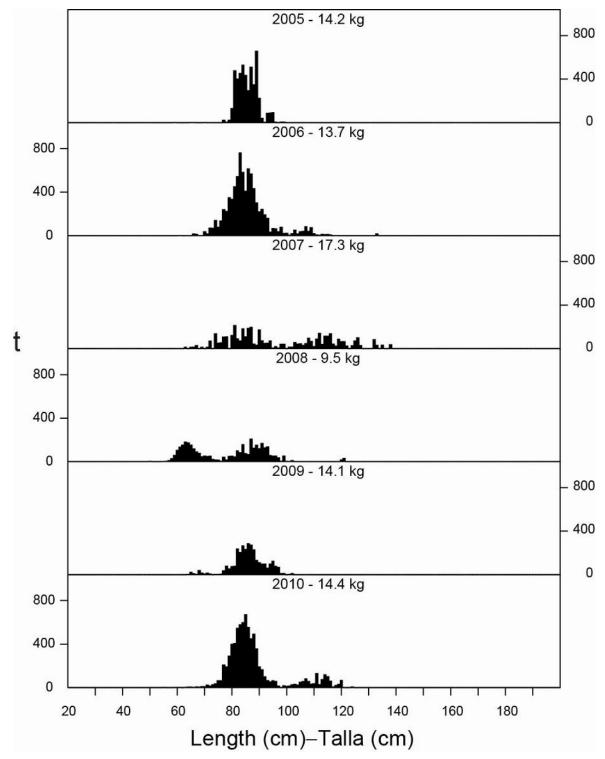


FIGURE A-8a. Estimated size compositions of the bigeye caught in the EPO during 2010 for each fishery designated in Figure A-5. The average weights of the fish in the samples are given at the tops of the panels.

FIGURA A-8a. Composición por tallas estimada del patudo capturado e en el OPO durante 2010 en cada pesquería ilustrada en la Figura A-5. En cada recuadro se detalla el peso promedio de los peces en las muestras.

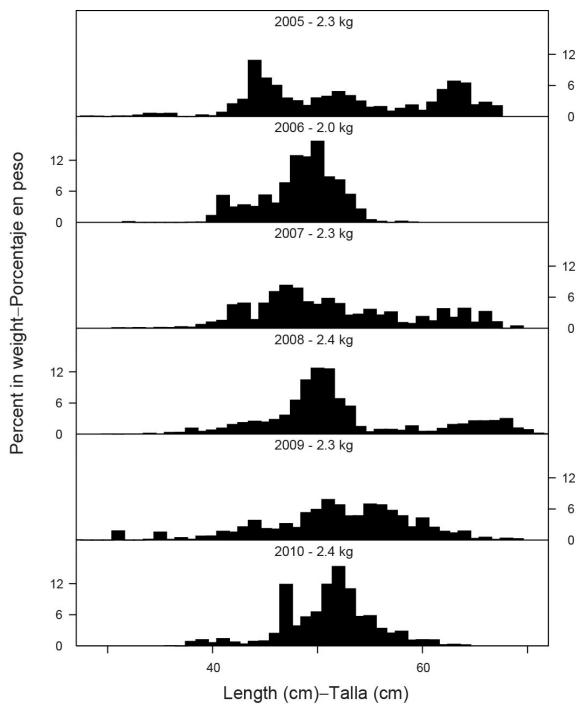


FIGURE A-8b. Estimated size compositions of the bigeye caught by purse-seine vessels in the EPO during 2005-2010. The average weights of the fish in the samples are given at the tops of the panels. **FIGURA A-8b.** Composición por tallas estimada del patudo capturado por buques cerqueros en el OPO durante 2005-2010. En cada recuadro se detalla el peso promedio de los peces en las muestras.

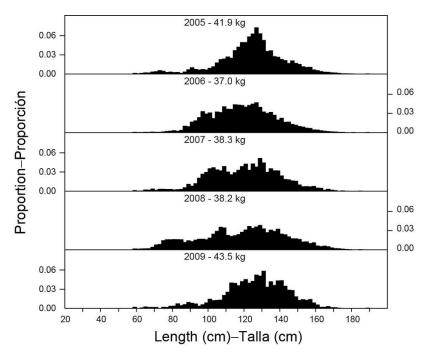


FIGURE A-9. Estimated catches of Pacific bluefin by purse-seine and recreational gear in the EPO during 2005-2010. The values at the tops of the panels are the average weights. **FIGURA A-9.** Captura estimada de aleta azul del Pacífico con arte de cerco y deportiva en el OPO

durante 2005-2010. El valor en cada recuadro representa el peso promedio.

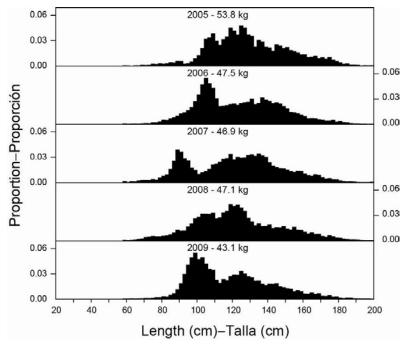


FIGURE A-10. Estimated size compositions of the catches of black skipjack by purse-seine vessels in the EPO during 2005-2010. The values at the tops of the panels are the average weights. **FIGURA A-10.** Composición por tallas estimada del barrilete negro capturado por buques cerqueros en el OPO durante 2005-2010. El valor en cada recuadro representa el peso promedio.

FIGURE A-11. Estimated size compositions of the catches of yellowfin tuna by the Japanese longline fishery in the EPO, 2005-2009.

FIGURA A-11. Composición por tallas estimada de las capturas de atún aleta amarilla por la pesquería palangrera japonesa en el OPO, 2005-2009.

FIGURE A-12. Estimated size compositions of the catches of bigeye tuna by the Japanese longline fishery in the EPO, 2005-2009.

FIGURA A-12. Composición por tallas estimada de las capturas de atún patudo por la pesquería palangrera japonesa en el OPO, 2005-2009.

TABLE A-1. Annual catches of yellowfin, skipjack, and bigeye, by all types of gear combined, in the Pacific Ocean. The EPO totals for 1993-2010 include discards from purse-seine vessels with carrying capacities greater than 363 t.

TABLA A-1. Capturas anuales de aleta amarilla, barrilete, y patudo, por todas las artes combinadas, en el Océano Pacífico. Los totales del OPO de 1993-2010 incluyen los descartes de buques cerqueros de más de 363 t de capacidad de acarreo.

		Yellowfir ta amar			Skipjack Barrilete			Bigeye Patudo			Total	
	EPO	WCPO	Total	EPO	WCPO	Total	EPO	WCPO	Total	EPO	WCPO	Total
1981	178,510		404,449		438,259	564,260	68,344		121,690		717,544	
1982	127,534		348,598		490,242	594,911	60,349		119,650		770,607	1,063,159
1983	99,680		356,840		683,684	745,659	64,694				1,000,740	
1984	149,465	256,314	405,779	63,611	762,090	825,701	55,268				1,083,084	
1985	225,939	259,544	485,483	52,002	603,624	655,626	72,398	68,706	141,104	350,339	931,874	1,282,213
1986	286,071	250,723	536,794	67,745	755,402	823,147	105,185	63,777	168,962	459,001	1,069,902	1,528,903
1987	286,164	303,613	589,777	66,466	687,880	754,346	101,347	79,269	180,616	453,977	1,070,762	1,524,739
1988	296,428	263,108	559,536	92,127	849,154	941,281	74,313	68,447	142,760	462,868	1,180,709	1,643,577
1989	299,436	313,866	613,302	98,921	823,468	922,389	72,994	77,237	150,231	471,351	1,214,571	1,685,922
1990	301,522	340,987	642,509	77,107	901,482	978,589	104,851	89,060	193,911	483,480	1,331,529	1,815,009
1991	265,970	372,123	638,093	65,890	1,140,243	1,206,133	109,121	71,297	180,418	440,981	1,583,663	2,024,644
1992	252,514	376,684	629,198	87,294	1,040,180	1,127,474	92,000	88,384	180,384	431,808	1,505,248	1,937,056
1993	256,244	367,076	623,320	100,517	937,322	1,037,839	82,843	77,506	160,349	439,604	1,381,904	1,821,508
1994	248,073	371,038	619,111	84,671	1,043,691	1,128,362	109,331	86,943	196,274	442,075	1,501,672	1,943,747
1995	244,639	355,809	600,448	150,661	1,077,503	1,228,164	108,210	79,933	188,143	503,510	1,513,245	2,016,755
1996	266,928	287,116	554,044	132,344	1,054,137	1,186,481	114,706	80,314	195,020	513,978	1,421,567	1,935,545
1997	277,575	411,630	689,205	188,285	990,910	1,179,195	122,274	110,399	232,673	588,134	1,512,939	2,101,073
1998	280,607	424,927	705,534	165,490	1,341,276	1,506,766	93,954	,	203,928		i i	2,416,228
1999	304,638	,	ĺ	,	1,208,363		93,078				1,686,437	
2000	286,865				1,243,796						1,762,942	
2001	425,008				1,139,063						1,649,047	
2002	443,458				1,315,513						1,818,960	
2003 2004	416,018				1,304,160						1,831,420	
2004	296,856				1,400,828						1,909,210	
2005	286,599				1,489,284						2,068,759	
2007	179,557				1,558,296						2,103,180	
2007	181,920	,	ĺ	,	1,670,954		94,461				2,237,682	
2009	194,629				1,633,878			,	, i	, i	2,306,615	· · ·
2010	245,963				1,817,778						2,354,306	
2010	256,126	464,020	/20,146	150,661	1,689,004	1,839,665	81,391	97,687	179,078	488,178	2,250,711	2,738,889

TABLE A-2a. Estimated retained catches (Ret.), by gear type, and estimated discards (Dis.), by purse-seine vessels with carrying capacities greater than 363 t only, of tunas and bonitos, in metric tons, in the EPO. The purse-seine and pole-and-line data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimate and are preliminary. The data for 2009-2010 are preliminary.

TABLA A-2a. Estimaciones de las capturas retenidas (Ret.), por arte de pesca, y de los descartes (Dis.), por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de atunes y bonitos, en toneladas métricas, en el OPO. Los datos de los atunes aleta amarilla, barrilete, y patudo de las pesquerías cerquera y cañera fueron ajustados a la estimación de composición por especie, y son preliminares. Los datos de 2009-2010 son preliminares.

	Ye	ellowf	in—	Aleta	amari	lla		Skip	jack-	—Ba	rrilete			В	igeve	-Pat	udo	
	PS				OTR		P				OTR		P				OTR	
	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total
1981	168,234	-	1,477	7,999	800	178,510	119,165	-	5,906	20	910	126,001	14,921	-	-	53,416	7	68,344
1982	114,755	-	1,538	10,961	280	127,534	100,499	-	3,760	28	382	104,669	6,939	-	42	53,365	3	60,349
1983	83,929	-	4,007	10,895	849	99,680	56,851	-	4,387	28	709	61,975	4,575	-	39	60,043	37	64,694
1984	135,785	-	2,991	10,345	344	149,465	59,859	-	2,884	32	836	63,611	8,861	-	2	46,394	11	55,268
1985	211,459	-	1,070	13,198	212	225,939	50,829	-	946	44	183	52,002	6,056	-	2	66,325	15	72,398
1986	260,512	-	2,537	22,808	214	286,071	65,634	-	1,921	58	132	67,745	2,686	-	-	102,425	74	105,185
1987	262,008	-	5,107	18,911	138	286,164	64,019	-	2,233	37	177	66,466	1,177	-	-	100,121	49	101,347
1988	277,293	-	3,723	14,660	752	296,428	87,113	-	4,325	26	663	92,127	1,535	-	5	72,758	15	74,313
1989	277,996	-	4,145	17,032	263	299,436	94,934	-	2,940	28	1,019	98,921	2,030	-	-	70,963	1	72,994
1990	263,253	-	2,676	34,633	960	301,522	74,369	-	823	41	1,874	77,107	5,921	-	-	98,871	59	104,851
1991	231,257	-	2,856	30,899	958	265,970	62,228	-	1,717	36	1,909	65,890	4,870	-	31	104,195	25	109,121
1992	228,121	-	3,789	18,646	1,958	252,514	84,283	-	1,957	24	1,030	87,294	7,179	-	-	84,808	13	92,000
1993	219,492	4,758	4,951	24,009	3,034	256,244	83,830	10,598	3,772	61	2,256	100,517	9,657	653	-	72,498	35	82,843
1994	208,408	4,527	3,625	30,026	1,487	248,073	70,126	10,501	3,240	73	731	84,671	34,899	2,266	-	71,360	806	109,331
1995	215,434	5,275	1,268	20,596	2,066	244,639	127,047	16,373	5,253	77	1,911	150,661	45,321	3,251	-	58,269	1,369	108,210
1996	238,607	6,312	3,762	16,608	1,639	266,928	103,973	24,503	2,555	52	1,261	132,344	61,311	5,689	-	46,958	748	114,706
1997	244,878	5,516	4,418	22,163	600	277,575	153,456	31,338	3,260	135	96	188,285	64,272	5,402	-	52,580	20	122,274
1998	253,959	4,698	5,085	15,336	1,529	280,607	140,631	22,644	1,684	294	237	165,490	44,129	2,822	-	46,375	628	93,954
1999	281,920	6,547	1,783	11,682	2,706	304,638	261,565	26,046	2,044	201	1,393	291,249	51,158	4,932	-	36,450	538	93,078
2000	253,263	6,207	2,431	23,855	1,109	286,865	205,647	24,508	231	68	67	230,521	95,282	5,417	-	47,605	253	148,557
2001	383,936	7,028	3,916	29,608	520	425,008	143,165	12,815	448	1,214	34	157,676	60,518	1,254	-	68,755	19	130,546
2002	412,286	4,140	950	25,531	551	443,458	153,546	12,506	616	261	119	167,048	57,421	949	-	74,424	12	132,806
2003	383,279	5,950	470	25,174	1,145	416,018	273,968	22,453	638	634	2,777	300,470	53,052	2,326	-	59,776	21	115,175
2004	272,557	3,009	1,884	18,779	627	296,856	197,824	17,182	528	713	1,105	217,352	65,471	1,749	-	43,483	194	110,897
2005	268,101	2,929	1,822	11,895	1,852	286,599	263,229	17,228	1,299	231	1,780	283,767	67,895	1,952	-	41,432	25	111,304
2006	166,631	1,665	686	9,117	1,458	179,557	296,268	12,403	435	224	986	310,316	83,838	2,385	-	33,708	40	119,971
2007	170,016	1,946	894	7,625	1,439	181,920	208,295	7,159	276	107	1,065	216,902	63,450	1,039	-	29,928	44	94,461
2008	185,057	1,019	814	6,798	941	194,629	296,603	9,166	499	54	1,163	307,485	75,028	2,287	-	25,772	28	103,115
2009	236,756	1,482	710	6,028	987	245,963	230,523	6,903	151	175	1,111	238,863	76,799	1,104	-	30,088	15	108,006
2010	251,009	1,115	460	3,339	203	256,126	147,192	3,365	47	56	1	150,661	57,752	646	-	22,993	-	81,391

TABLE A-2a. (continued)
TABLA A-2a. (continuación)

				c blue						oacore						skipja		
			azu	del P	acífico				All	oacora					arril	ete ne	0	
	P	S	LP	LL	OTR	Total	P	S	LP	LL	OTR	Total	P	S	LP	LL	OTR	Total
	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LP	LL	+ NK	Total	Ret.	Dis.	LF	LL	+ NK	Total
1981	1,085	-	-	4	7	1,096	99	-	608	7,275	12,301	20,283	1,908	-	3	-	-	1,911
1982	3,145	0	-	7	6	3,158	355	-	198	8,407	3,562	12,522	1,338	-	-	-	-	1,338
1983	836	0	-	2	38	876	7	-	449	7,433	7,840	15,729	1,222	-	-	-	13	1,235
1984	839	0	-	3	51	893	3,910	-	1,441	6,712	9,794	21,857	662	-	-	-	3	665
1985	3,996	0	-	1	77	4,074	42	-	877	7,268	6,654	14,841	288	-	-	-	7	295
1986	5,040	0	-	1	64	5,105	47	-	86	6,450	4,701	11,284	569	-	-	-	18	587
1987	980	0	-	3	88	1,071	1	-	320	9,994	2,662	12,977	571	-	-	-	2	573
1988	1,379	0	-	2	52	1,433	17	-	271	9,934	5,549	15,771	956	-	-	-	311	1,267
1989	1,103	0	5	4	91	1,203	1	-	21	6,784	2,695	9,501	801	-	-	-	-	801
1990	1,430	0	61	12	103	1,606	39	-	170	6,536	4,105	10,850	787	-	-	-	4	791
1991	419	0	-	5	55	479	0	-	834	7,893	2,754	11,481	421	-	-	-	25	446
1992	1,928	0	-	21	147	2,096	0	-	255	17,080	5,740	23,075	105	-	-	3	-	108
1993	580	0	-	11	325	916	0	-	1	11,194	4,410	15,605	104	4,144	-	31	-	4,279
1994	969	0	-	12	111	1,092	0	-	85	10,390	10,154	20,629	188	854	-	40	-	1,082
1995	659	0	-	25	300	984	0	-	465	6,185	7,427	14,077	203	1,448	-	-	-	1,651
1996	8,333	0	-	19	84	8,436	11	-	72	7,631	8,398	16,112	704	2,304	-	12	-	3,020
1997	2,607	3	2	14	245	2,871	1	-	59	9,678	7,540	17,278	100	2,512	-	11	-	2,623
1998	1,772	0	-	94	525	2,391	42	-	81	12,635	13,158	25,916	489	1,876	39	-	-	2,404
1999	2,553	54	5	152	564	3,328	47	-	227	11,633	14,510	26,417	171	3,413	-	-	-	3,584
2000	3,712	0	61	46	378	4,197	71	-	86	9,663	13,453	23,273	293	1,995	-	-	-	2,288
2001	1,155	3	1	148	401	1,708	3	-	157	19,410	13,727	33,297	2,258	1,019	-	-	-	3,277
2002	1,758	6	3	71	653	2,491	31	-	381	15,289	14,433	30,134	1,459	2,283	8	-	-	3,750
2003	3,233	0	3	87	404	3,727	34	-	59	24,901	20,397	45,391	433	1,535	6	13	117	2,104
2004	8,880	19	-	16	62	8,977	105	-	126	18,444	22,011	40,686	884	387	-	27	862	2,160
2005	4,743	15	-	-	85	4,843	2	-	66	8,861	15,649	24,578	1,472	2,124	-	-	22	3,618
2006	9,806	0	-	-	101	9,907	109	-	1	10,612	18,966	29,688	1,999	1,977	-	-	-	3,976
2007	4,189	0	-	-	16	4,205	187	-	21	8,934	19,296	28,438	2,307	1,625	-	-	55	3,987
2008	4,392	14	15	-	103	4,524	49	-	1,050	5,994	16,567	23,660	3,624	2,251	-	-	8	5,883
2009	3,378	24	20	0	207	3,629	51	2	2,084	6,969	17,080	26,186	4,368	1,020	-	-	-	5,388
2010	7,746	0	*	*	111	7,857	25	-	*	1,233	6,497	7,755	3,191	1,087	*	*	*	4,278

TABLE A-2a. (continued)
TABLA A-2a. (continuación)

			Bo	nitos						fied tun					Т	otal		
-			D 0.	11103					s no	identif	1			~		oui		
•	PS		LP	LL	OTR	Total	P	~	LP	LL	OTR + NK	Total	P	_	LP	LL	OTR	Total
1001		Dis.			+ NK		Ret.	Dis.			•		Ret.	Dis.		-0	+ NK	
1981	5,690	-	27	-	4,609	10,326	213	-	3	-	1,109	1,325	311,315	-	8,024	68,714	19,743	407,796
1982	2,122	-	0	-	6,776	8,898	47	-	-	-	382	429	229,200	-	5,538	72,768	11,391	318,897
1983	3,827	-	2	-	7,291	11,120	60	-	-	-	4,711	4,771	151,307	-	8,884	78,401	21,488	260,080
1984	3,514	-	0	-	7,291	10,805	6	-	-	-	2,524	2,530	213,436	-	7,318	63,486	20,854	305,094
1985	3,599	-	5	-	7,869	11,473	19	-	-	-	678	697	276,288	-	2,900	86,836	15,695	381,719
1986	232	-	258	-	1,889	2,379	177	-	4	-	986	1,167	334,897	-	4,806	131,742	8,078	479,523
1987	3,195	-	121	-	1,782	5,098	481	-	-	-	2,043	2,524	332,432	-	7,781	129,066	6,941	476,220
1988	8,811	-	739	-	947	10,497	79	-	-	-	2,939	3,018	377,183	-	9,063	97,380	11,228	494,854
1989	11,278	-	818	-	465	12,561	36	-	-	-	626	662	388,179	-	7,929	94,811	5,160	496,079
1990	13,641	-	215	-	371	14,227	200	-	-	3	692	895	359,640	-	3,945	140,096	8,168	511,849
1991	1,207	-	82	-	242	1,531	4	-	-	29	192	225	300,406	-	5,520	143,057	6,160	455,143
1992	977	-	-	-	318	1,295	24	-	-	27	1,071	1,122	322,617	-	6,001	120,609	10,277	459,504
1993	599	12	1	-	436	1,048	9	2,013	-	10	4,082	6,114	314,271	22,178	8,725	107,814	14,578	467,566
1994	8,331	147	362	-	185	9,025	9	497	-	1	464	971	322,930	18,792	7,312	111,902	13,938	474,874
1995	7,929	55	81	-	54	8,119	11	626	-	-	1,004	1,641	396,604	27,028	7,067	85,152	14,131	529,982
1996	647	1	7	-	16	671	37	1,028	-	-	1,038	2,103	413,623	39,837	6,396	71,280	13,184	544,320
1997	1,097	4	8	-	34	1,143	71	3,383	-	7	1,437	4,898	466,482	48,158	7,747	84,588	9,972	616,947
1998	1,330	4	7	1	588	1,929	13	1,233	-	24	18,158	19,428	442,365	33,277	6,896	74,758	34,823	592,119
1999	1,719	-		24	369	2,112	27	3,092	-	2,113	4,279	9,511	599,160	44,084	4,059	62,255	24,359	733,917
2000	636	-	-	75	56	767	190	1,410	-	1,992	1,468	5,060	559,094	39,537	2,809	83,304	16,784	701,528
2001	17	-	0	34	19	70	191	679	-	2,448	55	3,373	591,243	22,798	4,522	121,617	14,775	754,955
2002	-	-	-	-	1	1	576	1,863	-	482	1,422	4,343	627,077	21,747	1,958	116,058	17,191	784,031
2003	-	0	1	-	25	26	80	1,238	-	215	750	2,283	714,079	33,502	1,177	110,800	25,636	885,194
2004	15	35	1	8	3	62	256	973	-	349	258	1,836	545,992	23,354	2,539	81,819	25,122	678,826
2005	313	18	0	-	11	342	190	1,922	-	363	427	2,902	605,945	26,188	3,187	62,782	19,851	717,953
2006	3,507	80	12	-	3	3,602	49	1,910	-	21	193	2,173	562,207	20,420	1,134	53,682	21,747	659,190
2007	15,906	628	107	-	-	16,641	600	1,221	-	2,196	302	4,319	464,950	13,618	1,298	48,790	22,217	550,873
2008	7,874	37	9	-	26	7,946	136	1,381	1	727	883	3,128	572,763	16,155	2,388	39,345	19,719	650,370
2009	9,561	15	246	0	256	10,078	158	469	-	2,071	74	2,772	561,594	11,019	3,211	45,331	19,730	640,885
2010	2,810	25	4	*	*	2,839	125	747	*	*	*	872	469,850	6,985	511	27,621	6,812	511,779

TABLE A-2b. Estimated retained catches, by gear type, and estimated discards, by purse-seine vessels with carrying capacities greater than 363 t only, of billfishes, in metric tons, in the EPO. Data for 2009-2010 are preliminary. PS dis. = discards by purse-seine vessels.

TABLA A-2b. Estimaciones de las capturas retenidas, por arte de pesca, y de los descartes, por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de peces picudos, en toneladas métricas, en el OPO. Los datos de 2009-2010 son preliminares. PS dis. = descartes por buques cerqueros.

	S	wordfi	sh—Pe	z espa	da	Blue	e marli	n—M	arlín a	azul	Black	. marli	n—M	arlín ı	negro	Str	riped m r	narlin- ayado		lín
	P	S	LL	OTR	Total	P	S	LL	OTR	Total	P	S	LL	OTR	Total	P	S	LL	OTR	Total
	Ret.	Dis.	DD	OIK		Ret.	Dis.	LL	OIK	Total	Ret.	Dis.	LL	OIK	Total	Ret.	Dis.	LL	OIK	Total
1981	-	-	3,070	1,134	4,204	-	-	4,476	-	4,476	-	-	247	-	247	-	-	4,876	-	4,876
1982	-		2,604	1,551	4,155	-	-	4,745	-	4,745	-	-	213	-	213	-	-	4,711	-	4,711
1983	-		3,341	2,338	5,679	-	-	4,459	-	4,459	-	-	240	-	240	-	-	4,472	-	4,472
1984	-	-	2,752	3,336	6,088	-	-	5,197	-	5,197	-	-	248	-	248	-	-	2,662	-	2,662
1985	-	-	1,885	3,768	5,653	-	-	3,588	-	3,588	-	-	180	-	180	-	-	1,599	-	1,599
1986	-		3,286	3,294	6,580	-	-	5,278	-	5,278	-	-	297	-	297	-	-	3,540	-	3,540
1987	-	-	4,676	3,740	8,416	-	-	7,282	-	7,282	-	-	358	-	358	-	-	7,647	-	7,647
1988	-		4,916	5,642	10,558	-	-	5,662	-	5,662	-	-	288	-	288	-	-	5,283	-	5,283
1989	-	-	5,202	6,072	11,274	-	-	5,392	-	5,392	-	-	193	-	193	-	-	3,473	-	3,473
1990	-	-	5,807	5,066	10,873	-	-	5,540	-	5,540	-	-	223	-	223	-	-	3,260	333	3,593
1991	-	17	10,671	4,307	14,995	-	69	6,719	-	6,788	-	58	246	-	304	-	76	2,993	409	3,478
1992	-	4	9,820	4,267	14,091	-	52	6,627	-	6,679	-	95	228	-	323	-	69	3,054	239	3,362
1993	3	1	6,187	4,414	10,605	84	20	6,571	-	6,675	57	31	217	-	305	47	20	3,575	259	3,902
1994	1	0	4,990	3,822	8,814	69	15	9,027	-	9,111	39	23	256	-	318	20	9	3,396	257	3,681
1995	3	1	4,495	2,974	7,473	70	16	7,288	-	7,375	43	23	158	-	224	18	8	3,249	296	3,571
1996	1	0	7,071	2,486	9,558	62	15	3,596	-	3,672	46	24	99	-	169	20	9	3,218	430	3,677
1997	2	1	10,580	1,781	12,365	126	15	5,915	-	6,056	71	22	153	-	246	28	3	4,473	329	4,832
1998	3	0	9,800	3,246	13,049	130	20	4,855	-	5,006	72	28	168	-	268	20	3	3,558	509	4,090
1999	2	0	7,569	1,965	9,536	181	38	3,690	-	3,909	83	42	94	-	219	26	11	2,621	376	3,034
2000	3	0	8,930	2,383	11,316	120	23	3,634	ı	3,777	67	21	105	-	193	17	3	1,889	404	2,312
2001	3	1	16,007	1,964	17,975	119	40	4,197	-	4,356	67	48	123	-	238	13	8	1,961	342	2,324
2002	1	0	17,598	2,119	19,718	188	33	3,481	-	3,703	86	30	78	-	194	69	5	2,159	412	2,645
2003	3	1	18,161	353	18,518	185	21	4,016	-	4,222	121	26	72	-	219	31	4	1,906	417	2,359
2004	2	0	15,372	309	15,683	140	21	3,782	-	3,943	62	5	41	-	108	23	1	1,548	390	1,962
2005	2	0	8,910	4,304	13,217	209	14	3,328	-	3,551	95	9	37	_	141	37	4	1,521	553	2,116
2006	7	0	9,047	3,800	12,854	164	21	2,357	105	2,647	124	21	32	_	177	54	3	1,570	490	2,117
2007	4	0	8,948	4,390	13,342	124	13	2,349	106	2,592	74	8	35	_	117	32	4	1,349	1,024	2,409
2008	6	0	11,272	3,070	14,348	125	8	1,549	114	1,796	76	9	101	-	186	33	2	810	1,045	1,890
2009	4	0	12,599	3,652	16,255	159	15	1,570	131	1,875	76	8	56	-	140	23	2	755	*	*
2010	4	0	3,202	9	3,215	187	11	780	*	*	58	11	20	*	*	19	3	395	*	*

TABLE A-2b. (continued)
TABLA A-2b. (continuación)

		hortbil Iarlín 1					~	ilfish– ez vela			1	identif billfish öridos	es—P	icudos		7		l billfis e peces		os
	P	~	LL	OTR	Total	P	~	LL	OTR	Total		S	LL	OTR	Total	_	S	LL	OTR	Total
1981	Ret.	Dis.				Ret.	Dis.	379		379	Ret.	Dis.	9		9	Ret.	Dis.	12.057		14.191
1981	-	-	-	-	-			1.084	-	1,084			3	-	3	-		13,057 13,360	1,134 1,551	14,191
1982				_				890		890			2		2		_	13,404	2,338	15,742
1984	_		_	_	_	_	_	345	_	345	_	_		_		-	_	11,204	3,336	14,540
1985	-		-	_	_	_	_	395	_	395	_		1	_	1	-	_	7,648		11,416
1986	-	_	5	-	5	_	_	583	-	583	_	_	1	-	1	-	-	12,990	3,294	16,284
1987	-	-	15	-	15	-	-	649	-	649	-	-	398	-	398	-	-	21,025	3,740	24,765
1988	-	-	13	-	13	-	-	649	-	649	-	-	368	-	368	-	-	17,179	5,642	22,821
1989	-	-	-	-	-	-	-	192	-	192	-	-	51	-	51	-	-	14,503	6,072	20,575
1990	-	-	-	-	-	-	-	6	-	6	-	-	125	-	125	-	-	14,961	5,399	20,360
1991	-	-	1	-	1	-	-	717	-	717	-	-	112	-	112	ı	220	21,459	4,716	26,395
1992	-	1	1	-	2	-	-	1,351	-	1,351	-	-	1,123	-	1,123	-	221	22,204	4,506	26,931
1993	0	0	1	-	1	26	32	2,266	-	2,324	29	68	1,650	-	1,747	246	171	20,467	4,673	25,558
1994	0	0	144	-	144	18	21	1,682	-	1,721	7	16	1,028	-	1,051	155	83	20,523	4,079	24,841
1995	1	0	155	-	156	12	15	1,351	-	1,378	4	9	232	-	245	151	71	16,928	3,270	20,421
1996	1	0	126	-	127	10	12	738	-	760	6	13	308	-	327	145	73	15,156		18,290
1997	1	0	141	-	142	12	11	1,891	-	1,914	3	5	1,324	-	1,332	243	57	24,477	2,110	26,887
1998	0	0	200	-	200	28	31	1,382	-	1,441	5	8	575	54	642	258	90	20,538		24,695
1999	1	0	278	-	279	33	8	1,216	-	1,257	6	12	1,136	-	1,154	333	110	16,604		19,388
2000	1	0	285	-	286	33	17	1,380	-	1,430	3	6	879	136	1,024	243	70	17,102		20,338
2001	0	0	304	-	305	18	45	1,539	325	1,927	2	5	1,742	204	1,953	223	146	25,873		29,077
2002	1	0	273	-	274	19	15	1,792	17	1,843	4	5	1,862	14	1,885	368	88	27,243		30,262
2003 2004	1	0	290 207	-	294	38 19	49	1,174	17	1,261	6 4	5	1,389 1,384	-	1,400	384 251	110	27,008	770	28,272
2004 2005	1	0	207	-	208	32	13	1,400	17	1,449	5	3	900	-	1,392	382	44	23,734 15,730	716 4,872	24,745
2005 2006	1	0	231	-	230	30	13	1.007	35	1.085	23	4	491	1	519	403	62	14,735		19,631
2007	1	0	239	_	240	41	8	930	64	1.043	13	4	104	15	136	289	38	13,954	5,599	19,880
2007	1	0	257	_	258	28	7	245	72	352	16	5	64	8	93	285	32	14,298		18,923
2009	1	0	450	_	451	17	6	11	8	42	11	1	12	12	36	291	33	15,453		19,587
2010	1	0	263		264	25	6	11	*	*	6	2	2	*	*	300	33	4,673	9	*

TABLE A-2c. Estimated retained catches (Ret.), by gear type, and estimated discards (Dis.), by purse-seine vessels of more than 363 t carrying capacity only, of other species, in metric tons, in the EPO. The data for 2009-2010 are preliminary.

TABLA A-2c. Estimaciones de las capturas retenidas (Ret.), por arte de pesca, y de los descartes (Dis.), por buques cerqueros de más de 363 t de capacidad de acarreo únicamente, de otras especies, en toneladas métricas, en el OPO. Los datos de 2009-2010 son preliminares.

	Ca	rangi	ds—C	Caráng	idos	Do	rado (C	Coryph	aena s _]	pp.)		Elas	mobrai mobrai			Oth	er fisl	nes—(Otros p	oeces
	P Ret.	S Dis.	LL	OTR	Total	P Ret.	S Dis.	LL	OTR	Total	P Ret.	S Dis.	LL	OTR	Total	P Ret.	S Dis.	LL	OTR	Total
1981	111	-		17	128	410	-	_	628	1,038	49	-	120	1,211	1,380	201	-	51	3	255
1982	122	-	-	-	122	274	-	-	980	1,254	22	-	215	894	1,131	287	-	59	-	346
1983	1,240	-	-	-	1,240	88	-	-	3,374	3,462	34	-	85	695	814	288	-	-	1	289
1984	414	-	-	-	414	103	-	-	202	305	47	-	6	1,039	1,092	415	-	-	3	418
1985	317	-	-	4	321	93	-	-	108	201	27	-	13	481	521	76	-	7	-	83
1986	188	-	-	19	207	632	-	-	1,828	2,460	29	-	1	1,979	2,009	93	-	-	1	93
1987	566	-	-	5	571	271	-	-	4,272	4,543	96	-	87	1,020	1,203	210	-	535	-	745
1988	825	-	-	1	826	69	-	-	1,560	1,629	1	-	23	1,041	1,065	321	-	360	-	681
1989	60	-	-	2	62	210	-	-	1,680	1,890	29	-	66	1,025	1,120	670	-	152	-	822
1990	234	-	-	1	235	63	-	-	1,491	1,554	-	-	280	1,095	1,375	433	-	260	14	707
1991	116	-	-	-	116	57	-	7	613	677	1	-	1,112	1,352	2,465	463	-	457	1	921
1992	116	-	-	-	116	69	-	37	708	814	-	-	2,293	1,190	3,483	555	-	182	-	737
1993	31	43	-	2	76	267	477	17	724	1,485	277	1,152	1,026	916	3,371	145	554	184	2	885
1994	19	28	-	16	63	687	826	46	3,459	5,018	371	1,027	1,234	1,314	3,946	243	567	251	-	1,061
1995	27	32	-	9	68	466	729	39	2,127	3,361		1,093	922	1,075	3,375	177	760	210	-	1,147
1996	137	135	-	57	329	548	885	43	183	1,659	242	1,001	1,121	2,151	4,515	155	467	456	-	1,078
1997	40	111	-	39	190	569	703	6866	3,109	11,247	435	1,232	956	2,328	4,951	261	654	848	-	1,763
1998	82	149	-	4	235	424	426	2528	9,167	12,545	285	1,404	2,099	4,393	8,181	302	1,133		-	2,775
1999	108	136	-	1	245	567	751	6284	1,160		260	843	5,995	2,088	9,186	245	748	975	-	1,968
2000	97	66	4	4	171	812	785	3537	1,041	6,175	266	772	8,621	405	10,064	147		1,490	-	2,045
2001	16	145	18		205	1,028	1275	15941	2,825	21,069	183	641	,	107	13,482	391		1,726	-	3,247
2002	20	111	15	20	166	932	938	9464	4,137	15,471	137	758		99	- ,	356		1,914	-	2,992
2003	13	141	54	-	208	582	346	5301	288	6,517	118	833		372	16,204	288		4,681	-	5,375
2004	41	103	1	-	145	810	317	3986	4,645	9,758	157	622	,	173	, .	428	,	671	-	2,130
2005	82	79	-	-	161	864	295	3854	8,667	13,680	199	499	,	224	13,027	495	276	558	-	1,329
2006	247	146	-	1.7	393	1,001	385	3404	13,112	17,902	235	674	6,511	259	7,679	821	381	262	100	1,564
2007	175	183	6		381	1,266	350	2978	7,827	12,421	348	394	8,726	424	9,892	658			114	3,448
2008	86	55 42	10		163	934	327	447	5,458	7,166	573 279	357	7,097	594	8,621	827	429	585	79	1,920
2009	65	42 16			133	1,905	476		51,328	,		339	5,323	374	6,315	858	374	1,273	88	2,593
2010	66	16	1	19	102	1,319	256	3	*	1,578	336	457	1,199	84	2,076	775	200	15	1	991

TABLE A-3a. Catches of yellowfin tuna by purse-seine vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3a. Capturas de atún aleta amarilla por buques de cerco en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquellos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	COL	CRI	ECU	ESP	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	C + OTR ¹	Total
1981	-	2,632	7,004	6,651	41,147	-	7,202	C	C	91,611	6,269	-	5,718	168,234
1982	-	122	5,511	934	18,785	-	8,487	С	С	72,082	4,057	-	4,777	114,755
1983	-	С	7,579	-	18,576	-	2,444	943	-	43,780	7,840	-	2,767	83,929
1984	-	2,702	10,526	С	53,697	-	С	С	-	57,162	9,268	-	2,430	135,785
1985	-	2,785	8,794	С	80,422	-	10,887	C	-	84,364	20,696	C	3,511	211,459
1986	-	C	16,561	С	103,644	-	9,073	C	C	88,617	28,462	C	14,155	260,512
1987	-	-	15,046	С	96,182	-	C	C	C	95,506	34,237	C	21,037	262,008
1988	-	-	23,947	С	104,565	-	7,364	1,430	C	82,231	38,257	C	19,499	277,293
1989	-	C	17,588	С	116,928	-	10,557	1,724	C	73,688	42,944	C	14,567	277,996
1990	С	C	16,279	С	115,898	-	6,391	C	-	50,790	47,490	22,208	4,197	263,253
1991	С	-	15,011	С	115,107	-	1,731	C	-	18,751	45,345	29,687	5,625	231,257
1992	С	-	12,119	С	118,455	-	3,380	45	-	16,961	44,336	27,406	5,419	228,121
1993	3,863	-	18,094	C	101,792	-	5,671	-	-	14,055	43,522	24,936	7,559	219,492
1994	7,533	-	18,365	С	99,618	-	3,259	-	-	8,080	41,500	25,729	4,324	208,408
1995	8,829	C	17,044	С	108,749	-	1,714	-	-	5,069	47,804	22,220	4,005	215,434
1996	9,855	C	17,125	С	119,878	-	3,084	-	-	6,948	62,846	10,549	8,322	238,607
1997	9,402	-	18,697	C	120,761	-	4,807	-	-	5,826	57,881	20,701	6,803	244,878
1998	15,592	-	36,201	5,449	106,840	-	3,330	-	C	2,776	61,425	17,342	5,004	253,959
1999	13,267	-	53,683	8,322	114,545	C	5,782	-	C	3,400	55,443	16,476	11,002	281,920
2000	6,138	-	35,492	10,318	101,662	C	5,796	-	-	4,374	67,672	8,247	13,564	253,263
2001	12,950	-	55,347	18,448	130,087	C	9,552	-	C	5,670	108,974	10,729	32,179	383,936
2002	17,574	-	32,512	16,990	152,864	C	15,719	C	7,412	7,382	123,264	7,502	31,067	412,286
2003	9,770	-	34,271	12,281	172,807	-	16,591	C	C	3,601	96,914	9,334	27,710	383,279
2004	C	-	40,886	С	91,442	C	33,563	-	C	5,645	39,094	7,371	54,556	272,557
2005	C	-	40,596	C	110,898	4,838	33,393	-	6,470	C	28,684	С	43,222	268,101
2006	C	-	26,049	C	69,449	4,236	22,521	-	C	C	13,286	C	31,090	166,631
2007	C	-	19,749	C	65,091	3,917	26,024	-	C	C	20,097	C	35,138	170,016
2008	C	-	18,463	C	84,462	4,374	26,993	C	C	C	17,692	C	33,073	185,057
2009	C	-	18,167	C	99,785	6,686	35,228	C	C	C	25,298	C	51,592	236,756
2010	С	-	34,764	С	104,969	9,422	34,538	C	C	-	21,244	C	46,071	251,008

¹ Includes—Incluye: BLZ, BMU, BOL, CAN, CHN, COG, CYM, CYP, GTM, HND, KOR, LBR, NLD, NZL, PRT, RUS, SEN, VCT, UNK

TABLE A-3b. Annual catches of yellowfin tuna by longline vessels, and totals for all gears, in the EPO, by vessel flag. The data for 2009-2010 are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3b. Capturas anuales de atún aleta amarilla por buques de palangre en el OPO, y totales de todas las artes, por bandera del buque. Los datos de 2009-2010 son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquellos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	CHN	CRI	FRA- PYF	JPN	KOR	MEX	PAN	TWN	USA	VUT	C+ OTR ¹	Total LL	Total PS+LL	OTR ²
1981	-	-	-	7,090	753	-	-	156	-	-	*	7,999	176,233	2,277
1982	-	-	-	9,826	1,054	-	-	81	-	-	*	10,961	125,716	1,818
1983	-	-	-	9,404	1,382	49	-	60	-	-	*	10,895	94,824	4,856
1984	-	-	-	9,134	1,155	-	-	56	-	-	*	10,345	146,130	3,335
1985	-	-	-	10,633	2,505	2	-	58	-	-	*	13,198	224,657	1,282
1986	-	-	-	17,770	4,850	68	-	120	-	-	*	22,808	283,320	2,751
1987	-	-	-	13,484	5,048	272	-	107	-	-	*	18,911	280,919	5,245
1988	-	-	-	12,481	1,893	232	-	54	-	-	*	14,660	291,953	4,475
1989	-	-	-	15,335	1,162	9	-	526	-	-	*	17,032	295,028	4,408
1990	-	-	-	29,255	4,844	-	-	534	-	-	*	34,633	297,886	3,636
1991	-	169	-	23,721	5,688	-	-	1,319	2	-	*	30,899	262,156	3,814
1992	-	119	57	15,296	2,865	-	-	306	3	-	*	18,646	246,767	5,747
1993	-	200	39	20,339	3,257	C	-	155	17	-	2	24,009	243,501	7,985
1994	-	481	214	25,983	3,069	41	-	236	2	-	*	30,026	238,434	5,112
1995	-	542	198	17,042	2,748	7	-	28	31	-	*	20,596	236,030	3,334
1996	-	183	253	12,631	3,491	-	-	37	13	-	*	16,608	255,215	5,401
1997	-	715	307	16,218	4,753	-	-	131	11	-	28	22,163	267,041	5,018
1998	-	1,124	388	10,048	3,624	16	-	113	15	-	8	15,336	269,295	6,614
1999	-	1,031	206	7,186	3,030	10	-	186	7	-	26	11,682	293,602	4,489
2000	-	1,084	1,052	15,265	5,134	153	359	742	10	5	51	23,855	277,118	3,540
2001	942	1,133	846	14,808	5,230	29	732	3,928	29	13	1,918	29,608	413,544	4,436
2002	1,457	1,563	278	8,513	3,626	4	907	7,360	5	290	1,528	25,531	437,817	1,501
2003	2,739	1,418	462	9,125	4,911	365	С	3,477	5	699	1,973	25,174	408,453	1,615
2004	798	1,701	767	7,338	2,997	32	2,802	1,824	6	171	343	18,779	291,336	2,511
2005	682	1,791	530	3,966	532	1	1,782	2,422	7	-	182	11,895	279,996	3,674
2006	246	1,402	537	2,968	-	-	2,164	1,671	21	-	108	9,117	175,748	2,144
2007	224	1,204	408	4,582	353	8	-	745	11	-	90	7,625	177,641	2,333
2008	469	154	335	5,383	129	5	-	247	33	-	43	6,798	191,855	1,755
2009	*	*	590	4,345	387	10	-	636	49	-	11	6,028	242,784	1,697
2010	*	*	*	3,334	*	4	-	*	*	-	*	3,338	254,346	663

¹ Includes—Incluye: BLZ, CHL, ECU, GTM, HND, NIC, SLV

² Includes gillnets, pole-and-line, recreational, and unknown gears—Incluye red de transmalle, caña, artes deportivas, y desconocidas

TABLE A-3c. Catches of skipjack tuna by purse-seine and longline vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3c. Capturas de atún barrilete por buques de cerco y de palangre en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquellos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

													LL+		
	COL	CRI	ECU	ESP	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	C+OTR ¹	Total	OTR ²
1981	-	1,047	8,213	2,642	24,081	-	4,230	С	C	71,237	3,562	-	4,153	119,165	6,836
1982	-	226	13,590	1,609	14,598	-	5,814	C	С	58,647	2,382	-	3,633	100,499	4,170
1983	-	С	12,590	-	6,277	-	764	170	-	32,009	3,352	-	1,689	56,851	5,124
1984	-	31	18,085	-	8,550	-	C	-	-	23,966	7,797	-	1,430	59,859	3,752
1985	-	87	22,806	С	5,334	-	1,197	-	-	9,907	8,184	C	3,314	50,829	1,173
1986	-	C	23,836	С	6,061	-	1,134	C	С	12,978	11,797	С	9,828	65,634	2,111
1987	-	-	20,473	С	4,786	-	C	C	C	13,578	11,761	C	13,421	64,019	2,447
1988	-	-	11,743	С	15,195	-	1,863	714	С	36,792	12,312	С	8,494	87,113	5,014
1989	-	С	22,922	С	14,960	1	4,361	276	-	21,115	16,847	С	14,453	94,934	3,987
1990	C	С	24,071	C	6,696	1	3,425	C	-	13,188	11,362	11,920	3,707	74,369	2,738
1991	С	-	18,438	С	10,916	-	1,720	С	-	13,162	5,217	9,051	3,724	62,228	3,662
1992	С	-	25,408	С	9,188	1	3,724	352	-	14,108	10,226	13,315	7,962	84,283	3,011
1993	3,292	-	21,227	C	13,037		1,062	-	-	17,853	7,270	10,908	9,181	83,830	6,089
1994	7,348	-	15,083	C	11,783		2,197	-	-	8,947	6,356	9,541	8,871	70,126	4,044
1995	13,081	C	31,934	C	29,406	-	4,084	1	-	14,032	5,508	13,910	15,092	127,047	7,241
1996	13,230	C	32,433	C	14,501	-	3,619	-	-	12,012	4,104	10,873	13,201	103,973	3,868
1997	12,332	-	51,826	C	23,416	-	4,277	-	-	13,687	8,617	14,246	25,055	153,456	3,491
1998	4,698	-	67,074	20,012	15,969	-	1,136	-	C	6,898	6,795	11,284	6,765	140,631	2,215
1999	11,210	-	124,393	34,923	16,767	C	5,286	-	C	13,491	16,344	21,287	17,864	261,565	3,638
2000	10,138	-	104,849	17,041	14,080	C	9,573	-	-	7,224	6,720	13,620	22,402	205,647	366
2001	9,445	-	66,144	13,454	8,169	C	6,967	-	C	4,135	3,215	7,824	23,812	143,165	1,696
2002	10,908	1	80,378	10,546	6,612	C	9,757	C	4,601	4,582	2,222	4,657	19,283	153,546	996
2003	14,771	-	139,804	18,567	8,147	-	25,084	C	C	5,445	6,143	14,112	41,895	273,968	4,049
2004	C	-	89,621	C	24,429	C	20,051	-	C	3,372	23,356	4,404	32,591	197,824	2,346
2005	C	-	140,927	C	32,271	3,735	25,782	-	4,995	C	22,146	C	33,373	263,229	3,311
2006	C	1	138,490	C	16,790	8,396	44,639	1	C	C	26,334	C	61,619	296,268	1,645
2007	C	-	93,553	C	21,542	4,286	28,475	-	C	C	21,990	C	38,449	208,295	1,448
2008	C	-	143,431	C	21,638	7,005	43,230	C	C	C	28,333	C	52,966	296,603	1,716
2009	C	-	132,712	C	6,847	5,119	26,973	C	C	C	19,370	C	39,502	230,523	1,437
2010	С	-	82,280	С	3,010	5,242	19,213	C	C	*	11,818	С	25,629	147,192	104

¹ Includes—Incluye: BLZ, BMU, BOL, CAN, CHN, COG, CYM, CYP, ECU, GTM, HND, KOR, LBR, NLD, NZL, PRT, RUS, SEN, VCT, UNK

² Includes gillnets, pole-and-line, troll, recreational, and unknown gears—Incluye red de transmalle, caña, curricán, artes deportivas y desconocidas

TABLE A-3d. Catches of bigeye tuna by purse-seine vessels in the EPO, by vessel flag. The data have been adjusted to the species composition estimate, and are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3d. Capturas de atún patudo por buques de cerco en el OPO, por bandera del buque. Los datos están ajustados a la estimación de composición por especie, y son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquellos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	COL	CRI	ECU	ESP	MEX	NIC	PAN	PER	SLV	USA	VEN	VUT	C + OTR ¹	Total
1981	-	119	1,268	805	52	-	1,113	-	С	8,267	2,766	-	531	
1982	-	-	105	41	16	-	1,039	*	*	4,548	1,190	-	*	6,939
1983	-	*	457	-	16	-	663	*	-	1,801	1,319	-	319	4,575
1984	-	3	1,164	*	40	-	*	*	-	5,335	2,181	-	138	8,861
1985	-	17	2,970	C	19	-	-	-	-	1,806	939	С	305	6,056
1986	-	-	653	C	1	-	-	-	-	266	1,466	C	300	2,686
1987	-	-	319	C	2	-	*	-	C	224	453	C	179	1,177
1988	-	-	385	C	-	-	431	*	C	256	202	C	261	1,535
1989	-	-	854	C	-	-	-	*	-	172	294	C	710	2,030
1990	-	-	1,619	C	29	-	196	-	-	209	1,405	2,082	381	5,921
1991	-	-	2,224	C	5	-	-	-	-	50	591	1,839	161	4,870
1992	-	-	1,647	C	61	-	38	*	-	3,002	184	1,397	850	7,179
1993	686	-	2,166	C	120	-	10	*	-	3,324	253	1,848	1,250	9,657
1994	5,636	-	5,112	C	171	-	-	*	-	7,042	637	8,829	7,472	34,899
1995	5,815	C	8,304	C	91	-	839	*	-	11,042	706	12,072	6,452	45,321
1996	7,692	C	20,279	C	82	-	1,445	*	-	8,380	619	12,374	10,440	61,311
1997	3,506	-	30,092	C	38	-	1,811	*	-	8,312	348	6,818	13,347	64,272
1998	596	-	25,113	5,747	12	-	12	*	C	5,309	348	4,746	2,246	44,129
1999	1,511	-	24,355	11,703	33	C	1,220	*	C	2,997	10	5,318	4,011	51,158
2000	7,443	-	36,094	12,511	0	C	7,028	*	-	5,304	457	10,000	16,445	95,282
2001	5,230	-	24,424	7,450	0	C	3,858	*	C	2,290	0	4,333	12,933	60,518
2002	5,283	-	26,262	5,108	0	C	4,726	C	2,228	2,219	0	2,256	9,340	57,422
2003	3,664	-	22,896	4,605	0	-	6,222	C	C	1,350	424	3,500	10,391	53,052
2004	C	-	30,817	C	0	C	8,294	*	C	1,395	9,661	1,822	13,482	65,471
2005	C	-	30,507	C	0	1,551	10,707	*	2,074	C	9,197	C	13,859	67,895
2006	C	-	39,302	С	6	2,652	14,099	*	С	С	8,317	C	19,462	83,838
2007	C	-	40,445	C	0	1,058	7,029	*	С	C	5,428	C	9,490	63,450
2008	C	-	41,177	C	327	1,785	11,018	C	С	C	7,221	C	13,500	75,028
2009	C	-	35,646	C	1,334	2,241	11,807	C	С	C	8,479	C	17,292	76,799
2010	C	-	34,902	C	11	1,934	7,089	C	C	*	4,360	C	9,456	57,752

¹ Includes—Incluye: BLZ, BMU, BOL, CAN, CHN, CYM, CYP, GTM, HND, KOR, LBR, NLD, NZL, PRT, SEN, VCT, UNK

TABLE A-3e. Annual catches of bigeye tuna by longline vessels, and totals for all gears, in the EPO, by vessel flag. The data for 2009-2010 are preliminary. *: data missing or not available; -: no data collected; C: data combined with those of other flags; this category is used to avoid revealing the operations of individual vessels or companies.

TABLA A-3e. Capturas anuales de atún patudo por buques de palangre en el OPO, y totales de todas las artes, por bandera del buque. Los datos de 2009-2010 son preliminares. *: datos faltantes o no disponibles; -: datos no tomados; C: datos combinados con aquellos de otras banderas; se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

	CHN	CRI	FRA- PYF	JPN	KOR	MEX	PAN	TWN	USA	VUT	C+ OTR ¹	Total LL	Total PS + LL	OTR ²
1981	-	-	-	49,970	2,966	-	-	480	-	-	*	53,416	68,337	7
1982	-	-	-	50,199	2,969	-	-	197	-	-	*	53,365	60,304	45
1983	-	-	-	57,185	2,614	-	-	244	-	-	*	60,043	64,618	76
1984	-	-	-	44,587	1,613	-	-	194	-	-	*	46,394	55,255	13
1985	-	-	-	61,627	4,510	-	-	188	-	-	*	66,325	72,381	17
1986	-	-	-	91,981	10,187	-	-	257	-	-	*	102,425	105,111	74
1987	-	-	-	87,913	11,681	1	-	526	-	-	*	100,121	101,298	49
1988	-	-	-	66,015	6,151	1	-	591	-	-	*	72,758	74,293	20
1989	-	-	-	67,514	3,138	-	-	311	-	-	*	70,963	72,993	1
1990	-	-	-	86,148	12,127	-	-	596	-	-	*	98,871	104,792	59
1991	-	1	-	85,011	17,883	_	-	1,291	9	-	*	104,195	109,065	56
1992	-	9	7	74,466	9,202	-	-	1,032	92	-	*	84,808	91,987	13
1993	-	25	7	63,190	8,924	*	-	297	55	-	*	72,498	82,155	35
1994	-	1	102	61,471	9,522	-	-	255	9	-	*	71,360	106,259	806
1995	-	13	97	49,016	8,992	-	-	77	74	-	*	58,269	103,590	1,369
1996	-	1	113	36,685	9,983	-	-	95	81	-	*	46,958	108,269	748
1997	-	9	250	40,571	11,376	-	-	256	118	-	*	52,580	116,852	20
1998	-	28	359	35,752	9,731	-	-	314	191	-	*	46,375	90,504	628
1999	-	25	3,652	22,224	9,431	-	-	890	228	-	*	36,450	87,608	538
2000	-	27	653	28,746	13,280	42	14	1,916	162	2,754	11	47,605	142,887	253
2001	2,639	28	684	38,048	12,576	1	80	9,285	147	3,277	1,990	68,755	129,273	19
2002	7,614	19	388	34,193	10,358	_	6	17,253	132	2,995	1,466	74,424	131,846	12
2003	10,066	18	346	24,888	10,272	-	C	12,016	232	1,258	680	59,776	112,828	21
2004	2,645	21	405	21,236	10,729	-	48	7,384	149	407	459	43,483	108,954	194
2005	2,104	23	398	19,113	11,580	-	30	6,441	536	1,056	151	41,432	109,327	25
2006	709	18	388	16,235	8,694	_	37	6,412	85	935	195	33,708	117,546	40
2007	2,324	15	361	13,977	5,611	-	-	6,057	417	1,073	93	29,928	93,378	44
2008	2,379	2	367	14,909	4,150	-	-	1,852	1,277	747	89	25,772	100,800	28
2009	2,481	*	484	15,581	6,034	-	-	3,396	684	1,113	315	30,088	106,887	15
2010	1,765	*	*	14,633	*	-	-	5,076	289	1,230	*	22,993	80,745	*

¹ Includes—Incluye: BLZ, CHL, ECU, ESP, HND, SLV

² Includes gillnets, pole-and-line, troll, recreational, and unknown gears—Incluye red de transmalle, caña, curricán, artes deportivas, y desconocidas

TABLE A-4. Preliminary estimates of the retained catches in metric tons, of tunas and bonitos caught by purse-seine, pole-and-line, and recreational vessels in the EPO in 2009 and 2010, by species and vessel flag. The data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimates, and are preliminary.

TABLA A-4. Estimaciones preliminares de las capturas retenidas, en toneladas métricas, de atunes y bonitos por buques cerqueros, cañeros, y recreacionales en el OPO en 2009 y 2010, por especie y bandera del buque. Los datos de los atunes aleta amarilla, barrilete, y patudo fueron ajustados a las estimaciones de composición por especie, y son preliminares.

	YFT	SKJ	BET	PBF	ALB	BKJ	BZX	TUN	Total	%
2009				Retaine	d catches–Ca	apturas reter	nidas			
ECU	18,167	132,712	35,646	-	3	308	-	146	186,982	33.0
MEX	100,494	6,998	1,334	3,019	17	3,919	7,885	2	123,668	21.8
NIC	6,686	5,119	2,241	-	-	-	-	-	14,046	2.5
PAN	35,228	26,973	11,807	-	-	133	-	-	74,141	13.1
VEN	25,298	19,370	8,479	-	-	8	-	1	53,156	9.4
OTR ¹	52,113	39,532	17,923	554	2,556	-	1,922	9	114,609	20.2
Total	237,986	230,704	77,430	3,573	2,576	4,368	9,807	158	566,602	
2010				Retaine	d catches-Ca	apturas reter	nidas			
ECU	34,764	82,280	34,902	-	-	413	3	108	152,470	32.4
MEX	105,428	3,057	11	7,745	25	2,569	2,811	3	121,649	25.8
NIC	9,422	5,242	1,934	-	-	70	-	1	16,669	3.5
PAN	34,538	19,213	7,089	-	-	3	-	-	60,843	12.9
VEN	21,245	11,818	4,361	-	-	9	-	-	37,433	8
OTR ¹	46,274	25,630	9,457	112	-	127	-	13	81,613	17.3
Total	251,671	147,240	57,754	7,857	25	3,191	2,814	125	470,677	-

¹ Includes Bolivia, Colombia, El Salvador, Guatemala, Honduras, Peru, Spain, United States, and Vanuatu This category is used to avoid revealing the operations of individual vessels or companies.

¹ Incluye Bolivia, Colombia, El Salvador, España, Estados Únidos, Guatemala, Honduras, Perú, y Vanuatú Se usa esta categoría para no revelar información sobre las actividades de buques o empresas individuales.

TABLE A-5. Annual retained catches of Pacific bluefin tuna, by gear type and flag, in metric tons. The data for 2008 and 2009 are preliminary.

TABLA A-5. Capturas retenidas anuales de atún aleta azul del Pacífico, por arte de pesca y bandera, en toneladas métricas. Los datos de 2008 y 2009 son preliminares.

PBF	Western Pacific flags- JPN				-Bande	eras de	l Pací	fico oco	cidenta	l^1	Easte		cific fla Pacífico			lel	Total
1 DI			1		KO			TWN		Sub-	MEX		US		Sub-	OTR	Total
	PS	LP	LL	OTR	PS	OTR	PS	LL	OTR	total		OTR	PS	OTR	total	OIK	
1980	11,327	1,392	851	6,005	-	-	-	114	5	19,693	582	-	2,327	31	2,940	-	22,634
1981	25,422	754	619	6,559	-	-	-	179	-	33,532	218	-	867	23	1,109	-	34,641
1982	19,234	1,777	738	4,240	31	-	-	207	2	26,228	506	-	2,639	13	3,159	-	29,387
1983	14,774	356	225	4,117	13	-	9	175	2	19,670	214	-	629	44	887	-	20,557
1984	4,433	587	164	4,976	4	-	5	477	8	10,655	166	-	673	78	917	-	11,573
1985	4,154	1,817	114	5,587	1	-	80	210	11	11,975	676	-	3,320	117	4,113	-	16,089
1986	7,412	1,086	116	5,100	344	-	16	70	13	14,157	189	-	4,851	69	5,109	-	19,266
1987	8,653	1,565	244	3,523	89	-	21	365	14	14,474	119	-	861	54	1,033	-	15,507
1988	3,605	907	187	2,465	32	-	197	108	62	7,562	447	1	923	56	1,427	-	8,989
1989	6,190	754	241	1,934	71	-	259	205	54	9,707	57	-	1,046	133	1,236	-	10,943
1990	2,989	536	336	2,421	132	-	149	189	315	7,067	50	-	1,380	157	1,587	2	8,653
1991	9,808	286	238	4,204	265	-	-	342	119	15,262	9	-	410	98	517	-	15,781
1992	7,162	166	529	3,204	288	-	73	464	8	11,896	1	-	1,928	171	2,099	6	13,995
1993	6,600	129	822	1,759	40	-	1	471	3	9,825	-	-	580	401	981	2	10,811
1994	8,131	162	1,226	5,667	50	-	-	559	-	15,795	63	2	906	148	1,118	2	16,916
1995	18,909	270	688	7,223	821	-	-	335	2	28,248	11	-	657	307	975	4	29,225
1996	7,644	94	910	5,359	102	-	-	956	-	15,066	3,700	-	4,639	110	8,449	14	23,519
1997	13,152	34	1,312	4,354	1,054	-	-	1,814	-	21,720	367	-	2,240	289	2,897	20	24,632
1998	5,391	85	1,265	4,439	188	-	-	1,910	-	13,277	1	-	1,771	694	2,466	21	15,763
1999	16,173	35	1,174	5,193	256	-	-	3,089	-	25,919	2,369	35	184	625	3,213	21	29,153
2000	16,486	102	960	6,935	1,976	-	-	2,780	2	29,240	3,019	99	693	403	4,214	50	33,475
2001	7,620	180	797	5,477	968	10	-	1,839	4	16,895	863	-	292	404	1,559	65	18,504
2002	9,273	99	846	4,158	767	1	-	1,523	4	16,672	1,708	2	50	666	2,427	60	19,164
2003	6,432	44	1,249	3,124	2,141	-	-	1,863	21	14,874	3,211	43	22	412	3,689	77	18,622
2004	7,421	132	1,856	3,592	636	-	-	1,714	3	15,353	8,880	14	-	60	8,954	27	24,384
2005	11,451	549	1,939	6,136	1,085	-	-	1,368	-	22,527	4,542	-	201	86	4,830	24	27,384
2006	7,234	108	1,132	3,742	949	-	-	1,149	-	14,314	9,806	-	-	98	9,904	24	24,242
2007	5,899	236	2,317	5,097	1,054	-	-	1,401	-	16,004	4,147	-	42	16	4,205	24	20,233
2008	9,253	64	1,503	6,317	1,536	-	-	979	-	19,652	4,392	15	-	94	4,501	24	24,177
2009	7,424	50	1,052	4,795	794	-	-	892	-	15,008	3,019	-	410	156	3,585	*	18,617

Source: International Scientific Committee, 10th Plenary Meeting, PBFWG workshop report on Pacific Bluefin Tuna, July 2010—Fuente: Comité Científico Internacional, 10^a Reunión Plenaria, Taller PBFWG sobre Atún Aleta Azul del Pacífico, julio de 2010

TABLE A-6a. Annual retained catches of North Pacific albacore by region and gear, in metric tons, compiled from IATTC data (EPO) and SPC data (WCPO). The data for 2008 and 2009 are preliminary. **TABLA A-6a.** Capturas retenidas anuales de atún albacora del Pacífico Norte por región, en toneladas métricas, compiladas de datos de la CIAT (OPO) y la SPC (WCPO). Los datos de 2008 y 2009 son preliminares.

4 T D		Easter	n Pacific	Ocean		West	tern and	central l	Pacific C	Ocean	
ALB (N)		Océano	Pacífico	oriental		Océa	no Pacífi	co occid	ental y c	entral	Total
(14)	LL	LP	LTL	OTR	Subtotal	LL	LP	LTL	OTR	Subtotal	
1982	1,971	198	3,303	612	6,084	16,304	29,841	3,410	13,351	62,906	68,990
1983	1,572	449	7,751	94	9,866	15,014	21,256	1,833	7,582	45,685	55,551
1984	2,592	1,441	8,343	5,337	17,713	13,541	25,602	1,011	13,333	53,487	71,200
1985	1,313	877	5,308	1,218	8,716	13,468	21,335	1,163	13,729	49,695	58,411
1986	698	86	4,282	243	5,309	12,442	16,442	456	10,695	40,035	45,344
1987	1,114	320	2,300	172	3,906	14,297	18,920	570	11,337	45,124	49,030
1988	899	271	4,202	81	5,453	14,702	6,543	165	18,887	40,297	45,750
1989	952	21	1,852	161	2,986	13,584	8,662	148	19,825	42,219	45,205
1990	1,143	170	2,440	63	3,816	15,465	8,477	465	26,096	50,503	54,319
1991	1,514	834	1,783	6	4,137	16,535	6,269	201	10,792	33,797	37,934
1992	1,635	255	4,515	2	6,407	18,356	13,633	419	16,578	48,986	55,393
1993	1,772	1	4,331	25	6,129	29,371	12,796	2,417	4,087	48,671	54,800
1994	2,356	85	9,581	106	12,128	28,469	26,304	3,553	3,380	61,706	73,834
1995	1,380	465	7,308	102	9,255	31,568	20,596	3,450	1,623	57,237	66,492
1996	1,675	72	8,195	99	10,041	37,708	20,224	13,654	971	72,557	82,598
1997	1,365	59	6,056	1,019	8,499	47,000	32,252	12,618	1,717	93,587	102,086
1998	1,730	81	11,938	1,250	14,999	46,320	22,924	8,136	1,987	79,367	94,366
1999	2,701	227	10,801	3,668	17,397	44,066	50,202	3,052	7,487	104,807	122,204
2000	1,880	86	10,874	1,869	14,709	40,086	21,533	4,371	3,116	69,106	83,815
2001	1,822	157	11,570	1,638	15,187	35,303	29,412	5,168	1,364	71,247	86,434
2002	1,227	381	11,905	2,388	15,901	32,132	48,451	4,418	3,831	88,832	104,733
2003	1,126	59	17,749	2,260	21,194	31,350	36,114	4,137	924	72,525	93,719
2004	854	126	20,162	1,623	22,765	28,430	32,254	2,093	7,354	70,131	92,896
2005	582	66	13,722	1,741	16,111	31,859	16,133	345	1,442	49,779	65,890
2006	3,797	1	18,500	408	22,706	29,464	15,422	431	729	46,046	68,752
2007	2,979	21	17,962	1,416	22,378	28,848	37,768	708	5,022	72,346	94,724
2008	916	1,050	16,149	308	18,423	27,358	18,016	695	2,617	48,686	67,109
2009	563	2,084	16,329	589	19,565	24,459	30,343	757	2,336	57,895	77,460

TABLE A-6b. Annual retained catches of South Pacific albacore by region, in metric tons, compiled from IATTC data (EPO) and SPC data (WCPO). The data for 2008 and 2009 are preliminary.

TABLA A-6b. Capturas retenidas anuales de atún albacora del Pacífico Sur por región, en toneladas métricas, compiladas de datos de la CIAT (OPO) y la SPC (WCPO). Los datos de 2008 y 2009 son preliminares.

ATD	Ea	stern Pac	ific Ocea	ın	West	tern and	central Pa	acific Oc	ean	
ALB	Océ	ano Pacíf	ico orien	tal	Océai	no Pacífic	co occider	ntal y cer	ıtral	Total
(S)	LL	LTL	OTR	Subtotal	LL	LP	LTL	OTR	Subtotal	
1980										
1981	5,235	-	35	5,270	27,459	-	2,085	-	29,544	34,814
1982	6,436	-	2	6,438	21,911	1	2,434	4	24,350	30,788
1983	5,861	-	2	5,863	18,448	-	744	37	19,229	25,092
1984	4,120	-	24	4,144	16,220	2	2,773	1,565	20,560	24,704
1985	5,955	-	170	6,125	21,183	-	3,253	1,767	26,203	32,328
1986	5,752	74	149	5,975	26,889	-	1,929	1,797	30,615	36,590
1987	8,880	188	3	9,071	13,099	9	1,946	927	15,981	25,052
1988	9,035	1,282	-	10,317	19,253	-	3,014	5,283	27,550	37,867
1989	5,832	593	90	6,515	12,906	-	7,777	21,878	42,561	49,076
1990	5,393	1,336	306	7,035	13,975	245	5,639	7,232	27,091	34,126
1991	6,379	795	170	7,344	17,006	14	7,010	1,319	25,349	32,693
1992	15,445	1,205	18	16,668	15,147	11	5,373	47	20,578	37,246
1993	9,422	35	19	9,476	20,807	74	4,261	51	25,193	34,669
1994	8,034	446	22	8,502	26,084	67	6,718	67	32,936	41,438
1995	4,805	2	15	4,822	24,527	139	7,714	89	32,469	37,291
1996	5,956	94	21	6,071	17,860	30	7,285	135	25,310	31,381
1997	8,313	466	-	8,779	18,790	21	4,213	133	23,157	31,936
1998	10,905	12	-	10,917	26,886	36	6,268	85	33,275	44,192
1999	8,932	81	7	9,020	22,977	138	3,338	67	26,520	35,540
2000	7,783	778	3	8,564	26,185	102	5,491	136	31,914	40,478
2001	17,588	516	5	18,109	31,050	37	4,626	194	35,907	54,016
2002	14,062	131	40	14,233	46,528	18	4,443	110	51,099	65,332
2003	23,775	419	3	24,197	32,994	12	5,193	127	38,326	62,523
2004	17,590	331	-	17,921	40,197	110	4,200	188	44,695	62,616
2005	8,279	181	7	8,467	49,318	29	3,270	208	52,825	61,292
2006	6,815	48	119	6,982	55,883	29	2,835	207	58,954	65,936
2007	5,955	19	87	6,061	51,375	17	2,063	-	53,455	59,516
2008	5,082	-	159	5,241	41,809	12	3,502	1	45,324	50,565
2009	6,406	-	213	6,619	58,499	21	2,027	-	60,547	67,166

TABLE A-7. Estimated numbers of sets, by set type and vessel capacity category, and estimated retained catches, in metric tons, of yellowfin, skipjack, and bigeye tuna in the EPO, by purse-seine vessels. The data for 2010 are preliminary. The data for yellowfin, skipjack, and bigeye tunas have been adjusted to the species composition estimate and are preliminary.

TABLA A-7. Números estimados de lances, por tipo de lance y categoría de capacidad de buque, y capturas retenidas estimadas, en toneladas métricas, de atunes aleta amarilla, barrilete, y patudo en el OPO. Los datos de 2010 son preliminares. Los datos de los atunes aleta amarilla, barrilete, y patudo fueron ajustados a la estimación de composición por especie, y son preliminares.

	Number of	sets—Número	o de lances	Retained o	atch—Captura	retenida
	Vessel ca				<u>.</u>	
	Capacidad o		Total	YFT	SKJ	BET
	≤363 t	>363 t				
DEL				ated with dolphi		
1005	0			sociados con del		1
1995		7,185	7,185	132,561	2,546	1
1996	14	7,472	7,486	138,295	1,760	57
1997	43	8,977	9,020	152,052	8,149	0
1998	0	10,645	10,645	154,200	4,992	6
1999	0	8,648	8,648	143,128	1,705	5
2000	0	9,235	9,235	146,533	540	15
2001	0	9,876	9,876	238,629	1,802	6
2002	0	12,290	12,290	301,099	3,180	2
2003	0	13,760	13,760	265,512	13,332	1
2004	0	11,783	11,783	177,460	10,730	3
2005	0	12,173	12,173	166,211	12,127	2
2006	0	8,923	8,923	91,978	4,787	0
2007	0	8,871	8,871	97,032	3,277	7
2008	0	9,246	9,246	122,105	8,382	5
2009	0	10,910	10,910	178,436	2,719	1
2010	0	11,645	11,645	168,984	1,627	4
OBJ				l with floating o		
1995	707			ados con objetos		41,875
1995	1,230	3,519 3,965	4,226 5,195	21,364 28,102	80,052 69,637	58,376
1990	1,699	5,610	7,309	30,255	116,802	62,704
1998	1,198	5,465	6,663	26,769	110,335	41,919
1999	630	4,483	5,113	43,341	181,636	49,330
2000	508	3,713	4,221	42,522	121,723	92,966
2001	827	5,674	6,501	67,200	122,363	59,748
2001	867	5,771	6,638	38,057	116,793	55,901
2002	706	5,457	6,163	30,307	181,214	51,296
2003	615	4,986	5,601	28,340	117,212	64,005
2004	639	4,980	5,631	26,126	133,509	66,257
2005	1,158	6,862	8,020	34,313	191,093	82,136
2007	1,138	5,857	8,020 7,241	29,619	191,093	62,189
2007	1,819	5,857 6,655	8,474	34,819	157,274	73,855
2009	1,819	7,077	8,898	36,136	157,274	75,833 75,888
2019						
2010	1,788	6,399	8,187	38,113	113,716	57,167

TABLE A-7. (continued)
TABLA A-7 (continuación)

	Number of	sets—Número	o de lances	Retained o	atch—Captura	retenida
	Vessel ca					
	Capacidad		Total	YFT	SKJ	BET
	≤363 t	>363 t				
NOA		.	Sets on unasso		1	
1005	c 120			menes no asocia		2.445
1995	6,120	4,782	10,902	61,509	44,449	3,445
1996	5,807	5,118	10,925	72,210	32,576	2,878
1997	5,334	4,680	10,014	62,571	28,505	1,568
1998	5,700	4,607	10,307	72,990	25,304	2,204
1999	5,632	6,139	11,771	95,451	78,224	1,823
2000	5,497	5,472	10,969	64,208	83,384	2,301
2001	4,022	3,024	7,046	78,107	19,000	764
2002	4,938	3,442	8,380	73,130	33,573	1,518
2003	7,274	5,131	12,405	87,460	79,422	1,755
2004	4,969	5,696	10,665	66,757	69,882	1,463
2005	6,109	7,816	13,925	75,764	117,593	1,636
2006	6,189	8,443	14,632	40,340	100,388	1,702
2007	4,845	7,211	12,056	43,365	82,732	1,254
2008	4,771	6,210	10,981	28,133	130,947	1,168
2009	3,308	4,109	7,417	22,184	70,737	910
2010	2,252	3,886	6,138	43,912	31,849	581
ALL		_		pes of schools		
				tipos de cardur		17.001
1995	6,827	15,486	22,313	215,434	127,047	45,321
1996	7,051	16,555	23,606	238,607	103,973	61,311
1997	7,076	19,267	26,343	244,878	153,456	64,272
1998	6,898	20,717	27,615	253,959	140,631	44,129
1999	6,262	19,270	25,532	281,920	261,565	51,158
2000	6,005	18,420	24,425	253,263	205,647	95,282
2001	4,849	18,574	23,423	383,936	143,165	60,518
2002	5,805	21,503	27,308	412,286	153,546	57,421
2003	7,980	24,348	32,328	383,279	273,968	53,052
2004	5,584	22,465	28,049	272,557	197,824	65,471
2005	6,748	24,981	31,729	268,101	263,229	67,895
2006	7,347	24,228	31,575	166,631	296,268	83,838
2007	6,229	21,939	28,168	170,016	208,295	63,450
2008	6,590	22,111	28,701	185,057	296,603	75,028
2009	5,129	22,096	27,225	236,756	230,523	76,799
2010	4,040	21,930	25,970	251,009	147,192	57,752

TABLE A-8. Types of floating objects on which sets were made. The 2010 data are preliminary. **TABLA A-8.** Tipos de objetos flotantes sobre los que se hicieron lances. Los datos de 2010 son preliminares.

OBJ	Flotsa Natura		FAI Planta		Unkno Descono		Total
	No.	%	No.	%	No.	%	
1995	728	20.7	2,714	77.1	77	2.2	3,519
1996	538	13.6	3,405	85.9	22	0.6	3,965
1997	829	14.8	4,728	84.3	53	0.9	5,610
1998	751	13.7	4,612	84.4	102	1.9	5,465
1999	831	18.5	3,632	81.0	20	0.4	4,483
2000	488	13.1	3,187	85.8	38	1.0	3,713
2001	592	10.4	5,058	89.1	24	0.4	5,674
2002	778	13.5	4,966	86.1	27	0.5	5,771
2003	715	13.1	4,722	86.5	20	0.4	5,457
2004	586	11.8	4,370	87.6	30	0.6	4,986
2005	603	12.1	4,281	85.8	108	2.2	4,992
2006	697	10.2	6,123	89.2	42	0.6	6,862
2007	597	10.2	5,188	88.6	72	1.2	5,857
2008	560	8.4	6,070	91.2	25	0.4	6,655
2009	322	4.5	6,728	95.1	27	0.4	7,077
2010	330	5.2	6,047	94.5	22	0.3	6,399

TABLE A-9. Reported nominal longline fishing effort (E; 1000 hooks), and catch (C; metric tons) of yellowfin, skipjack, bigeye, Pacific bluefin, and albacore tunas only, by flag, in the EPO.

TABLA A-9. Esfuerzo de pesca palangrero nominal reportado (E; 1000 anzuelos), y captura (C; toneladas métricas) de atunes aleta amarilla, barrilete, patudo, aleta azul del Pacífico, y albacora solamente, por bandera, en el OPO.

TT	СН	IN	JP	N	KO	R	PY	F	TW	/N	USA	4	OTR ¹
LL	E	С	E	C	E	C	E	C	E	C	E	C	C
1981	-	-	131,254	59,226	19,727	6,540	-	-	5,952	2,948	-	-	-
1982	-	-	116,210	61,369	18,608	7,489	-	-	8,117	3,910	-	-	-
1983	-	-	127,177	69,563	14,680	6,478	-	-	4,850	2,311	-	-	49
1984	-	-	119,628	57,262	11,770	4,490	-	-	3,730	1,734	-	-	-
1985	-	-	106,761	74,347	19,799	10,508	-	-	3,126	1,979	-	-	2
1986	-	-	160,572	111,673	30,778	17,432	-	-	4,874	2,569	-	-	68
1987	-	-	188,386	104,053	36,436	19,405	-	-	12,267	5,335	-	-	273
1988	-	-	182,709	82,384	43,056	10,172	-	-	9,567	4,590	-	-	234
1989	-	-	170,370	84,961	43,365	4,879	-	-	16,360	4,962	-	-	-
1990	-	-	178,414	117,923	47,167	17,415	-	-	12,543	4,755	-	-	-
1991	-	-	200,374	112,337	65,024	24,644	-	-	17,969	5,862	42	12	173
1992	-	-	191,300	93,011	45,634	13,104	199	88	33,025	14,142	325	106	128
1993	-	-	159,956	87,976	46,375	12,843	153	80	18,064	6,566	415	81	227
1994	-	-	163,999	92,606	44,788	13,249	1,373	574	12,588	4,883	303	26	523
1995	-	-	129,599	69,435	54,979	12,778	1,776	559	2,910	1,639	828	179	562
1996	-	-	103,649	52,298	40,290	14,120	2,087	931	5,830	3,554	510	181	184
1997	-	-	96,385	59,325	30,493	16,663	3,464	1,941	8,720	5,673	464	216	752
1998	-	-	106,568	50,167	51,817	15,089	4,724	2,858	10,586	5,039	1,008	405	1,176
1999	-	-	80,950	32,886	54,269	13,295	5,512	4,446	23,247	7,865	1,756	470	1,156
2000	-	-	79,327	45,216	33,585	18,758	8,090	4,382	18,152	7,809	736	204	4,868
2001	13,054	5,162	102,220	54,775	72,261	18,200	7,445	5,086	41,926	20,060	1,438	238	15,614
2002	34,894	10,398	103,912	45,401	96,273	14,370	943	3,238	78,024	31,773	611	138	10,258
2003	43,290	14,548	101,236	36,187	71,006	15,551	11,098	4,101	74,456	28,328	1,313	262	11,595
2004	15,886	4,033	76,828	30,937	55,861	14,540	13,757	3,030	49,981	19,535	1,047	166	9,194
2005	16,895	3,681	65,085	25,712	15,798	12,284	13,356	2,514	38,542	12,229	2,579	557	5,442
2006	*	969	56,525	21,432	*	8,752	11,786	3,220	38,139	12,375	234	121	6,792
2007	12,229	2,624	45,970	20,515	10,548	6,037	9,672	3,753	22,243	9,498	2,686	436	3,731
2008	11,519	2,984	44,555	21,376	4,394	4,302	10,255	3,017	13,319	4,198	6,314	1,369	1,372
2009	*	2,481	41,798	21,698	8,641	6,441	10,686	4,032	5,670	6,366	5,145	780	1,462

¹ Includes the catches of—Incluye las capturas de: Belize, Chile, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Vanuatú

TABLE A-10. Numbers and well volumes, in cubic meters, of purse-seine and pole-and line vessels of the EPO tuna fleet. The data for 2010 are preliminary.

TABLA A-10. Número y volumen de bodega, en metros cúbicos, de buques cerqueros y cañeros de la flota atunera del OPO. Los datos de 2010 son preliminares.

	P	PS	L	P	To	tal
	No.	Vol. (m ³)	No.	Vol. (m ³)	No.	Vol. (m ³)
1981	251	196,484	41	3,308	292	199,792
1982	223	178,234	40	3,016	263	181,250
1983	215	149,404	60	3,940	275	153,344
1984	175	121,650	40	3,245	215	124,895
1985	178	137,814	25	2,574	203	140,387
1986	166	131,806	17	2,060	183	133,867
1987	177	152,351	29	2,376	206	154,727
1988	189	156,636	36	3,274	225	159,910
1989	178	141,956	30	3,135	208	145,091
1990	172	143,946	23	2,044	195	145,990
1991	155	124,501	19	1,629	174	126,131
1992	160	117,017	19	1,612	179	118,629
1993	152	118,730	15	1,543	167	120,272
1994	167	122,214	20	1,725	187	123,939
1995	175	124,096	20	1,784	195	125,880
1996	183	132,731	17	1,639	200	134,370
1997	194	146,533	23	2,105	217	148,637
1998	203	161,560	22	2,217	225	163,777
1999	208	180,652	14	1,656	222	182,308
2000	205	180,679	13	1,310	218	181,989
2001	205	189,897	10	1,259	215	191,156
2002	218	199,870	6	921	224	200,791
2003	215	202,755	3	338	218	203,093
2004	218	206,473	3	338	221	206,811
2005	222	213,286	4	498	226	213,784
2006	226	225,950	4	498	230	226,448
2007	229	226,985	4	380	233	227,365
2008	220	225,030	4	380	224	225,410
2009	214	223,995	4	380	218	224,375
2010	200	209,600	3	255	203	209,855

TABLE A-11a. Estimates of the numbers and well volume (cubic meters) of purse-seine (PS) and pole-and-line (LP) vessels that fished in the EPO in 2009, by flag and gear. Each vessel is included in the total for each flag under which it fished during the year, but is included only once in the "Grand total"; therefore the grand total may not equal the sums of the individual flags.

TABLA A-11a. Estimaciones del número y volumen de bodega (metros cúbicos) de buques cerqueros (PS) y cañeros (LP) que pescaron en el OPO en 2009, por bandera y arte de pesca. Se incluye cada buque en los totales de cada bandera bajo la cual pescó durante el año, pero solamente una vez en el "Total general"; por consiguiente, los totales generales no equivalen necesariamente a las sumas de las banderas individuales.

TNL	C	Well volume —Volumen de bodega (m³)					Total	
Flag Bandera	Gear Arte	<401	401-800	801-1300	1301-1800	>1800	No	Vol. (m ³)
Danuera	Arte	Number—Número					No.	Vol. (m ³)
BOL	PS	1	-	=	-	-	1	222
COL	PS	2	2	7	3	-	14	14,860
ECU	PS	36	23	13	4	9	85	60,096
ESP	PS	-	-	-	-	4	4	10,116
GTM	PS	-	-	-	1	1	2	3,575
HND	PS	-	1	1	-	-	2	1,559
MEX	PS	5	5	20	16	-	46	50,254
	LP	4	-	-	_	_	4	380
NIC	PS	-	-	4	1	-	5	6,353
PAN	PS	-	4	8	10	2	24	31,225
PER	PS	-	2	-	-	-	2	1,000
SLV	PS	-	-	1	-	3	4	7,415
USA	PS	-	-	1	-	2	3	5,315
VEN	PS	-	-	11	8	2	21	29,403
VUT	PS	-	-	1	2	-	3	3,609
Grand total— Total general	PS	44	35	67	45	23	214	
	LP	4	_	-	=	-	4	
	PS + LP	48	35	67	45	23	218	
Well volume—Volumen de bodega (m³)								
Grand total— Total general	PS	11,591	20,517	75,251	66,101	50,535		223,995
	LP	380	-	-	-	-		380
	PS + LP	11,971	20,517	75,251	66,101	50,535		224,375

^{-:} none-ninguno

TABLE A-11b. Estimates of the numbers and well volumes (cubic meters) of purse-seine (PS) and pole-and-line (LP) vessels that fished in the EPO in 2010 by flag and gear. Each vessel is included in the total for each flag under which it fished during the year, but is included only once in the "Grand total"; therefore the grand total may not equal the sums of the individual flags.

TABLA A-11b. Estimaciones del número y volumen de bodega (metros cúbicos) de buques cerqueros (PS) y cañeros (LP) que pescaron en el OPO en 2010, por bandera y arte de pesca. Se incluye cada buque en los totales de cada bandera bajo la cual pescó durante el año, pero solamente una vez en el "Total general"; por consiguiente, los totales generales no equivalen necesariamente a las sumas de las banderas individuales.

Floo	C	Well volume —Volumen de bodega (m³)					Total	
Flag Bandera	Gear Arte	<401	401-800	801-1300	1301-1800	>1800	No	Vol. (m ³)
Danuera	Arte	Number—Número					No.	Vol. (m ³)
BOL	PS	1	-	-	-	-	1	222
COL	PS	1	2	7	3	-	13	14,590
ECU	PS	34	25	13	4	9	85	60,685
ESP	PS	-	-	-	-	4	4	10,116
GTM	PS	-	-	1	1	1	3	4,819
HND	PS	-	1	1	-	=	2	1,559
MEX	PS	3	3	18	15	-	39	45,224
	LP	3	-	-	-	=	3	255
NIC	PS	-	_	4	1	-	5	6,353
PAN	PS	-	3	8	10	3	24	32,599
PER	PS	-	1	-	-	-	1	458
SLV	PS	-	-	1	-	3	4	7,415
VEN	PS	-	_	9	8	-	17	22,747
VUT	PS	-	-	1	2	=	3	3,609
C	PS	39	34	63	44	20	200	
Grand total—	LP	3	-	-	-	-	3	
Total general	PS + LP	42	34	63	44	20	203	
Well volume—Volumen de bodega (m³)								
Grand total—	PS	10,491	19,638	70,679	65,556	43,236		209,600
Total general	LP	255	-	-	-	-		255
Total general	PS + LP	10,746	19,638	70,679	65,556	43,236		209,855

^{-:} none—ninguno

TABLE A-12. Minimum, maximum, and average capacity, in thousands of cubic meters, of purse-seine and pole-and-line vessels at sea in the EPO during 2000-2009 and in 2010, by month.

TABLA A-12. Capacidad mínima, máxima, y media, en miles de metros cúbicos, de los buques cerqueros y cañeros en el mar en el OPO durante 2000-2009 y en 2010 por mes.

Month		2010			
Mes	Min	Max	AveProm.	2010	
1	127.3	107.3	157.7	100.7	
2	142.8	106.4	175.3	151.4	
3	134.2	101.2	159.9	148.8	
4	140.1	108.9	165.0	152.6	
5	138.1	99.9	164.4	157.1	
6	140.6	106.2	175.0	154.9	
7	147.4	116.4	170.4	167.5	
8	108.8	62.2	140.2	120.3	
9	119.6	92.9	137.7	107.0	
10	146.1	93.6	172.2	164.0	
11	128.4	77.3	150.8	109.8	
12	75.1	39.1	116.4	53.6	
AveProm.	129.0	92.6	157.1	132.3	

B. ATÚN ALETA AMARILLA

Este informe presenta la evaluación más actual de la población de atún aleta amarilla (*Thunnus albacares*) en el Océano Pacífico oriental (OPO). Se usó un modelo de evaluación de poblaciones estadístico integrado con estructura por edad (Stock Synthesis Version 3.20b) en la evaluación, que se basa en el supuesto que existe una sola población de aleta amarilla en el OPO y es probable que exista una población continua en el Océano Pacífico entero, con intercambio de individuos a nivel local, aunque existe cierta evidencia genética de aislamiento local. La mayor parte de la captura de aleta amarilla proviene de las zonas oriental y occidental del centro del Pacífico, aunque las capturas cerqueras de aleta amarilla son relativamente bajas cerca del límite occidental del OPO en 150°O (Figura A.1). The mayor parte de la captura de aleta amarilla en el OPO proviene de lances cerqueros sobre aletas amarillas asociado con delfines y en cardúmenes no asociados (Figura B.1). Los desplazamientos de aletas amarillas marcados son generalmente de centenares, no miles, de kilómetros, y el intercambio de peces entre el OPO y el Pacífico occidental parece ser limitado. Esto es consistente con que las tendencias de la captura por unidad de esfuerzo (CPUE) palangrera varíen entre áreas. No es posible estimar las tasas de desplazamiento entre el OPO y el Pacífico occidental con los datos de marcado actualmente disponibles.

La evaluación de poblaciones requiere cantidades sustanciales de información, incluyendo datos de capturas retenidas, descartes, índices de abundancia, y la composición por tamaño de las capturas de las distintas pesquerías. Se hicieron supuestos sobre procesos tales como crecimiento, reclutamiento, desplazamiento, mortalidad natural, mortalidad por pesca (*F*), y estructura de poblaciones. Los datos de captura de las pesquerías de superficie han sido actualizados, y nuevos datos de 2010 añadidos. Se dispone de datos de palangre nuevos o actualizados de Polinesia Francesa (2008), Japón (2008-2010), Corea (2009), y Estados Unidos (2008-2009). Se actualizaron los datos de CPUE de la pesquería de superficie, y se añadieron datos de CPUE nuevos de 2010. Se dispone de datos nuevos de la flota palangrera japonesa (2008-2010). Se añadieron datos nuevos de composición por talla de 2010. Se dispones de datos de frecuencia de talla nuevos o actualizados de la flota palangrera japonesa (2007-2009).

En general, el reclutamiento de aleta amarilla a las pesquerías en el OPO es variable, con un componente estacional (Figura B-2). El presente análisis y los análisis previos indican que la población de aleta amarilla ha pasado por dos, o posiblemente tres, regímenes distintos de productividad de reclutamiento (1975-1982, 1983-2002, y 2003-2010), correspondientes a regímenes de biomasa, con régimen de productividad alto produce niveles mayores de biomasa. Una relación población-reclutamiento es también apoyada por los datos de estos regímenes, pero las pruebas son tenues, y esto es probablemente artefactos de los cambios de régimen aparentes. Una disminución brusca reciente de los niveles de biomasa reproductora desde 2009 sigue una serie de reclutamienos inferiores al promedio desde el segundo trimestre de 2007 hasta el último trimestre de 2008.

El peso medio de los aletas amarillas capturados en la pesquería ha sido bastante consistente en el transcurso de los años, pero varía sustancialmente entre las distintas pesquerías. En general, las pesquerías sobre objetos flotantes, no asociada del norte, y cañera capturan aletas amarillas más jóvenes y pequeños que las pesquerías no asociada del sur, asociadas con delfines, y palangreras. En las pesquerías palangreras y en la pesquería asociada con delfines del sur se capturan aletas amarillas de mayor edad y tamaño que en las pesquerías sobre delfines costera y del norte.

Se han estimado niveles importantes de mortalidad por pesca en la pesquería de aleta amarilla en el OPO (Figura B-3). Estos niveles son máximos para los aletas amarillas de edad intermedia. Las pesquerías de cerco asociadas con delfines y no asociadas han ejercido el mayor impacto sobre la biomasa reproductora del aleta amarilla, seguidas por las pesquerías sobre objetos flotantes. El impacto de los descartes de las pesquerías de palangre y de cerco es mucho menor (Figura B-4).

Existe un patrón retrospectivo grande de sobreestimación del reclutamiento reciente, el cual, en combinación con los amplios intervalos de confianza de las estimaciones del reclutamiento reciente

indican que estas estimaciones del reclutamiento reciente y las de la biomasa reciente son inciertas.

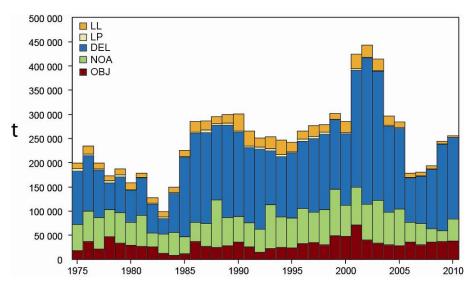
Históricamente, el cociente de biomasa reproductora (el cociente de la biomasa reproductora a aquel de la población no pescada; SBR) del aleta amarilla en el OPO estuvo por debajo del nivel correspondiente al rendimiento máximo sostenible (RMS) durante 1975-1983, coincidiendo con el régimen de productividad baja, pero por encima de ese nivel durante la mayoría de los años subsiguientes, excepto el período reciente (2004-2007 y 2010) (Figura B-5). Se atribuye el incremento del SBR en 1984 a un cambio de régimen, y la disminución reciente podría ser una reversión a un régimen de productividad intermedio. Los dos distintos regímenes de productividad podrían sostener dos niveles distintos de RMS y de los SBR asociados. Se estima que el SBR al principio de 2011 estuvo en 0,18, debajo del nivel correspondiente al RMS (0,25). Se estima que los niveles de esfuerzo son menores que aquéllos que sostendrían el RMS (con base en la distribución actual del esfuerzo entre las distintas pesquerías) (Figura B-6), y las capturas recientes son sustancialmente menores que el RMS (Tabla B-1).

Es importante señalar que la curva que relaciona al rendimiento sostenible promedio a la mortalidad por pesca a largo plazo es muy plana alrededor del nivel de RMS (Figura B-7). Por lo tanto, cambios en los niveles de esfuerzo a largo plazo cambiarán las capturas a largo plazo de forma marginal solamente, pero cambiarán la biomasa considerablemente. Reducir la mortalidad por pesca por debajo del nivel de RMS produciría una disminución tan sólo marginal en el rendimiento promedio a largo plazo, con el beneficio de un aumento relativamente grande de la biomasa reproductora. Además, si se basa la ordenación en la evaluación del caso base, que supone que no existe una relación población-reclutamiento, cuando en realidad sí existe esa relación, causaría una pérdida de rendimiento mayor que si se basarar la ordenación en suponer una relación población-reclutamiento cuando en realidad no existe tal relación (Figura B-7).

Los cálculos de RMS indican que, al menos en teoría, se podría incrementar las capturas si se dirigiera el esfuerzo de pesca hacia la pesca con palangre y a los lances sobre aleta amarilla asociado con delfines. Esto incrementaría también los niveles de SBR.

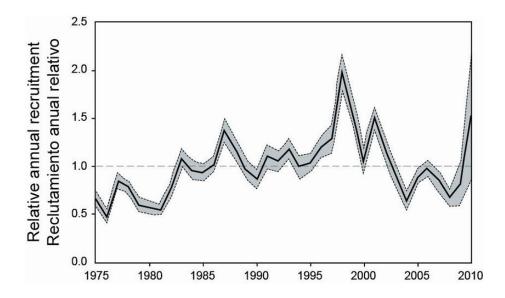
El RMS ha sido estable durante el período de la evaluación (1975-202; Figura B-8), lo cual sugiere que el patrón general de selectividad no ha variado mucho a lo largo del tiempo. No obstante, el nivel general del esfuerzo de pesca ha variado con respecto al nivel correspondiente a RMS.

El SBR correspondiente al RMS disminuyó sustancialmente con respecto a la evaluación previa, lo cual indica que los resultados son sensibles al cambio en la metodología. Se atribuye el cambio al método usado para modelar la selectividad. No obstante, el SBR relativo al SBR correspondiente al RMS y el multiplicador de *F* son similares a la evaluación previa.


Si se supone una relación población-reclutamiento, el pronóstico es más pesimista, y se estima que el esfuerzo actual está por encima del nivel correspondiente al RMS. La condición de la población es también sensible al valor supuesto del tamaño medio de las peces de mayor edad. Si se supone que la CPUE de la pesquería asociada con delfines del norte, en lugar de aquella de la pesquería de palangre del sur, es el índice de abundancia más fiable, se estima que la biomasa reproductora actual de la población se encuentra aproximadamente en el nivel correspondiente al RMS.

Con los niveles actuales (2006-2010) de mortalidad por pesca, se predice que la biomasa reproductora se reconstruirá, y que permanecerá por encima del nivel correspondiente al RMS (Figura B-5). No obstante, los intervalos de confianza son anchos, existe un patrón retrospectivo en el reclutamiento reciente, y existe una probabilidad moderada que el SBR esté sustancialmente por encima o por debajo de este nivel. Se predice que pescar en F_{RMS} reducirá la biomasa reproductora levemente de aquélla con el esfuerzo actual y producirá capturas levemente mayores (Figura B-9)..

Resultados clave


1. Existe incertidumbre acerca de los niveles recientes y futuros de reclutamiento y biomasa, y existen patrones retrospectivos de sobreestimación del reclutamiento reciente.

- 2. Las tasas recientes de mortalidad por pesca son más bajas que aquellas correspondientes al RMS.
- 3. Los niveles recientes de la biomasa reproductora están por debajo de aquellos correspondientes al RMS.
- 4. Un aumento del peso medio del aleta amarilla capturado podría incrementar el RMS.
- 5. Han ocurrido dos, y posiblemente tres, regímenes distintos de productividad, y los niveles de RMS y la biomasa correspondiente al RMS podrían ser diferentes entre los regímenes. Es posible que la población haya cambiado recientemente de un régimen de productividad alto a uno intermedio.
- 6. Los resultados son más pesimistas si se supone una relación población-reclutamiento.
- 7. Los resultados son sensibles al tamaño medio supuesto para los peces de mayor edad.

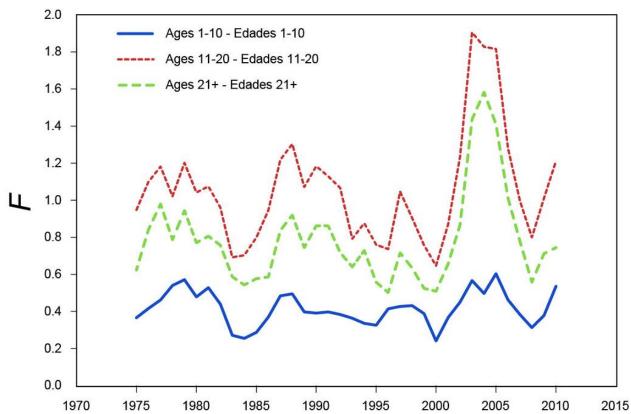

FIGURE B-1. Total catches (retained catches plus discards) for the purse-seine fisheries, and retained catches for the pole-and-line and longline fisheries, of yellowfin tuna in the eastern Pacific Ocean, 1975-2010. The purse-seine catches are adjusted to the species composition estimate obtained from sampling the catches. The 2010 catch data are preliminary.

FIGURA B-1. Capturas totales (capturas retenidas más descartes) en las pesquerías de cerco, y capturas retenidas de las pesquerías de caña y de palangre, de atún aleta amarilla en el Océano Pacífico oriental, 1975-2010. Se ajustan las capturas de cerco a la estimación de la composición por especie obtenida del muestreo de las capturas. Los datos de captura de 2010 son preliminares.

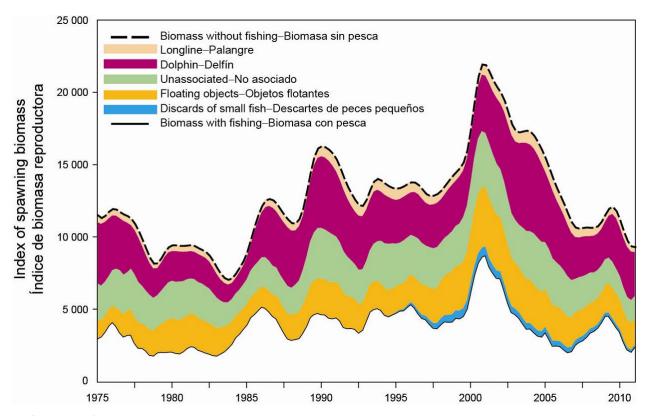

FIGURE B-2. Estimated annual recruitment at age zero of yellowfin tuna to the fisheries of the EPO. The estimates are rescaled so that the average recruitment is equal to 1.0. The solid line illustrates the maximum likelihood estimates of recruitment, and the shaded area indicates the approximate 95% confidence intervals around those estimates.

FIGURA B-2. Reclutamiento anual estimado a edad cero del atún aleta amarilla a las pesquerías del OPO. Se reescalan las estimaciones para que reclutamiento medio equivalga 1.0. La línea sólida indica las estimaciones de verosimilitud máxima del reclutamiento, y el área sombreada los límites de confianza de 95% aproximados de las estimaciones

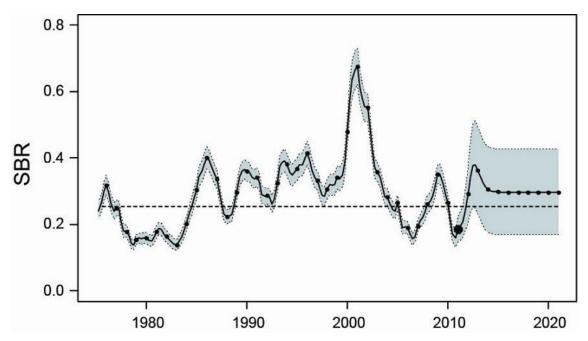

FIGURE B-3. Average annual fishing mortality (F) by age groups, by all gears, of yellowfin tuna recruited to the fisheries of the EPO. The age groups are defined by age in quarters.

FIGURA B-3. Mortalidad por pesca (*F*) anual media, por grupo de edad, por todas las artes, de atún aleta amarilla reclutado a las pesquerías del OPO. Se definen los grupos de edad por edad en trimestres.

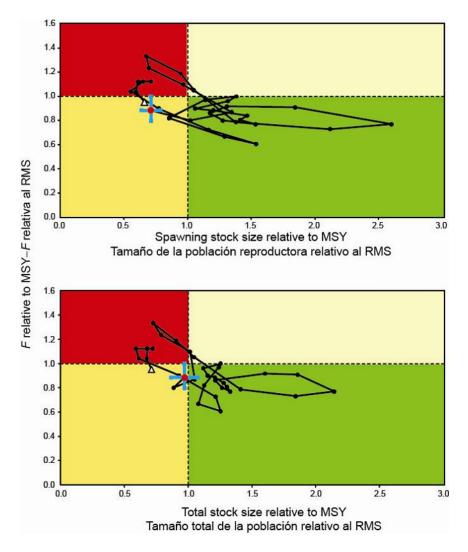

FIGURE B-4. Biomass trajectory of a simulated population of yellowfin tuna that was never exploited (dashed line) and that predicted by the stock assessment model (solid line). The shaded areas between the two lines show the portions of the fishery impact attributed to each fishing method.

FIGURA B-4. Trayectoria de la biomasa de una población simulada de atún aleta amarilla que nunca fue explotada (línea de trazos) y aquella predicha por el modelo de evaluación de la población (línea sólida). Las áreas sombreadas entre las dos líneas represantan la porción del impacto de la pesca atribuida a cada método de pesca.

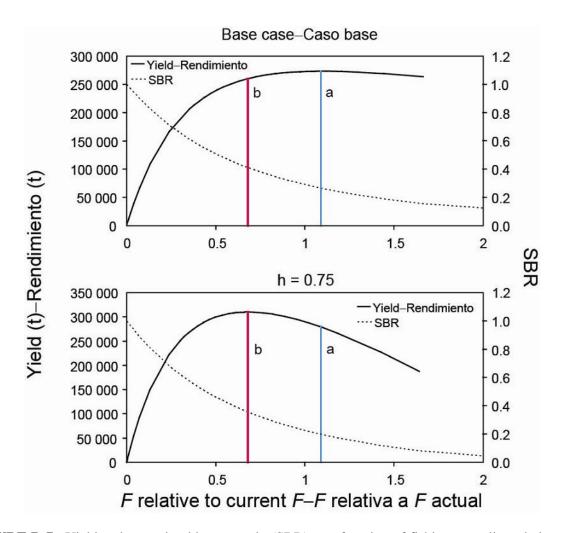

FIGURE B-5. Estimated spawning biomass ratios (SBRs) for yellowfin tuna in the EPO. The dashed horizontal line (at about 0.26) identifies the SBR at MSY. The solid curve illustrates the maximum likelihood estimates, and the estimates after 2011 (the large dot) indicate the SBR predicted to occur if fishing mortality rates continue at the average of that observed during 2008-2010. The thin dashed lines are the 95-percent confidence intervals around these estimates.

FIGURA B-5. Cocientes de biomasa reproductora (SBR) estimados del atún aleta amarilla en el OPO. La línea de trazos horizontal (en aproximadamente 0.26) identifica el SBR en RMS. La curva sólida ilustra las estimaciones de verosimilitud máxima, y las estimaciones a partir de 2011 (el punto grande) señalan el SBR predicho si las tasas de mortalidad por pesca continúan en el promedio observado durante 2008-2010. Las líneas de trazos delgadas representan los límites de confianza de 95% de las estimaciones.

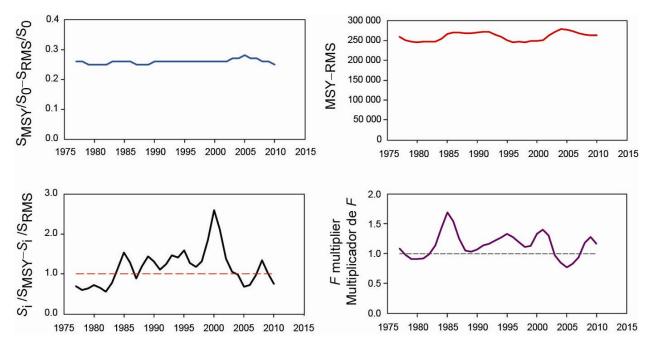

FIGURE B-6. Phase (Kobe) plot of the time series of estimates for stock size (top: spawning biomass; bottom: total biomass) and fishing mortality relative to their MSY reference points. Each dot is based on the average exploitation rate over three years; the large triangle and the red dot indicate the earliest amd the most recent estimate, respectively. The squares represent approximate 95% confidence intervals around the most recent estimate.

FIGURA B-6. Gráfica de fase (Kobe) de la serie de tiempo de las estimaciones del tamaño de la población (arriba: biomasa reproductora; abajo: biomasa total) y la mortalidad por pesca en relación con sus puntos de referencia de RMS. Cada punto se basa en la tasa de explotación media de tres años; el triángulo grande y el punto rojo indican la estimación más temprana y más reciente, respectivamente. Los cuadros representan los intervalos de confianza de 95% aproximados alrededor de la estimación más reciente.

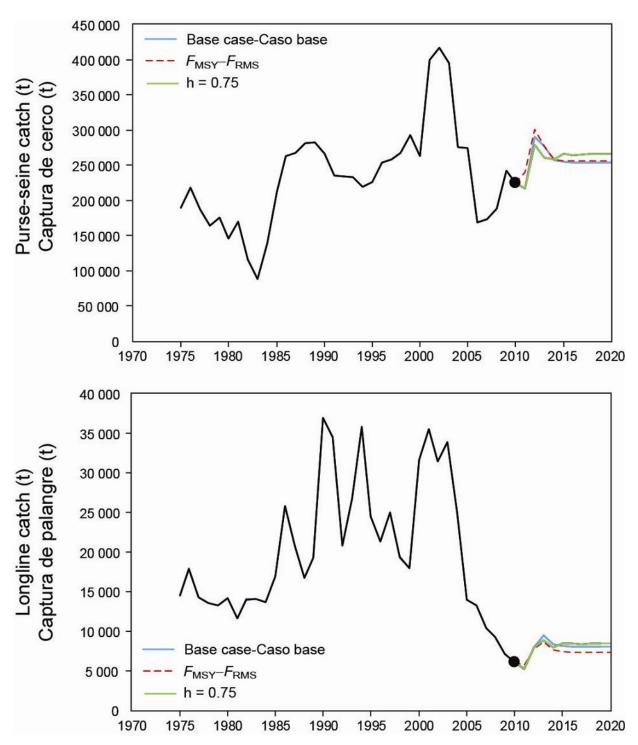


FIGURE B-7. Yield and spawning biomass ratio (SBR) as a function of fishing mortality relative to the current fishing mortality. The vertical lines represent the fishing mortality corresponding to MSY for the base case and the sensitivity analysis that uses a stock-recruitment relationship (h = 0.75). The vertical lines a and b represent the fishing mortality corresponding to MSY for the base case and h = 0.75, respectively.

FIGURA B-7. Rendimiento y cociente de biomasa reproductora (SBR) como función de la mortalidad por pesca relativa a la mortalidad por pesca actual. Las líneas verticales representan la mortalidad por pesca correspondiente al RMS del caso base y el análisis de sensibilidad que usa una relación población-reclutamiento (h = 0.75). Las líneas verticales a y b representan la mortalidad por pesca correspondiente al RMS del caso base y de h = 0.5, respectivamente.

FIGURE B-8. Estimates of MSY-related quantities calculated using the three-year average age-specific fishing mortality for each year. S_i is the index of spawning biomass at the start of the year on the x-axis. **FIGURA B-8.** Estimaciones de cantidades relacionadas con el RMS calculadas a partir del promedio de tres años de la mortalidad por pesca por edad de cada año. S_i es el índice de la biomasa reproductora al principio del año en el eje x.

FIGURE B-9. Historic and projected purse-seine and longline catch from the base case while fishing with the current effort (average fishing mortality during 2008-2010), the base case while fishing at the fishing mortality corresponding to MSY (F_{MSY}), and the analysis of sensitivity to steepness (labeled h = 75) of the stock-recruitment relationship while fishing with the current effort.

FIGURA B-9. Capturas de cerco y de palangre históricas y proyectadas del caso base con la pesca en el nivel actual de esfuerzo (la mortalidad por pesca promedio durante 2008-2010), del caso base con la pesca en la mortalidad por pesca correspondiente al RMS ($F_{\rm RMS}$), y el análisis de sensibilidad a la inclinación (h = 0.75) de la relación población-reclutamiento al pescar con el esfuerzo actual.

TABLE B-1. MSY and related quantities for the base case and the stock-recruitment relationship sensitivity analysis, based on average fishing mortality (F) for 2008-2010. B_{recent} and B_{MSY} are defined as the biomass, in metric tons, of fish 3+ quarters old at the start of the first quarter of 2011 and at MSY, respectively, and S_{recent} and S_{MSY} are defined as indices of spawning biomass (therefore, they are not in metric tons). C_{recent} is the estimated total catch for 2010.

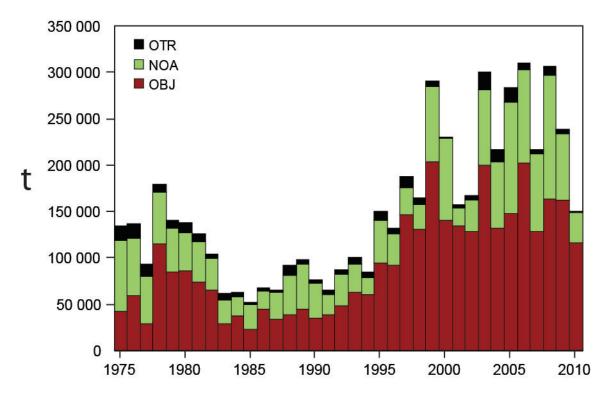
TABLA B-1. RMS y cantidades relacionadas para el caso base y el análisis de sensibilidad a la relación población-reclutamiento, basados en la mortalidad por pesca (F) media de 2008-2010. Se definen B_{reciente} y B_{RMS} como la biomasa, en toneladas, de peces de 3+ trimestres de edad al principio del primer trimestre de 2011 y en RMS, respectivamente, y S_{reciente} y S_{RMS} como índices de biomasa reproductora (por lo tanto, no se expresan en toneladas). C_{reciente} es la captura total estimada de 2010.

	Base case – Caso base	h = 0.75
MSY-RMS	262,857	291,790
$B_{ m MSY}$ – $B_{ m RMS}$	354,958	559,967
$S_{ m MSY}$ — $S_{ m RMS}$	3,305	5,993
B_{MSY}/B_0 - B_{RMS}/B_0	0.31	0.37
$S_{ m MSY}/S_0$ - $S_{ m RMS}/S_0$	0.26	0.35
$C_{\text{recent}}/\text{MSY}$ — $C_{\text{reciente}}/\text{RMS}$	0.88	0.79
$B_{ m recent}/B_{ m MSY}$ $-B_{ m reciente}/B_{ m RMS}$	0.96	0.61
$S_{ m recent}/S_{ m MSY}-S_{ m reciente}/S_{ m RMS}$	0.71	0.39
$S_{\mathrm{MSY}}/S_{F=0}$ – $S_{\mathrm{RMS}}/S_{F=0}$		
F multiplier—Multiplicador de F	1.13	0.71

C. ATÚN BARRILETE

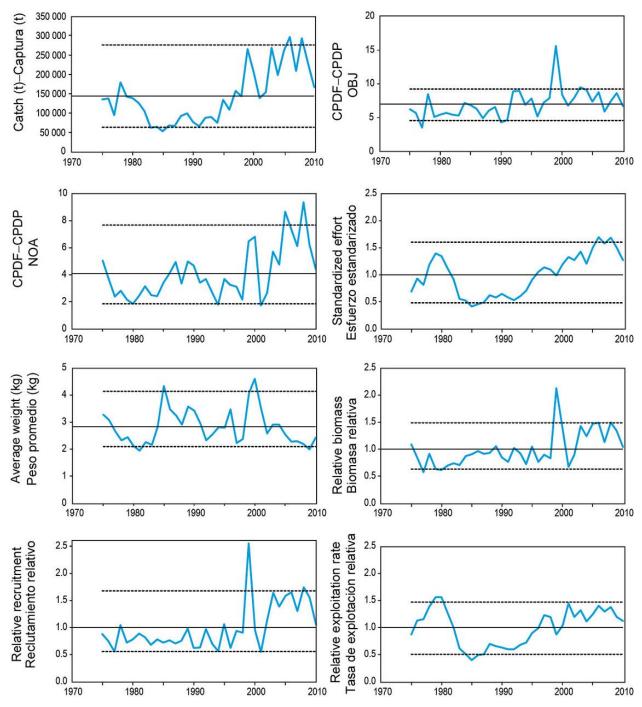
Se ha usado un análisis de la captura por talla y edad, A-SCALA (del inglés *age-structured*, *catch-at-length analysis*) para evaluar el atún barrilete en el Océano Pacífico oriental (OPO). Se describen los métodos analíticos en el Boletín de la CIAT, Vol. 22, No. 5. La última vez que se usó este método para el barrilete fue en 2004 (<u>Informe de Evaluación de Stocks 5</u>, disponible en la <u>página web de la CIAT</u>), e incluyó datos hasta 2003, inclusive. Más recientemente, se han usado indicadores basados en datos y en modelos para evaluar la condición de la población.

En la Figura C-1 se ilustran las capturas usadas en la evaluación.


Un análisis de rendimiento por recluta señala que se logra el rendimiento máximo con una mortalidad por pesca infinita porque el peso crítico (el peso al cual el incremento del peso total de una cohorte debido al crecimiento es igual a la pérdida de peso de la cohorte debida a la mortalidad natural) es menos que el peso medio de reclutamiento a la pesquería. Sin embargo, este resultado no es seguro debido a incertidumbres en las estimaciones de mortalidad natural y crecimiento.

Los resultados de un análisis descrito en el <u>Informe de Evaluación de Stocks 7</u> de la CIAT, en el cual se elaboró un índice de abundancia relativa a partir de las proporciones de los atunes barrilete y patudo en la pesca sobre objetos flotantes, fueron consistentes con las evaluaciones previas, y sugieren que no existe motivo de preocupación con respecto a la ordenación del atún barrilete, aparte de la captura asociada de patudo en los lances sobre objetos flotantes.

En la Figura C-2 se ilustran ocho indicadores basados en datos y en modelos. El esfuerzo estandarizado, una medida de la tasa de explotación, es calculado como la suma del esfuerzo, en días de pesca, de las pesquerías sobre objetos flotantes (OBJ) y no asociadas (NOA). Para estandarizar el esfuerzo sobre objetos flotantes para que sea equivalente al esfuerzo no asociado, se multiplica el esfuerzo sobre objetos flotantes por la razón de la captura por unidad de esfuerzo (CPUE) media sobre objetos flotantes a la CPUE media no asociada.


La captura de cerco viene aumentando desde 1985, y ha fluctuado alrededor del nivel de referencia superor desde 2003, pero disminuyó en 2010. Con la excepción de un pico grande en 1999, la CPUE sobre objetos flotantes ha fluctuado generalmente alrededor de un nivel medio desde 1990. La CPUE ha sido superior al promedio desde aproximadamente 2003, y estuvo en su nivel máximo en 2008, pero disminuyó en 2010. El indicador de esfuerzo estandarizado, una medida de la tasa de explotación, viene aumentando desde aproximadamente 1991, y ha estado por encima del nivel de referencia superior en los últimos años, pero disminuyó por debajo del mismo en 2009 y 2010. El peso promedio del barrilete viene disminuyendo desde 2000, y en 2009 se encontró debajo del nivel de referencia inferior, pero aumentó en 2010. La tendencia reciente es consistente entre las pesquerías sobre objetos flotantes, pero no se observa en las pesquerías no asociadas. La expansión de las pesquerías hacia el oeste podría explicar en parte la reducción del peso promedio, y es necesario un análisis espacial más detallado del peso promedio. La biomasa, el reclutamiento, y la tasa de explotación han estado aumentando en los 20 últimos años, y han fluctuado en niveles altos desde 2003, pero disminuyeron en 2010.

La preocupación principal con respecto a la población de barrilete es el incremento constante de la tasa de explotación. Sin embargo, los indicadores basados en datos y en modelos todavía no han detectado ninguna consecuencia negativa de este incremento. El peso promedio estuvo por debajo de su nivel de referencia inferior en 2009, lo cual puede ser consecuencia de una explotación excesiva, pero también podría ser causado por reclutamientos recientes más fuertes que los anteriores. La disminución continuada de la talla promedio es motivo de preocupación y, combinada con una estabilización de la captura y la CPUE, podría indicar que la tasa de explotación está cerca del nivel asociado con el RMS, o por encima del mismo. La tendencia en muchos de los indicadores cambió en 2010, pero es incierto lo que esto implica.

FIGURE C-1. Total catches (retained catches plus discards) of skipjack tuna by the purse-seine fisheries on floating objects and unassociated schools, and by other fisheries combined, in the eastern Pacific Ocean. The purse-seine catches are adjusted to the species composition estimate obtained from sampling the catches. The 2010 catch data are preliminary.

FIGURA C-1. Capturas totales (capturas retenidas más descartes) de atún barrilete por las pesquerías de cerco sobre objetos flotantes y cardúmenes no asociados, y de las demás pesquerías combinadas, en el Océano Pacífico oriental. Las capturas cerqueras están ajustadas a la estimación de la composición por especie obtenida del muestreo de las capturas. Los datos de captura de 2010 son preliminares.

FIGURE C-2. Indicators of the stock status of skipjack tuna based on data and/or a simple stock assessment model. CPDF: catch per day fished.

FIGURA C-2. Indicadores de la condición de la población de atún barrilete basados en datos y/o en un modelo sencillo de evaluación de población. CPDP: captura por día de pesca

D. ATÚN PATUDO

Este informe presenta la evaluación más actual de la población de atún patudo (*Thunnus obesus*) en el Océano Pacífico oriental (OPO). Se usó en la evaluación un modelo de evaluación de poblaciones estadístico integrado con estructura por edad (*Stock Synthesis*; Versión 3.20b), igual que el modelo de caso base en la evaluación previa (<u>Informe de Evaluación de Stocks 11</u> de la CIAT).

El atún patudo se encuentra distribuido por todo el Océano Pacífico, pero la mayor parte de la captura proviene de las zonas oriental y occidental del mismo. Las capturas cerqueras de aleta amarilla son sustancialmente más bajas cerca del límite occidental del OPO (150°O) (Figura A-3); las capturas palangreras son más continuas, pero relativamente bajas entre 160°O y 180° (Figura A-4). El patudo no es capturado frecuentemente con arte de cerco en el OPO al norte de 10°N, pero una porción sustancial de las capturas palangreras de patudo en el OPO proviene del norte de ese paralelo. El patudo no se desplaza grandes distancias (el desplazamiento neto del 95% de los patudos marcados es de menos de 1000 millas náuticas), e la información actual indica desplazamientos netos mínimos entre el OPO y el Océano Pacífico central y occidental (Figura D-1). Esto es consistente con que las tendencias de la captura por unidad de esfuerzo (CPUE) difieran entre zonas. Es probable que exista una población continua por todo el Océano Pacífico, con intercambio de individuos a escala local. Se realiza la evaluación como si existiera una sola población en el OPO, y ocurriera intercambio limitado de peces entre el OPO y el Océano Pacífico central y occidental. Sus resultados son consistentes con aquéllos de otros análisis del atún patudo a escala del Pacífico entero. Además, los análisis han demostrado que los resultados no son sensibles a la estructura espacial del análisis. Actualmente, no existen suficientes datos de marcado para brindar estimaciones adecuadas de los desplazamientos entre el OPO y el Océano Pacífico central y occidental.

La evaluación de la población requiere una cantidad sustancial de información. Se analizaron datos de capturas retenidas, descartes, captura por unidad de esfuerzo (CPUE), y datos de talla por edad y composición por tamaño de las capturas de varias pesquerías distintas. Se hicieron también varios supuestos sobre procesos tales como crecimiento, reclutamiento, desplazamiento, mortalidad natural, y mortalidad por pesca (ver Informe de Evaluación de Stocks 11). Se actualizaron los datos de captura y CPUE de las pesquerías de superficie para incluir datos nuevos de 2010. Se dispone de datos nuevos o actualizados de la captura palangrera de Polinesia Francesa (2009), Japón (2008-2010), Corea (2009) y Estados Unidos (2008-2009). Se dispone de datos de captura de 2010 para China, Taipei Chino y Vanuatu de las estadísticas de los informes mensuales. Se dispone de datos nuevos o actualizados de CPUE para la flota japonesa de palangre (2008-2010). Se dispone de datos nuevos de frecuencia de talla de la pesquería de cerco para 2010. Se dispone de datos nuevos o actualizados de frecuencia de talla para la flota japonesa de palangre (2007-2009).

Han ocurrido cambios sustanciales en la pesquería de atún patudo en el OPO. Inicialmente, la mayor parte de la captura de patudo fue tomada por buques de palangre, pero con la expansión de la pesquería asociada con los dispositivos agregadotes de peces, o plantados, desde 1993, la pesquería de cerco ha tomado una proporción creciente de la captura (Figura D-2). La pesquería sobre plantados captura patudo más pequeño, y ha resultado por lo tanto en cambios importantes en la cantidad de mortalidad por pesca causada por las pesquerías que capturan atún patudo en el OPO. En promedio, desde 1993 la mortalidad por pesca de patudo de menos de unos 15 trimestres de edad ha aumentado sustancialmente, y la de los de más de unos 15 trimestres de edad ha aumentado en un grado mucho menor (Figura D-3). El aumento de la mortalidad por pesca de los peces más jóvenes fue causado por la expansión de las pesquerías de cerco que capturan atún en asociación con objetos flotantes. Queda claro que la pesquería de palangre ejerció el mayor impacto sobre la población antes de 1995, pero con la reducción del esfuerzo de palangre, y la expansión de la pesquería sobre objetos flotantes, en la actualidad el impacto de la pesquería de cerco sobre la población es mucho mayor que aquél de la pesquería de palangre (Figura D-4). Los descartes de patudo pequeño tienen un impacto pequeño pero detectable sobre la merma de la población.

Dentro de la gama de biomasas reproductoras estimadas por la evaluación del caso base, la abundancia de los reclutas de patudo no parece estar relacionada con el potencial reproductor de las hembras adultas en el momento de cría.

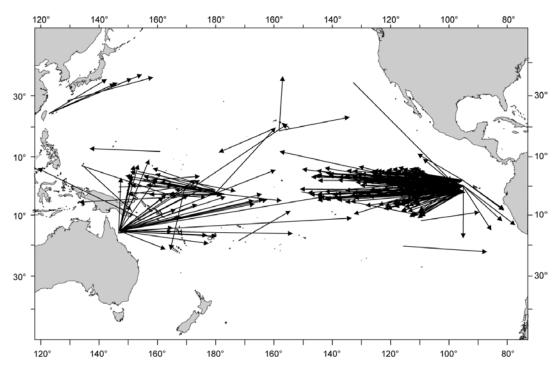
La serie de tiempo de estimaciones de reclutamiento de patudo tiene varias características importantes (Figura D-5). En primer lugar, las estimaciones del reclutamiento antes de 1993 son más inciertas, ya que las pesquerías sobre objetos flotantes no capturaban cantidades importantes de patudo pequeño. Hubo un período de reclutamiento anual superior al promedio en 1994-1998, seguido por un período de reclutamiento inferior al promedio en 1999-2000. Los reclutamientos fueron superiores al promedio entre 2001 y 2006, y fueron particularmente grandes en 2005 y 2006. El reclutamiento en 2009 estuvo por debajo del promedio, pero en 2010 parece haber sido particularmente grande. La estimación más reciente del reclutamiento anual (2009) es ligeramente inferior al nivel promedio. No obstante, esta estimación reciente es muy incierta, y debe ser considerada con cautela, debido a que el patudo recién reclutado está representado en solamente unas pocas muestras de frecuencia de talla.

Desde el principio de 2005, cuando el cociente de biomasa reproductora (*spawning biomass ratio*, o SBR: el cociente de la biomasa reproductora actual a aquella de la población no explotada) de atún patudo estuvo en su nivel mínimo histórico de 0,16, la población ha mostrado una tendencia recuperativa, a un SBR de 0,24 al principio de 2011 (Figura D-6) Según el modelo de caso base, la estimación más reciente del SBR es un 21% mayor que el nivel de rendimiento máximo sostenible (RMS) (Tabla D-1). Esta tendencia recuperativa reciente es subsiguiente a las resoluciones de conservación de la CIAT iniciadas en 2004.

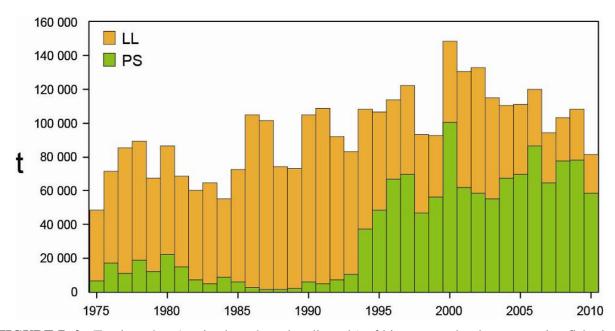
Se estima que las capturas recientes han sido un 8% mayores que aquéllas correspondientes a los niveles de RMS (Tabla D-1). Si la mortalidad por pesca (*F*) es proporcional al esfuerzo de pesca, y se mantienen los patrones actuales de selectividad por edad, el nivel de esfuerzo de pesca correspondiente al RMS es aproximadamente el 93% del nivel de esfuerzo actual (2008-2010) (Tabla D-1).

Según los resultados del caso base, las dos estimaciones más recientes indican que la población de patudo en el OPO probablemente no se encuentra sobrepescada ($S>S_{RMS}$), pero que la mortalidad por pesca es ligeramente superior al nivel correspondiente al RMS (está ocurriendo sobrepesca, $F>F_{RMS}$) (Figura D-7). No obstante, esta interpretación está sujeta a incertidumbre, tal como indican los intervalos de confianza aproximados alrededor de la estimación más reciente en la gráfica de Kobe (Figura D-7). Añadir los nuevos datos de 2010 y los datos actualizados de años anteriores redujo el SBR en comparación con la evaluación previa. Ocurrieron asimismo patrones retrospectivos similares en las evaluaciones previas al añadir datos nuevos y actualizados. Los cambios caen generalmente dentro de los intervalos de confianza de las cantidades estimadas, y están bien por dentro de las gamas estimadas en varios análisis de sensibilidad de la evaluación previa.

El RMS de patudo en el OPO podría ser maximizado si el patrón de selectividad por edad fuese similar a aquél de las pesquerías de palangre, porque capturan peces más grandes de un peso cercano al crítico. Antes de la expansión de la pesquería sobre objetos flotantes que comenzó en 1993, el RMS fue mayor que el RMS actual, y la mortalidad por pesca fue menos que $F_{\rm RMS}$ (Figura D-8).


Con los niveles actuales de mortalidad por pesca, se predice que los picos recientes en el reclutamiento no sostendrán la tendencia creciente del SBR observada desde 2004. Tanto el caso base como la evaluación que supone una relación población-reclutamiento indican que es probable que la población disminuya por debajo del nivel correspondiente al RMS con condiciones de reclutamiento promedio (Figura D-6). Se estima que las capturas serán menores en el futuro con los niveles actuales de esfuerzo de pesca si se supone una relación población-reclutamiento, particularmente en el caso de las pesquerías de superficie (Figura D-9).

Estas simulaciones se basan en el supuesto que los patrones de selectividad y capturabilidad no cambiarán en el futuro. Cambios en las prácticas con respecto a los objetivos de la pesca, o una mayor capturabilidad


de patudo a medida que disminuye la abundancia (por ejemplo, capturabilidad dependiente de la densidad) podrían resultar en diferencias de los resultados aquí predichos.

Resultados clave

- 1. Los resultados de esta evaluación indican una tendencia recuperativa reciente (2005-2010) del atún patudo en el OPO, subsiguiente a las resoluciones de conservación de atún de la CIAT iniciadas en 2004. No obstante, con los niveles actuales de mortalidad por pesca, se predice que los picos recientes en el reclutamiento no sostendrán esta tendencia de incremento.
- 2. Existe incertidumbre con respecto a los niveles de reclutamiento y biomasa recientes y futuros;
- 3. Se estima que las tasas recientes de mortalidad por pesca están ligeramente por encima del nivel correspondiente al RMS, y que los niveles recientes de la biomasa reproductora están por encima de dicho nivel. Tal como se describió en el Informe de Evaluación de Stocks 11, estas interpretaciones son inciertas, y altamente sensibles a los supuestos correspondientes al parámetro de inclinación de la relación población-reclutamiento, el tamaño medio de los peces más viejos, los niveles supuestos de mortalidad natural del patudo adulto, y el período histórico de la explotación de patudo usado en la evaluación. Los resultados son más pesimistas si se supone una relación población-reclutamiento, un valor mayor para el tamaño medio de los peces viejos, y niveles más bajos de mortalidad natural del patudo adulto, y si se incluye solamente el período tardío de la pesquería (1995-2009) en la evaluación
- 1. Los resultados son más optimistas si se supone un valor más bajo para el tamaño medio de los peces viejos, y si se suponen niveles de mortalidad natural más altos para el patudo adulto.

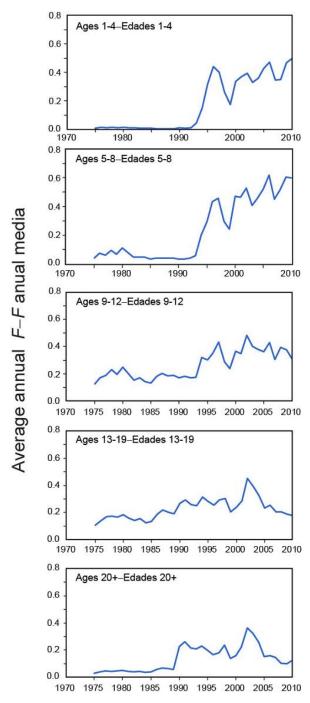


FIGURE D-1. Movements of more than 1000 nm by tagged bigeye tuna in the Pacific Ocean. **FIGURA D-1.** Desplazamientos de más de 1000 mm de atunes patudo marcados en el Océano Pacífico.

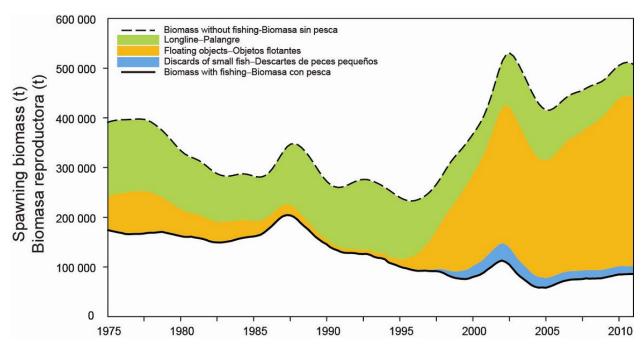

FIGURE D-2. Total catches (retained catches plus discards) of bigeye tuna by the purse-seine fisheries, and retained catches for the longline fisheries, in the eastern Pacific Ocean. The purse-seine catches are adjusted to the species composition estimate obtained from sampling the catches. The 2010 catch data are preliminary.

FIGURA D-2. Capturas totales (capturas retenidas más descartes) de atún patudo por las pesquerías de cerco, y capturas retenidas de las pesquerías palangreras en el Océano Pacífico oriental. Las capturas cerqueras están ajustadas a la estimación de la composición por especie obtenida del muestreo de las capturas. Los datos de captura de 2010 son preliminares.

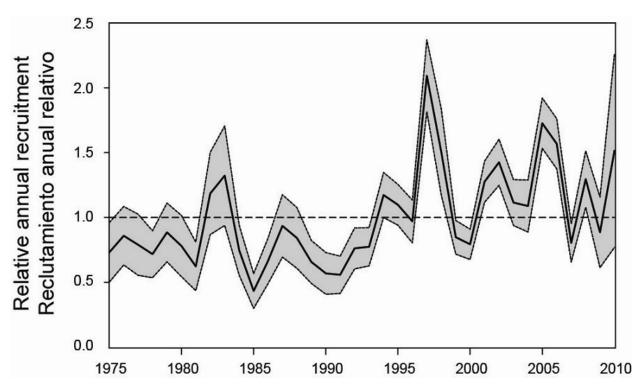

FIGURE D-3. Average annual fishing mortality, by all gears, of bigeye tuna recruited to the fisheries of the EPO. Each panel illustrates an average of four annual fishing mortality vectors that affected the fish in the range of ages indicated in the title of each panel. For example, the trend illustrated in the upper left panel is an average of the fishing mortalities that affected fish that were 1-4 quarters old.

FIGURA D-3. Mortalidad por pesca anual media, por todas las artes, de atún patudo reclutado a las pesquerías del OPO. Cada recuadro ilustra un promedio de cuatro vectores anuales de mortalidad por pesca que afectaron los peces de la edad indicada en el título de cada recuadro. Por ejemplo, la tendencia ilustrada en el recuadro superior izquierdo es un promedio de las mortalidades por pesca que afectaron a peces de entre 1-4 trimestres de edad.

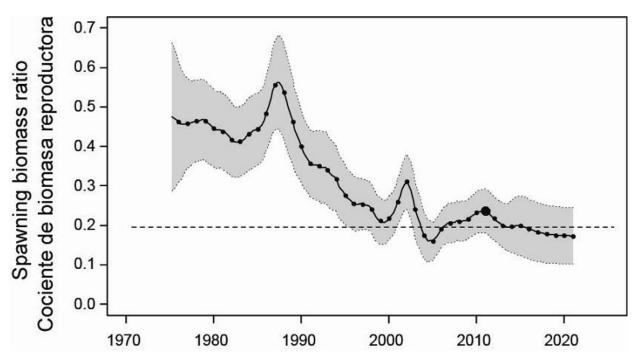

FIGURE D-4. Trajectory of the spawning biomass of a simulated population of bigeye tuna that was not exploited (dashed line) and that predicted by the stock assessment model (solid line). The shaded areas between the two lines show the portions of the fishery impact attributed to each fishery.

FIGURA D-4. Trayectoria de la biomasa reproductora de una población simulada de atún patudo no explotada (línea de trazos) y la que predice el modelo de evaluación (línea sólida). Las áreas sombreadas entre las dos líneas señalan la porción del impacto de la pesca atribuida a cada método de pesca.

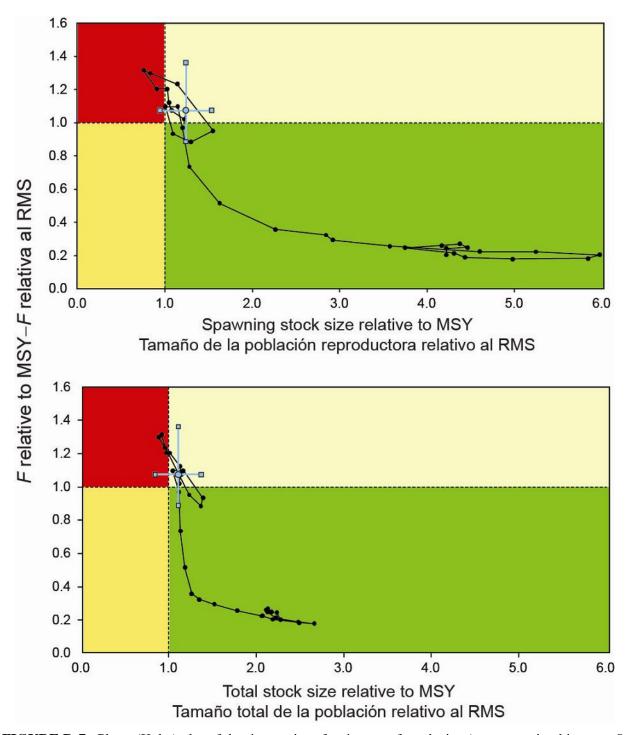

FIGURE D-5. Estimated annual recruitment at age zero of bigeye tuna to the fisheries of the EPO. The estimates are rescaled so that the average recruitment is equal to 1.0. The solid line shows the maximum likelihood estimates of recruitment, and the shaded area indicates the approximate 95% confidence intervals around those estimates.

FIGURA D-5. Reclutamiento anual estimado de atún patudo de edad cero a las pesquerías del OPO. Se reescalan las estimaciones para que el reclutamiento medio equivalga a 1,0. La línea sólida indica las estimaciones de reclutamiento de verosimilitud máxima, y el área sombreada indica los intervalos de confianza de 95% aproximados de esas estimaciones.

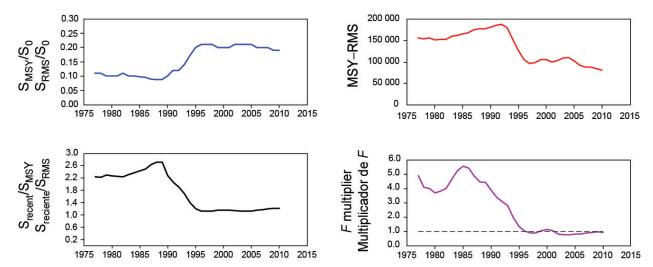

FIGURE D-6. Estimated spawning biomass ratios (SBRs) for bigeye tuna in the EPO. The dashed horizontal line (at about 0.19) identifies the SBR at MSY. The solid curve illustrates the maximum likelihood estimates, and the estimates after 2011 (the large dot) indicate the SBR predicted to occur if fishing mortality rates continue at the average of that observed during 2008-2010. The thin dashed lines are the 95-percent confidence intervals around these estimates.

FIGURA D-6. Cocientes de biomasa reproductora (SBR) estimados del atún patudo en el OPO. La línea de trazos horizontal (en aproximadamente 0.19) identifica el SBR en RMS. La curva sólida ilustra las estimaciones de verosimilitud máxima, y las estimaciones a partir de 2011 (el punto grande) señalan el SBR predicho si las tasas de mortalidad por pesca continúan en el promedio observado durante 2008-2010. Las líneas de trazos delgadas representan los límites de confianza de 95% de las estimaciones.

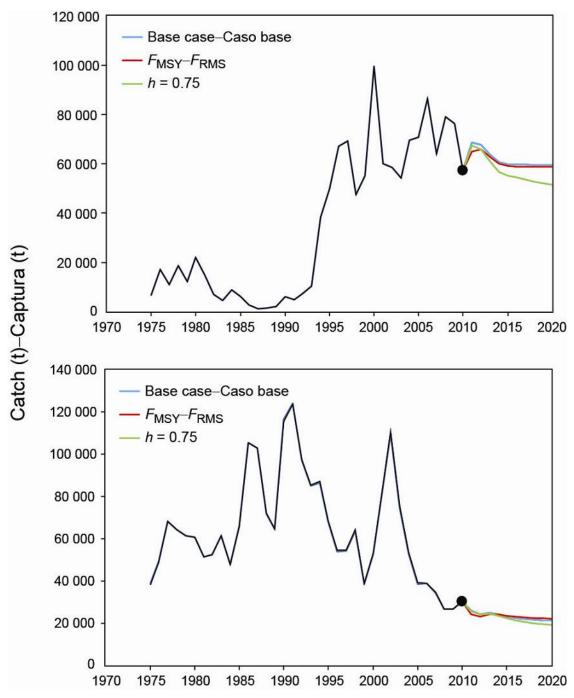


FIGURE D-7. Phase (Kobe) plot of the time series of estimates of stock size (top: spawning biomass, S; bottom: total biomass, B) and fishing mortality (F) of bigeye relative to their MSY reference points. Each dot is based on the average exploitation rate over three years; the large dot indicates the most recent estimate.

FIGURA D-7. Gráfica de fase (Kobe) de la serie de tiempo de las estimaciones del tamaño de la población (arriba: biomasa reproductora, *S*; abajo: biomasa total, *B*) y la mortalidad por pesca (*F*) de atún patudo en relación con sus puntos de referencia de RMS. Cada punto se basa en la tasa de explotación media de tres años. El punto grande indica la estimación más reciente.

FIGURE D-8. Estimates of MSY-related quantities calculated using the average age-specific fishing mortality for each year. S_{recent} is the spawning biomass at the end of the last year of the assessment. **FIGURA D-8.** Estimaciones de cantidades relacionadas con el RMS calculadas usando la mortalidad por pesca por edad de cada año. $S_{reciente}$ es la biomasa reproductora al fin del último año de la evaluación.

FIGURE D-9. Historic and projected annual catches of bigeye tuna by the surface (top panel) and longline (bottom panel) fisheries from the base case while fishing with the current effort (average fishing mortality during 2008-2010), the base case while fishing at the fishing mortality corresponding to MSY ($F_{\rm MSY}$), and the analysis of sensitivity to steepness (h = 0.75) of the stock-recruitment relationship while fishing with the current effort.

FIGURA D-9. Capturas anuales históricas y proyectadas de patudo por las pesquerías de superficie (arriba) y de palangre (abajo) del caso base con la pesca en el nivel actual de esfuerzo (mortalidad por pesca media durante 2008-2010), del caso base con la pesca en la mortalidad por pesca correspondiente al RMS ($F_{\rm RMS}$), y el análisis de sensibilidad a la inclinación (h=0.75) de la relación población-reclutamiento al pescar con el esfuerzo actual.

TABLE D-1. MSY and related quantities for the base case and the stock-recruitment relationship sensitivity analysis, based on average fishing mortality (F) for 2008-2010. B_{recent} and B_{MSY} are defined as the biomass, in metric tons, of fish 3+ quarters old at the start of the first quarter of 2011 and at MSY, respectively, and S_{recent} and S_{MSY} are defined as indices of spawning biomass (therefore, they are not in metric tons). C_{recent} is the estimated total catch for 2010.

TABLA D-1. RMS y cantidades relacionadas para el caso base y el análisis de sensibilidad a la relación población-reclutamiento, basados en la mortalidad por pesca (F) media de 2008-2010. Se definen B_{reciente} y B_{RMS} como la biomasa, en toneladas, de peces de 3+ trimestres de edad al principio del primer trimestre de 2011 y en RMS, respectivamente, y S_{reciente} y S_{RMS} como índices de biomasa reproductora (por lo tanto, no se expresan en toneladas). C_{reciente} es la captura total estimada de 2010.

	Base case – Caso base	h = 0.75
MSY-RMS	80,963	77,473
$B_{ m MSY}$ – $B_{ m RMS}$	311,247	547,291
$S_{ m MSY}$ — $S_{ m RMS}$	70,509	137,670
B_{MSY}/B_0 - B_{RMS}/B_0	0.24	0.33
$S_{ m MSY}/S_0$ - $S_{ m RMS}/S_0$	0.19	0.30
$C_{ m recent}/{ m MSY}$ — $C_{ m reciente}/{ m RMS}$	1.08	1.13
$B_{ m recent}/B_{ m MSY}-B_{ m reciente}/B_{ m RMS}$	1.11	0.75
$S_{ m recent}/S_{ m MSY}-S_{ m reciente}/S_{ m RMS}$	1.21	0.77
F multiplier—Multiplicador de F	0.93	0.65

E. ATÚN ALETA AZUL DEL PACÍFICO

Los estudios de marcado han demostrado que ocurre intercambio de aleta azul del Pacífico entre el Océano Pacífico oriental y occidental. Se han capturado aletas azules larvales, poslarvales, y juveniles tempranos en el Pacífico occidental pero no en el OPO, por lo que es probable que exista una sola población de aleta azul en el Océano Pacífico (o posiblemente dos poblaciones en el Océano Pacífico, uno que desova cerca de Taiwán y Filipinas, y el otro que desova en el Mar de Japón).

La mayoría de las capturas de aleta azul en el OPO es realizada por buques cerqueros. Casi todas las capturas cerqueras han provenido de una zona frente a Baja California y California, a menos de unas 100 millas náuticas de la costa, entre 23°N y 35°N. Se estima que el 90% de la captura midió entre aproximadamente 60 y 100 cm de talla, representando principalmente peces de entre 1 y 3 años de edad. En 1999 fueron establecidas en México instalaciones de acuacultura de aleta azul, y algunos cerqueros mexicanos comenzaron a dirigir su esfuerzo hacia el aleta azul en ese año. En los últimos años, la mayoría de las capturas han sido son transportadas a corrales marinos, donde se mantienen los peces para engordarlos y luego venderlos en el mercado de *sashimi*. Se capturan cantidades menores de aleta azul con arte de pesca recreacional, redes de transmalle, y palangres. Se captura la especie en todos los meses del año, pero la mayor parte de la captura es lograda entre mayo y octubre.

El aleta azul es pescado con varias artes en el Pacífico occidental y central desde Taiwán hasta Hokkaido. Peces de 0 años de edad de entre unos 15 y 30 cm de talla son capturados con curricán durante julio-octubre al sur de Shikoku y al sur de la Prefectura de Shizuoka. Durante noviembre-abril, peces de edad 0 de entre unos 35 y 60 cm son capturados con curricán al sur y oeste de Kyushu. Peces de edad 1 y mayores son capturados con redes de cerco, principalmente durante mayo-septiembre, entre 30°-42°N y 140°-152°E. Se capturan también aletas azules de varios tamaños con trampas, redes de transmalle, y otras artes de pesca, especialmente en el Mar de Japón. Se capturan pequeñas cantidades de la especie con palangre cerca del litoral sudeste de Japón. La pesquería palangrera a pequeña escala de Taipei Chino, que se ha expandido desde 1996, captura atunes aleta azul de más de 180 cm desde fines de abril hasta junio, cuando se agregan para el desove en las aguas al este del norte de Filipinas y Taiwán.

Las pesquerías palangreras de alta mar están dirigidas principalmente hacia los atunes tropicales, la albacora, y los peces picudos, pero capturan pequeñas cantidades de aleta azul del Pacífico. Buques cañeros japoneses capturan asimismo pequeñas cantidades de aleta azul en alta mar.

Los estudios de marcado, con marcas convencionales y archivadoras, han arrojado una gran cantidad de información sobre el ciclo vital del aleta azul. Algunos peces permanecen aparentemente toda la vida en el Pacífico occidental, mientras que otros migran al OPO; estas migraciones comienzan principalmente durante el primer y segundo año de vida. Los migrantes de primer o segundo año están expuestos a varias pesquerías antes de iniciar su migración al OPO. Después de cruzar el océano, están expuestos a las pesquerías comercial y recreacional frente a California y Baja California. Posteriormente, los supervivientes regresan al Pacífico occidental.

Se encuentran aletas azules de más de 50 cm de talla con mayor frecuencia en aguas de entre 17° y 23°C de temperatura de superficie. En el Pacífico occidental se encuentran peces de entre 15 y 31 cm en aguas de entre 24° y 29°C de temperatura de superficie. La supervivencia de las larvas y juveniles tempranos de la especie es indudablemente afectada de manera importante por las condiciones ambientales. Las condiciones en el Pacífico occidental afectan probablemente cuáles porciones de los peces juveniles migran al OPO, y cuándo. Asimismo, las condiciones en el OPO probablemente afectan cuándo los peces juveniles regresan al Pacífico occidental.

Se ha calculado un índice de abundancia para el aleta azul predominantemente joven en el OPO, basado en una estandarización de la captura por día de buque usando un modelo lineal generalizado, y incluyendo las variables latitud, longitud, TSM, TSM², mes, y número de identificación del buque. El índice es altamente variable, pero señala un pico a principios de los años 1960, niveles muy bajos durante un

período a principios de los años 1980, y cierto aumento desde entonces.

Una evaluación completa de la población fue realizada por el Grupo de Trabajo sobre el Aleta Azul del Pacífico del Comité Científico Internacional del Pacífico Norte (ISC) en 2008. Los resultados de la evaluación fueron altamente sensibles a los supuestos hechos con respecto a los parámetros biologicos, particularmente la mortalidad natural. Independientemente de estas incertidumbres, las tendencias siguientes fueron robustas a distintos supuestos sobre la mortalidad natural:

- El reclutamiento ha fluctuado sin tendencia durante el período de la evaluación (1952-2006), y no parece haber sido afectado negativamente por la explotación pesquera;
- Los niveles recientes (2000-2006) de biomasa reproductora (hembras maduras) están por encima del nivel mediano histórico:
- La captura de aleta azul (en peso y número) es dominada por los reclutas (0 años) y juveniles (1-3 años). La mortalidad por pesca (F) de reclutas ha aumentado paulatinamente y ha permanecido por encima de los niveles históricos medianos de explotación desde hace más de una década (desde principios de los años 1990). La mortalidad por pesca de los peces de 1-2 años de edad también ha aumentado desde principios de los años 1990, pero estos niveles han fluctuado alrededor de los niveles históricos medianos.

El Grupo de Trabajo sobre el Aleta Azul del Pacífico del ISC ha realizado reuniones técnicas en 2009 y 2010, dedicadas principalmente a actualizaciones de datos y mejoras del modelado. Está programada para mediados de 2012 una evaluación completa de la población.

Las capturas totales de aleta azul han fluctuado considerablemente durante los últimos 50 años (Figura E-1). Los años consecutivos de capturas superiores al promedio (mediados de los años 1950 a mediados de los 1960) y capturas inferiores al promedio (principios de los años 1980 a principios de los 1990) podrían deberse a años consecutivos de reclutamientos superiores e inferiores al promedio.

Las capturas totales de aleta azul han fluctuado considerablemente durante los últimos 50 años (Figura E-1). La presencia de años consecutivos de capturas superiores al promedio (mediados de la década de 1950 a mediados de la década de 1960) e inferiores al promedio (principios de la década de 1980 a principios de la década de 1990) podría deberse a años consecutivos de reclutamiento superior e inferior al promedio.

Puntos de referencia

El desarrollo de puntos de referencia para la ordenación del aleta azul es problemático, debido a la sensibilidad a los supuestos del modelo de evaluación de la población. En particular, los niveles absolutos de biomasa y de mortalidad por pesca, y los puntos de referencia basados en el rendimiento máximo sostenible (RMS), son hipersensibles al valor de mortalidad natural. Las tendencias relativas de los niveles de biomasa y de la mortalidad por pesca son más robustas a los supuestos del modelo. Por lo tanto, puntos de referencia para la ordenación basados en biomasa o mortalidad por pesca relativa deberían ser considerados para la ordenación del aleta azul. Es poco probable que estas medidas de ordenación puedan ser diseñadas para optimizar el rendimiento, y la ordenación debería ser ideada para producir rendimientos razonables, y al mismo tiempo asegurar la sustentabilidad hasta que se reduzca la incertidumbre en la evaluación.

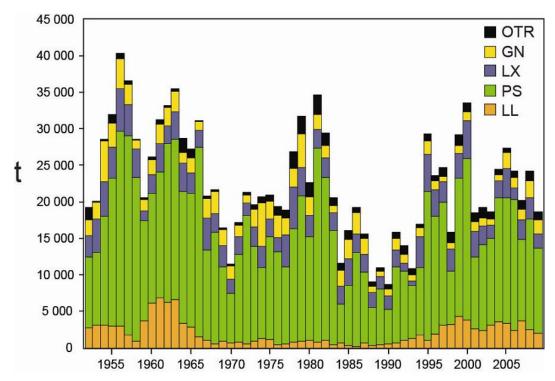
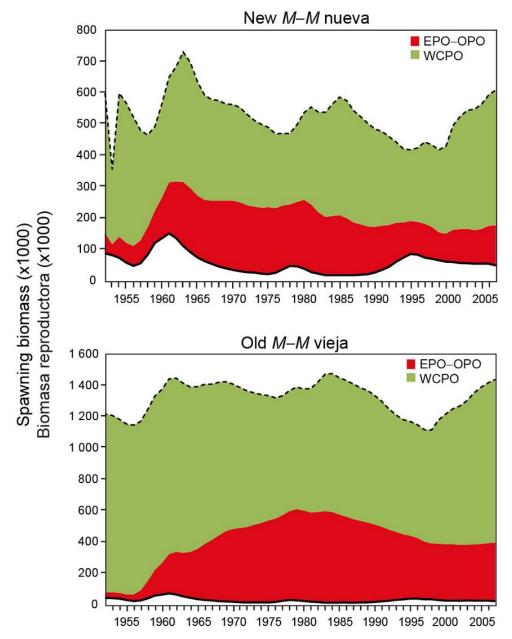
Se desarrolló un « indicador » de ordenación que se basa en la integración de múltiples años de mortalidad por pesca y que toma en consideración la estructura por edades de la misma. El indicador se basa en estimaciones del impacto de la pesca sobre la población de peces. Se usa el impacto de la pesca a lo largo del tiempo como indicador para desarrollar puntos de referencia basados en desempeño histórico. El supuesto es que, si el impacto de la pesca es menor que aquél observado en el pasado, es probable que la población sea sostenible con los niveles actuales de mortalidad por pesca.

Se estima el indicador de impacto de pesca para el aleta azul a partir de la biomasa reproductora. Se agrupan las pesquerías en aquéllas en el Océano Pacífico oriental (OPO) y aquéllas en el Océano Pacífico occidental, porque fijar directrices de ordenación para el OPO es la meta de este análisis. Se usa la evaluación de caso base desarrollada por el ISC para los atunes y especies afines en el Océano Pacífico norte como modelo de evaluación de la población. Se evalúan la sensibilidad del impacto de la pesca y su uso como indicador de ordenación a los distintos supuestos sobre la mortalidad natural.

Se calcula el índice del impacto propuesto para la ordenación como la estimación de la biomasa reproductora real dividida por la biomasa reproductora hipotética en ausencia de pesca. Esto supone que se mide el impacto bajo el supuesto que no se controla el impacto de las otras pesquerías.

El impacto estimado de la pesca sobre la población de aleta azul del Pacífico durante todo el período modelado (1952-2006) es sustancial (Figura E-2). El impacto es altamente sensible al valor de mortalidad natural supuesto. Las pesquerías del Pacífico occidental han tenido un impacto mayor que aquellas del OPO, y su tasa de aumento en los últimos años es mayor. La tendencia temporal del impacto es robusta al nivel de mortalidad natural supuesto (Figura E-3).

La tendencia temporal del impacto estimado de la pesca es robusta al supuesto acerca de la mortalidad natural. Por lo tanto, podría ser útil usar el impacto relativo de la pesca como indicador para el asesoramiento de ordenación basado en desempeño histórico. El impacto de las pesquerías del OPO fue sustancialmente menor durante 1994-2007 que durante 1970-1993, cuando las poblaciones fueron reducidas a un nivel mucho más bajo, pero el impacto ha aumentado recientemente (Figura E-3). La estimación de la condición de la población es incierta, y es sensible a los supuestos del modelo. Hasta que se reduzca la incertidumbre en la evaluación, se deberían fijar los niveles de captura sobre la base de aquellos años en los que el impacto fue bajo. Esta medida de ordenación debería asegurar que la pesquería sea sostenible, siempre que se tomen medidas equivalentes en el WCPO.

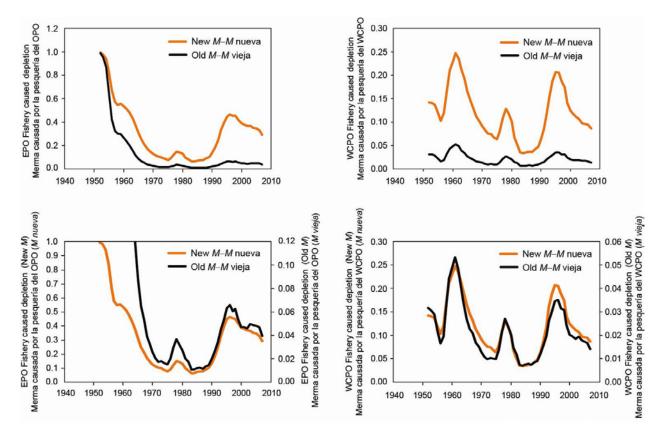

FIGURE E-1. Retained catches of Pacific bluefin tuna.

FIGURA E-1. Capturas retenidas de atún aleta azul del Pacífico.

FIGURE E-2. Estimates of the impact on the Pacific bluefin tuna population of fisheries in the EPO and in the WPO for the new (upper panel) and old (lower panel) values of natural mortality (M). The dashed line represents the estimated hypothetical unfished spawning biomass, and the solid line the estimated actual spawning biomass. New M = M assumed in the current assessment; old M = M assumed in the previous assessment. The shaded areas indicate the impact attributed to each fishery.

FIGURA E-2. Estimaciones del impacto sobre la población de atún aleta azul del Pacífico de las pesquerías en el OPO y en el WPO correspondientes a los valores de mortalidad natural (M) nueva (panel superior) y vieja (panel inferior). La línea de trazos representa la biomasa reproductora no pescada hipotética estimada, y la línea sólida la biomasa reproductora real estimada. M nueva = M supuesta en la evaluación actual; M vieja = M supuesta en la evaluación previa. Las áreas sombreadas indican el impacto atribuido a cada pesquería.

FIGURE E-3. Stock depletion (actual abundance as a fraction of the hypothetical abundance if the fishery were not operating) caused by the EPO fisheries (left) and WPO fisheries (right) for the new and old values of *M*, on the same scale (top) and on different scales (bottom). Higher values correspond to less depletion; *i.e.* actual abundance is closer to hypothetical abundance without the fishery operating.

FIGURA E-3. Merma de la población (abundancia real como fracción de la abundancia hipotética si no operara la pesquería) causada por las pesquerías del OPO (izquierda) y WPO (derecha) correspondientes a los valores nuevo y viejo de M, en la misma escala (arriba) y en escalas diferentes (abajo). Valores altos corresponden a menos merma; es decir, la abundancia real es más cercana a la abundancia hipotética sin la pesquería.

F. ATÚN ALBACORA

Existen dos poblaciones de atún albacora en el Océano Pacífico, una en el hemisferio norte y la otra en el hemisferio sur. La especie es capturada con palangre en la mayor parte del Pacífico Norte y Sur, pero rara vez entre aproximadamente 10°N y 5°S, con curricán en el Pacífico Norte y Sur oriental y central, y con caña en el Pacífico Norte occidental. En el Pacífico Norte un 60% del pescado es capturado con caña y curricán, que capturan albacora más joven de menor tamaño, mientras que en el Pacífico Sur un 90% de la captura de albacora es tomada con palangre. Las capturas totales anuales de albacora del Pacífico Norte alcanzaron su nivel máximo de más de 125.000 t anuales en 1976, disminuyó a unas 38.000 t en 1991, y luego aumentó a unas 126.000 t en 1999 (Figura F-1a). Las capturas anuales totales de albacora del Pacífico Sur oscilaron entre unas 25.000 y 50,000 t durante los años 1980 y 1990, pero aumentaron posteriormente, oscilando entre unas 55.000 y 70.000 t durante 2001-2009 (Figura F-1b).

El atún albacora juvenil y adulto es capturado principalmente en la Corriente de Kuroshio, la Zona de Transición del Pacífico Norte, y la Corriente de California en el Pacífico norte y en la Zona de Convergencia Subtropical en el Pacífico sur, pero el desove ocurre en aguas tropicales y subtropicales, y se centra en los paralelos de 20°N y 20°S. Se cree que el albacora del Pacífico Norte desova entro marzo y julio en el Pacífico occidental y central.

Los desplazamientos del albacora del Pacífico Norte son fuertemente afectados por las condiciones oceánicas, y los migrantes suelen estar concentrados en frentes oceánicos en la Zona de Transición del Pacífico Norte. La mayoría de las capturas tienen lugar en aguas de entre aproximadamente 15° y 19.5°C. No quedan claros los detalles de la migración, pero se cree que peces juveniles (de entre 2 y 5 años de edad) se trasladan al Océano Pacífico oriental (OPO) en la primavera y a principios del verano, y vuelven al Pacífico occidental y central, tal vez anualmente, a fines de otoño y en el invierno, donde suelen permanecer cuando maduran. Se ha propuesto la hipótesis de dos subgrupos de albacora del Pacífico Norte, separados en aproximadamente 40°N en el Pacífico oriental, y que el subgrupo del norte tiene la mayor probabilidad de migrar al Pacífico occidental y central.

Se sabe menos acerca de los desplazamientos de albacora en el Pacífico sur. Los juveniles se desplazan de los trópicos hacia el sur cuando miden unos 35 cm, y luego hacia el este por la Zona de Convergencia Subtropical hasta aproximadamente 130°O. Poco antes de alcanzar la madurez vuelven a aguas tropicales, donde desovan. Marcas fijadas en peces liberados al este de 155°O fueron recuperadas generalmente en lugares al este y norte del punto de liberación, mientras que aquéllas fijadas al oeste de 155°O fueron recuperadas generalmente en lugares al oeste y norte del punto de liberación.

En 2008 y 2006 fueron presentadas las evaluaciones más recientes por edad de las poblaciones de albacora del Pacífico Sur y Norte, respectivamente.

La evaluación del albacora del Pacífico Sur, realizada con MULTIFAN-CL por científicos de la Secretaría de la Comunidad del Pacífico, incorporó datos de captura y esfuerzo, datos de frecuencia de talla, datos de marcado, e información sobre parámetros biológicos. Aunque se descubrió que existen incertidumbres, pareció razonablemente seguro que la población está por encima del nivel correspondiente al rendimiento máximo sostenible promedio (RMS), que el esfuerzo durante 2004-2006 fue menor que aquél correspondiente al RMS, y que la biomasa reproductora fue mayor que aquélla correspondiente al RMS. Las capturas seguirían aumentando con aumentos del esfuerzo, aunque no se sabe bien hasta cuál punto el rendimiento sostenible podría aumentar a medida que disminuye la biomasa total. No parece haber en la actualidad ninguna necesidad de limitar la pesca de albacora en el Pacífico Sur, pero se recomiendan investigaciones adicionales para procurar resolver las incertidumbres en los datos.

Una evaluación del albacora del Pacífico Norte fue realizada en una reunión del Grupo de Trabajo sobre Albacora del Comité Científico Internacional sobre los Atunes y Especies Afines en el Océano Pacífico Norte (ISC), celebrada en noviembre-diciembre de 2006. Las conclusiones alcanzadas en dicha reunión

fueron presentadas a la séptima reunión plenaria del ISC en julio de 2007. Entre las mismas figuraban las siguientes:

- Se estimó la biomasa de la población reproductora (SSB) en 2006 en unas 153 mil t un 53% más que el promedio a largo plazo (Figura F-2);
- Un análisis retrospectivo reveló una tendencia hacia la sobreestimación de la abundancia del albacora;
- El reclutamiento fluctuó alrededor de un promedio a largo plazo de aproximadamente 28 millones de peces durante la década de 1990 y al principio de los 2000;
- El coeficiente actual de mortalidad por pesca (*F*), calculado como el promedio geométrico de las estimaciones de 2002-2004, fue aproximadamente 0.75, nivel alto con respecto a varios puntos de referencia biológicos con los cuales el Grupo de Trabajo comparó su estimación para el albacora;
- Se predijo que la SSB disminuirá a un nivel de equilibrio de unas 92 mil t para 2015;
- La disminución sustancial de la captura total en los últimos años es motivo de preocupación;
- En conclusión, el Grupo de Trabajo recomendó que todas las naciones que participan en la pesquería observen prácticas de pesca basadas en precaución.

Tuvieron lugar en 2008, 2009, y 2010 reuniones adicionales del Grupo de Trabajo sobre Albacora. Fueron dedicadas principalmente a discusiones de los requisitos de datos y la transición de las evaluaciones de análisis de poblaciones virtuales a *Stock Synthesis II*. Está programada para mediados de 2011 una evaluación completa de la población.

FIGURE F-1a. Retained catches of North Pacific albacore.

FIGURA F-1a. Capturas retenidas de albacora del Pacífico norte.

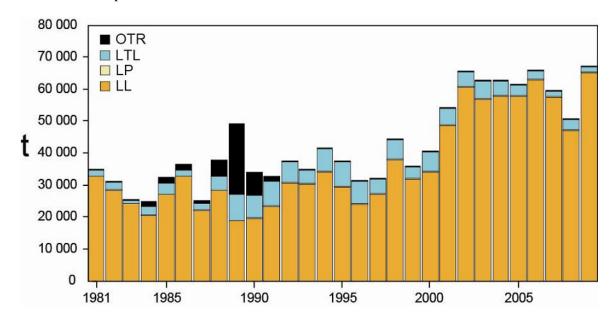
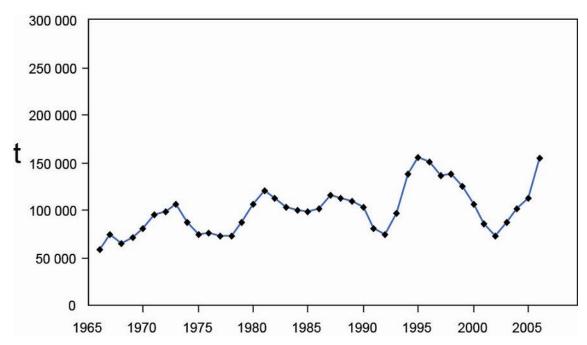



FIGURE F-1b. Retained catches of South Pacific albacore.

FIGURA F-1b. Capturas retenidas de albacora del Pacífico sur.

FIGURE F-2. Spawning stock biomass of North Pacific albacore tuna, from the North Pacific Albacore Workshop analysis of 2006

FIGURA F-2. Biomasa de la población reproductora del atún albacora del Pacífico Norte, de los análisis de la Reunión Técnica sobre el Albacora del Pacífico Norte de 2006.

G. PEZ ESPADA

El pez espada (*Xiphias gladius*) habita todo el Océano Pacífico entre 50°N y 50°S, aproximadamente. Es capturado principalmente por las pesquerías palangreras de países de Lejano Oriente y del hemisferio occidental. Las pesquerías de red de transmalle y arpón capturan cantidades menores. Es rara vez capturado en la pesca recreacional.

El pez espada crece en talla muy rápidamente, y tanto los machos como las hembras, que crecen más rápidamente, alcanzan tallas de mandíbula inferior a furca caudal de más de un metro durante su primer año. Comienza a alcanzar la madurez alrededor de los dos años de edad, cuando mide unos 150 a 170 cm de talla, y se considera que a los cuatro años de edad todos son maduros. Es probable que desove más de una vez por temporada. En el caso de peces de más de 170 cm, la proporción de hembras aumenta con el aumento en la talla.

El pez espada suele permanecer a mayor profundidad de día que de noche, y vivir en zonas frontales, de las que hay varias en el Océano Pacífico oriental (OPO), entre ellas zonas frente a California y Baja California, frente a Ecuador, Perú, y Chile, y en el Pacífico ecuatorial. Tolera temperaturas de entre unos 5° y 27°C, pero su gama óptima es de 18° a 22°C, y se han encontrado larvas únicamente a temperaturas de más de 24°C.

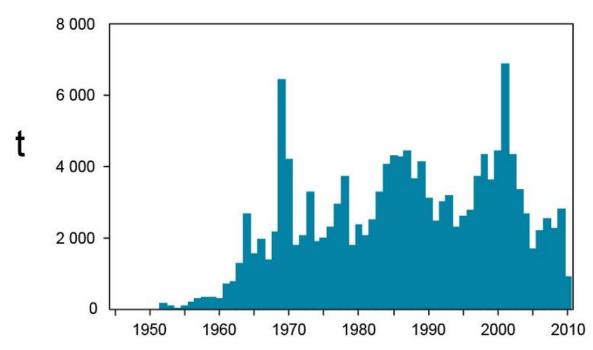
Se ha dedicado un esfuerzo importante al estudio de la estructura de la población del pez espada en el Pacífico, y ahora es moderadamente bien conocida. Se sabe de varias regiones específicas de desove, y los análisis de los datos de pesca y genéticos indican que ocurre un intercambio de peces espada tan sólo limitado entre zonas geográficas, inclusive entre el Océano Pacífico oriental y occidental, y norte y sur.

La mejor información científica disponible, basada en datos genéticos y de la pesca, indica que el pez espada del Océano Pacífico noreste y el Océano Pacífico sudeste (al sur de 5°S) y constituyen dos poblaciones separadas. Además, es posible que una población del Pacífico noroeste se desplace ocasionalmente al OPO en varias ocasiones. Aunque las evaluaciones de las poblaciones del Pacífico oriental no incluyeron parámetros de desplazamientos entre éstas u otras poblaciones, podría ocurrir un intercambio limitado de peces entre las mismas.

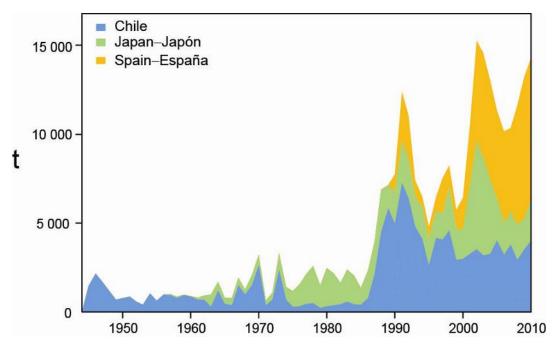
Los resultados de una evaluación de una población de pez espada del Pacífico Norte en el área al norte de 10°N y al oeste de 140°O indican que el nivel de biomasa ha sido estable y ha estado por encima del 50% del nivel de la biomasa no explotada, lo cual indica que con los niveles actuales de esfuerzo de pesca, la explotación de estos peces espada no es excesiva. Un análisis más reciente para el Océano Pacífico al norte de la línea ecuatorial, usando un método de evaluación por sexo y edad, indicó que, al nivel actual de esfuerzo de pesca, existe un riesgo insignificante de que la biomasa reproductora disminuya a menos del 40% de su nivel sin pesca.

Las tasas de captura por unidad de esfuerzo estandarizadas de las pesquerías de palangre en la región norte del OPO, y las tendencias en la abundancia relativa derivadas de las mismas, no señalan que la abundancia esté disminuyendo. Intentos de ajuste de modelos de producción a los datos no produjeron estimaciones de parámetros de ordenación, tales como el rendimiento máximo sostenible (RMS), con supuestos razonables de las tasas de mortalidad natural, debido a la falta de contraste en las tendencias. Esta falta de contraste sugiere que las pesquerías en esta región no son de magnitud suficiente como para causar reacciones significativas en las poblaciones. A partir de estas consideraciones, y del período de capturas relativamente estables (Figura G-1), parece que el pez espada no se encuentra sobrepescado en el OPO norte.

Se realizó una evaluación de la población de pez espada en el OPO sudoeste con *Stock Synthesis*, usando datos que fueron actualizados al 22 de abril de 2011. Incorporó datos de descargas totales (Figura G-2), las tasas de captura de las pesquerías de palangre de Japón, y mediciones de talla de peces capturados en las pesquerías de Chile, Japón, y España. Se usaron también datos de crecimiento, y edad y peso por talla para convertir las tallas de los peces en estimaciones de peso y edad.


En la Figura G-3 se ilustra el índice de los reclutamientos anuales estimados de la evaluación, en la Figura G-4 la tendencia del cociente de biomasa reproductora (la razón de la biomasa reproductora de la población actual a aquella de la población sin pesca; SBR, del inglés *spawning biomass ratio*), y en la Figura G-5 la tendencia de la biomasa reproductora con y sin pesca. No hay ninguna indicación de un impacto significativo sobre esta población. Los resultados sí sugieron la expansión de la pesquería a componentes de la población que previamente no se explotaban o se explotaban tan sólo ligeramente.

El nivel de captura reciente (~14.300 t) es menos de la mitad de la captura de RMS estimada (~25.000 t); el nivel reciente de la biomasa (~424.300 t) es un factor de 10 más alto que la biomasa (~40.800 t) que se esperaría sostener capturas en el nivel de RMS, y el nivel reciente de la biomasa reproductora (~158.000 t) es casi 15 veces el nivel que se esperaría sostener la captura a nivel de RMS.


Resultados clave

En la Tabla G-1 se presenta un resumen de las estimaciones de los parámetros de ordenacion de la evaluación, tales como el RMS.

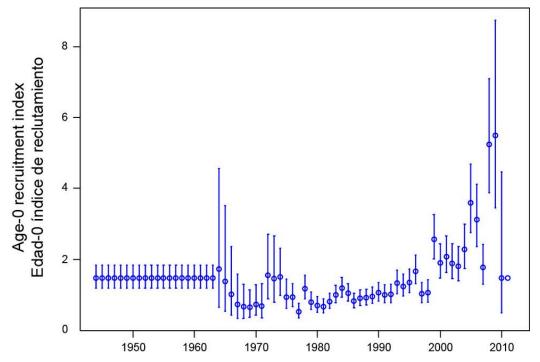

- 1. La población de pez espada en el Océano Pacífico sudeste no está padeciendo sobrepesca ni está sobrepescado.
- 2. El cociente de biomasa reproductora es aproximadamente 1,45, lo cual indica que la biomasa reproductoria está un 50% por encima de la capacidad de carga, y sustancialmente por encima del nivel que se esperaría producir capturas al nivel de RMS.
- 3. Los nivelse de captura anual recientes (~14.300 t) son significativamente inferiores al RMS estimado (~25.000 t).
- 4. Ha ocurrido una serie de reclutamientos altos a la población del pez espada.

FIGURE G-1. Retained catches of swordfish in the northeastern Pacific Ocean. **FIGURA G-1.** Capturas retenidas de pez espada en el Océano Pacífico noreste.



FIGURE G-2. Catches of the southeastern Pacific stock of swordfish. by flag. **FIGURA G-2.** Capturas de la población sureste de pez espada, por bandera.

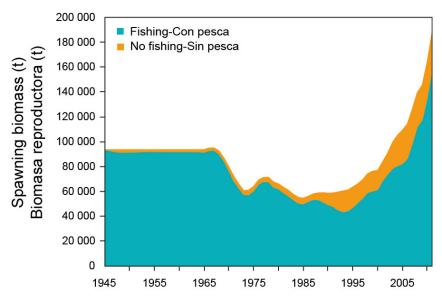

FIGURE G-3. Index of estimated annual recruitments of swordfish, and approximate 95 percent confidence levels.

FIGURA G-3. Índice de los reclutamientos anuales estimados de pez espada, y niveles de confianza de 95% aproximados.

FIGURE G-4. Estimated annual spawning biomass ratio (SBR) of swordfish, and the approximate 95 percent confidence interval.

FIGURA G-4. Cociente de biomasa reproductora (SBR) anual estimado del pez espada, y niveles de confianza de 95% aproximados.

FIGURE G-5. Estimated annual spawning biomass with and without fishing. The yellow shaded area represents the impact of the fisheries on the spawning biomass.

FÍGURA G-5. Biomasa reproductora anual estimada con y sin pesca. El área amarilla representa el impacto de las pesquerías sobre la biomasa reproductora.

TABLE G-1. Estimates of the MSY of swordfish, in metric tons, and associated management quantities, for the assessment. B_{recent} and B_{MSY} are the biomass of swordfish 2+ years of age at the start of 2009 and at MSY, respectively, and S_{recent} , S_{MSY} , and S_0 are indices of spawning biomass at the start of 2009, at MSY and without fishing, respectively. C_{recent} is the estimated total catch in 2009.

TABLA G-1. Estimaciones del RMS de pez espada, en toneladas métricas, y las cantidades de ordenación asociadas, para la evaluación. B_{reciente} y B_{RMS} son la biomasa de pez espada de edad 2+ años al principio de 2009 y en RMS, respectivamente, y S_{reciente} , S_{MSY} , and S_0 son índices de la biomasa reproductora al principio de 2009, en MSY, y sin pesca, respectivamente. C_{reciente} es la captura total estimada en 2009.

Estimate – Estimación	Assessment – Evaluación		
MSY–RMS	25,044		
$B_{ m MSY}$ – $B_{ m RMS}$	40,782		
$S_{ m MSY}$ — $S_{ m RMS}$	10,705		
$B_{ m MSY}/B_0$ - $B_{ m RMS}/B_0$	0.20		
$S_{ m MSY}/S_0$ - $S_{ m RMS}/S_0$	0.11		
$C_{ m recent}/{ m MSY}$ — $C_{ m reciente}/{ m RMS}$	0.57		
$B_{ m recent}/B_{ m MSY}-B_{ m reciente}/B_{ m RMS}$	10.40		
$S_{ m recent}/S_{ m MSY}$ $-S_{ m reciente}/S_{ m RMS}$	14.76		
F multiplier—Multiplicador de F	17.92		

H. MARLÍN AZUL

La mejor información ahora disponible indica que el marlín azul constituye una sola especie a nivel mundial, y que existe una sola población de la especie en el Océano Pacífico. Por este motivo, se compilan estadísticas de capturas (Figura H-1), y se realizan análisis de la condición de la población, para el Océano Pacífico entero.

El marlín azul es capturado principalmente por las pesquerías de palangre de atunes y peces picudos entre aproximadamente 30°N y 30°S. Las pesquerías recreacionales y varias otras pesquerías comerciales capturan cantidades menores.

Pequeñas cantidades de marlines azules han sido marcadas con marcas convencionales, principalmente por pescadores recreacionales. Algunos de estos peces han sido recapturados a grandes distancias del punto de liberación. Marlines azules han sido marcados con marcas electrónicas satelitales desprendibles que toman datos durante períodos de unos 30 a 180 días, principalmente en el Golfo de México y el Océano Atlántico, en estudios de la supervivencia y desplazamientos después de la liberación. Más recientemente se han emprendido estudios de este tipo en el Océano Pacífico.

El marlín azul vive generalmente en regiones con temperaturas superficiales del mar (TSM) de más de 24°C, y pasa un 90% del tiempo a profundidades donde la temperatura es de 1° a 2° menos que la TSM.

La evaluación más reciente de la condición y las tendencias fue realizada en 1999 e incluyó datos hasta 1997., A second analysis using the same data but an alternative stock assessment model was made 2003. The assessment concluded that the levels of biomass and fishing effort were near those corresponding to the maximum sustainable yield (MSY). Los resultados del segundo análisis indican que existe una incertidumbre considerable con respecto a los niveles de esfuerzo de pesca que producirían el RMS. Se estimó también que el marlín azul en el Océano Pacífico está casi plenamente explotado, es decir, se está explotando la población en niveles que producen capturas cerca de la cima de la curva de rendimiento.

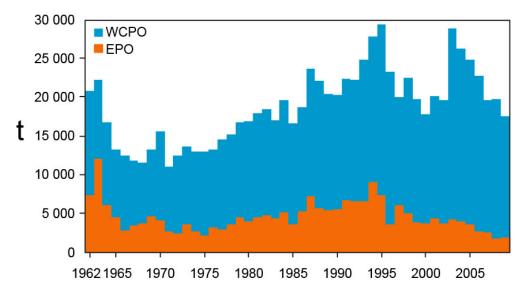


FIGURE H-1. Retained catches of blue marlin in Pacific Ocean, by region.

FIGURA H-1. Capturas retenidas de marlín azul en el Océano Pacífico, por región.

I. MARLÍN RAYADO

El marlín rayado [*Kajikia audax*¹ (Philippi, 1887)] está distribuido por todo el Océano Pacífico entre aproximadamente 45°N y 45°S. Este informe presenta información general sobre la especie, así como el estatus y las tendencias de la población de marlín rayado en la región del Océano Pacífico oriental (OPO) al norte de 10°S, al este de aproximadamente 145°O al norte de la línea ecuatorial y al este de aproximadamente 165°O al sur de la misma. Los datos presentados en este informe fueron actualizados al 30 de octubre de 2010.

Históricamente, la mayor parte de la captura en el OPO fue capturada por las pesquerías de palangre, pero las capturas de la pesca recreacional se han vuelto más importantes en años recientes (Figure I-1).

Se ha dedicado un esfuerzo importante a entender la estructura de la población de marlín rayado en el Océano Pacífico, que ahora es moderadamente bien conocida. Queda claro desde hace varios años que existe varias poblaciones. La información sobre los desplazamientos del marlín rayado es limitada. Peces marcados con marcas de dardo convencionales y liberados frente a la punta de la península de Baja California han sido generalmente recapturados cerca de donde fueron marcados, pero algunos han sido recapturados cerca de las islas Revillagigedo, unos pocos cerca de Hawai, y uno cerca de la isla Norfolk. Estudios de marcado de marlín rayado en el Pacífico con marcas satelitales desprendibles indicaron que esencialmente no ocurre mezcla de peces marcados entre zonas de marcado, y que el marlín rayado mantiene fidelidad a su sitio. Los resultados recientes de análisis de datos de pesca y genéticos indican que en el OPO norte vive una sola población, aunque es posible que haya una presencia estacional a bajo nivel de juveniles de una población más al oeste de Hawai/Japón.

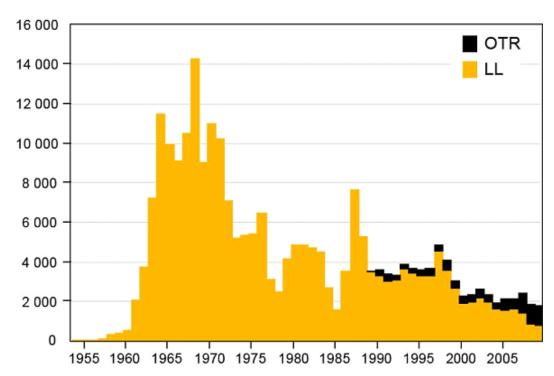
La evaluación en la que se basa el presente informe no incluye parámetros de desplazamientos transregionales de esta u otras poblaciones, aunque se consideró que podría ocurrir un intercambio limitado de peces entre el OPO norte y las poblaciones en regiones adyacentes.

Las pesquerías de palangre comenzaron a ingresar al OPO a mediados de los años 1950, y para fines de los años 1960 se extendían por toda la región. Con la excepción de unos años a fines de los 1960 y principios de los 1970 en el OPO norte, estas pesquerías no se dirigieron a los peces picudos. Los patrones cambiantes de zonas pescadas y cambios en los objetivos de la pesca incrementan las dificultades encontradas al usar datos de pesca in los análisis de la condición y tendencias de la población, y estas dificultades se intensifican en los análisis de especies que no son el blanco principal de la pesquería. La evaluación de la población del marlín rayado del OPO norte comienza en 1975, después de la plena expansión de las pesquerías de palangre y después del período de pesca dirigida en el OPO norte. No obstante, se realizaron análisis de sensibilidad en los que los análisis comenzaron en 1954, el primer año de captura en el OPO.

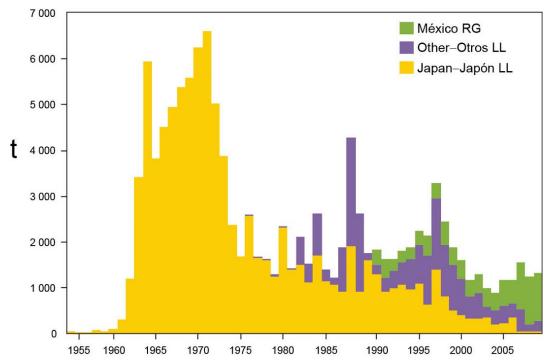
Se realizó la evaluación con el modelo *Stock Synthesis*. Incorporó datos del OPO norte de descargas totales por pesquería (Figura I-2), tasas de captura (CPUE: captura por unidad de esfuerzo) de las pesquerías de palangre de Japón, y mediciones de talla de peces capturados por las pesquerías de palangre y de cerco del OPO norte. Se usaron también datos de crecimiento, y de talla por edad y peso para convertir la talla de los peces en estimaciones de peso y edad.

En la Figura I-3 se ilustran los reclutamientos anuales estimados de la evaluación.

En la Figura I-4 se ilustran las estimaciones de la tasa anual de mortalidad por pesca (*F*) de la evaluación. Estas estimaciones podría ser afectadas por supuestos acerca de la selectividad en las pesquerías para las cuales no se dispone de datos de frecuencia de tamaño. En la evaluación se supuso que la selectividad de la pesquería recreacional es igual a aquélla de la pesquería de palangre en la misma zona. Sin embargo, el tamaño de los peces en la pesquería recreacional es en promedio algo mayor que aquél de la pesquería de palangre. Un supuesto alternativo es que la mejor forma de estimar la selectividad de la pesquería recreacional es usar aquélla de la pesquería de cerco, que asimismo suele capturar peces que son algo más grandes en promedio que aquéllos capturados en las pesquerías de palangre y recreacionales.


La captura anual total (Figura I-2) de esta población alcanzó un pico de unas 3.300 t en 1997, luego disminuyó a unas 900 t en 2004. Subsecuentemente aumentó, a un promedio de unas 1.300 t desde 2004. En la Figura I-6 se ilustra la trayectoria estimada de la biomasa reproductora que hubiera existido sin pesca y aquélla proyectada por el modelo de evaluación, junto con una estimación del impacto atribuido a cada arte de pesca. En general, la biomasa reproductora disminuyó durante 1975-2003, aunque se observaron picos en 1987 y 1997. La biomasa reproductora alcanzó una mínima de unas 915 t en 2003, y ha aumentado desde entonces, con una estimación de la evaluación en 2009 ligeramente por encima de 1.500 t.

En la Figura I-7 se ilustra el cociente de biomasa reproductora (SBR: el cociente de la biomasa reproductora observada a la biomasa reproductora de la población no explotada) de la evaluación y de dos análisis de sensibilidad en los que el modelo inició en 1954, en lugar de 1975 como en la evaluación. El SBR disminuyó a aproximadamente 0,18 en 2003, y desde entonces ha aumentado a 0,30 en 2009.


Resultados clave

En la Tabla I-1 se presenta un resumen de las estimaciones de los parámetros de ordenación del caso base, tales como el RMS.

- 1. La población de marlín rayado en el OPO norte no se encuentra sobrepescado.
- 2. No está ocurriendo sobrepesca de la población de marlín rayado en el OPO norte.
- 3. La biomasa de la población reproductora ha aumentado de una mínima de unas 915 t en 2003 a unas 1.500 t en 2009.
- 4. La captura en los años recientes ha estado alrededor de las 1.300 t, unas 1.000 t menos que la estimación del RMS de 2.300 t de la evaluación.
- 5. Se estima que el cociente de biomasa reproductora (SBR) en 2003 fue aproximadamente 0,18. La estimación correspondiente para 2009 es 0,29.
- 6. El cociente estimado de la biomasa reproductora en 2009 (S2009) a la biomasa reproductora que se espera en promedio apoyar la captura anual en el nivel de RMS (SRMS) es 1,10.
- 7. El multiplicador de mortalidad por pesca (Fmult) [el factor por el cual el nivel actual de F necesita ser multiplicado para que la mortalidad por pesca esté en el nivel que se espera produzca capturas anuales en el nivel de RMS] es 4.96, lo cual indica que F actual está significativamente por debajo de los niveles que se espera produzcan la captura en RMS. Sin embargo, las estimaciones de F actual son sensibles a los supuestos acerca de la selectividad de las pesquerías recreacionales. Datos detallados de frecuencia de tamaño de las pesquerías recreacionales son esenciales para mejorar la evaluación.
- 8. Si el esfuerzo de pesca y las capturas siguen en niveles cercanos a aquéllos observados en la actualidad, se espera que la biomasa de la población siga aumentando en el futuro cercano.

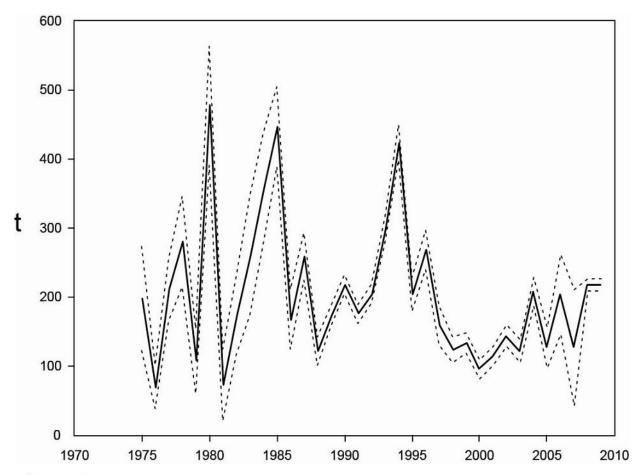


FIGURE I-1. Landings of striped marlin from the EPO by longline and other gear. **FIGURA I-1.** Descargas de marlín rayado del OPO por artes de palangre y otras.

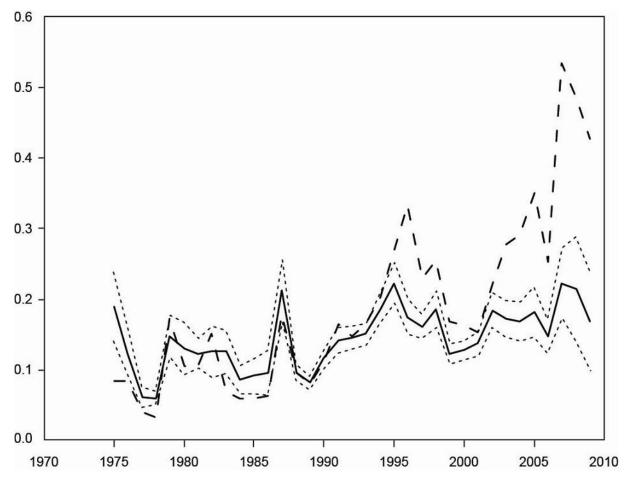

FIGURE I-2. Landings of striped marlin from the northern EPO by longline fisheries of Japan and of other States (Other); and by the recreational fisheries of Mexico.

FIGURA I-2. Descargas de marlín rayado del OPO norte de las pesquerías palangreras de Japón y de Corea y Taipei Chino (Otros), y por las pesquerías recreacionales de México.

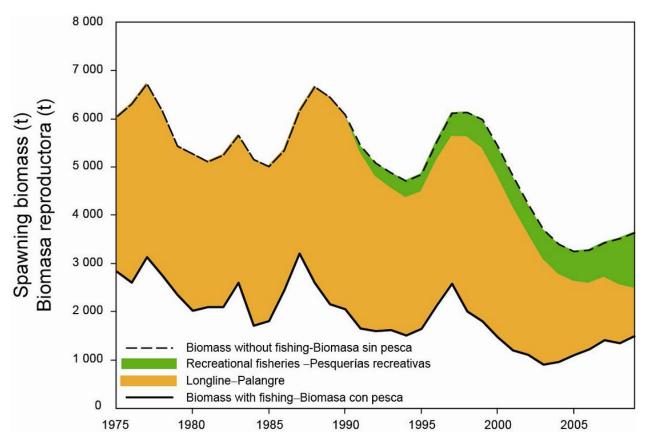

FIGURE I-3. Annual estimates of recruitment (solid line) and approximate 95-percent confidence limits (dashed lines) of striped marlin in the northern EPO, from the assessment. **FIGURA I-3** Estimaciones anuales del reclutamiento (línea sólida) y límites de confianza de 95%

FIGURA I-3. Estimaciones anuales del reclutamiento (línea sólida) y límites de confianza de 95% aproximados (líneas de trazos) de marlín rayado en el OPO norte, de la evaluación.

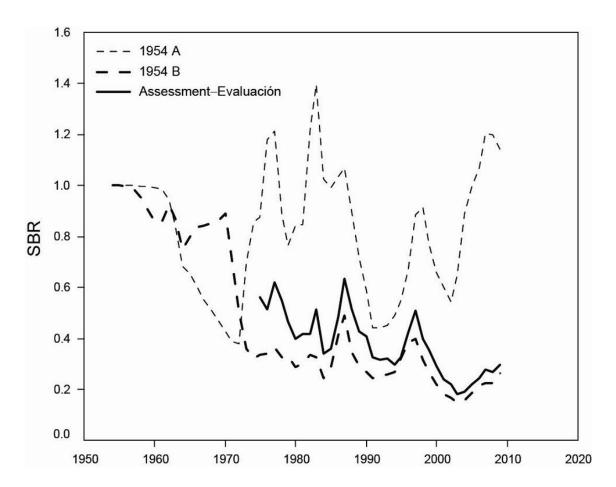

FIGURE I-4. Annual fishing mortality rate (F) estimates (solid line) for striped marlin in the northern EPO from the assessment, and approximate 95-percent confidence limits (dotted lines). The sensitivity of the assessment to assumptions about selectivity is illustrated by the annual estimates of F (dashed line) under the assumption that the selectivity of the recreational fishery is best approximated by that of the purse-seine fishery.

FIGURA I-4. Estimaciones de la tasa anual de mortalidad por pesca (*F*) (línea sólida) de marlín rayado en el OPO norte de la evaluación, y límites de confianza de 95% aproximados (líneas de trazos). La sensibilidad de la evaluación a los supuestos sobre la selectividad es ilustrada por las estimaciones de *F* (línea de trazos) bajo el supuesto que la mejor aproximación a la selectividad de la pesquería recreacional es aquella de la pesquería de cerco.

FIGURE I-5. Trajectory of the spawning biomass of a simulated population of striped marlin in the northern EPO that was not exploited (dashed line) and that predicted by the assessment model (solid line). The shaded areas between the two lines represent the portions of the fishery impact attributed to each fishery.

FIGURA I-5. Trayectoria de la biomasa reproductora de una población simulada de marlín rayado en el OPO norte no explotada (línea de trazos) y aquella predicha por el modelo de evaluación (línea sólida). Las áreas sombreadas entre las dos líneas representan la porción del impacto de la pesca atribuida a cada método de pesca.

FIGURE I-6. Estimated spawning biomass ratio (SBR) from the assessment of the northern EPO stock of striped marlin from a model starting in 1954 (1954 A) with recruitment deviates starting in 1954, and from a model starting in 1954 (1954 B) with recruitment deviates starting in 1965, so that they start after the period of full expansion of the longline fisheries into the EPO, but before the period of high catches in the early 1970s.

FIGURA I-6. Cociente de biomasa reproductora (SBR) de la evaluación del marlín rayado en el OPO norte de un modelo que comienza en (1954 A) con desviaciones del reclutamiento que comienzan en 1954, y de un modelo que comienza en (1954 B) con desviaciones del reclutamiento que comienzan en 1965, para que comiencen después del período de expansión plena de las pesquerías de palangre al OPO, pero antes del período de capturas altas a principios de los años 1970.

TABLE I-1. Estimates of the MSY of striped marlin, in metric tons, and associated management quantities, for the assessment. B_{recent} and B_{MSY} are the biomass of striped marlin 2+ years of age at the start of 2009 and at MSY, respectively, and S_{recent} , S_{MSY} , and S_0 are indices of spawning biomass at the start of 2009, at MSY, and without fishing, respectively. C_{recent} is the estimated total catch in 2009.

TABLA I-1. Estimaciones del RMS de marlín rayado, en toneladas métricas, y las cantidades de ordenación asociadas, para la evaluación. B_{reciente} y B_{RMS} son la biomasa de marlín rayado de edad 2+ años al principio de 2009 y en RMS, respectivamente, y S_{reciente} , S_{MSY} , and S_0 son índices de la biomasa reproductora al principio de 2009, en MSY, y sin pesca, respectivamente. C_{reciente} es la captura total estimada en 2009.

Management quantity	Estimate		
Cantidad de ordenación	Estimación		
MSY-RMS	2,272		
$B_{ m MSY}$ – $B_{ m RMS}$	3,574		
S_{MSY} — S_{RMS}	1,372		
$C_{\text{recent}}/\text{MSY}-C_{\text{reciente}}/\text{RMS}$	0.57		
$B_{\text{recent}}/B_{\text{MSY}}-B_{\text{reciente}}/B_{\text{RMS}}$	0.96		
$S_{\text{recent}}/S_{\text{MSY}}-S_{\text{reciente}}/S_{\text{RMS}}$	1.10		
$S_{\rm MSY}/S_0 - S_{\rm RMS}/S_0$	0.27		
F multiplier—Multiplicador de F	4.96		

J. CONSIDERACIONES ECOSISTÉMICAS

1.	Introducción	101
2.	Impacto de las capturas	102
	Otros componentes del ecosistema	
	Interacciones tróficas.	
	Ambiente físico	
	Indicadores agregados	
	Evaluación de riesgos ecológicos	
	Modelado de ecosistemas	
	Acciones de la CIAT y el APICD relativas a consideraciones de ecosistema	
	Acontecimientos futuros	

1. INTRODUCCIÓN

El Código de Conducta para la Pesca Responsable de FAO dispone que la ordenación de pesquerías debiera asegurar la conservación de no sólo las especies objetivo, sino también de las otras especies que pertenecen al mismo ecosistema. En 2001, la Declaración de Reykiavik sobre la Pesca Responsable en el Ecosistema elaboró esta norma con un compromiso de incorporar un enfoque de ecosistema en la ordenación de las pesquerías.

La CIAT ha tomado cuestiones de ecosistema en cuenta en muchas de sus decisiones, y el presente informe sobre el ecosistema pelágico de alta mar del Océano Pacífico tropical y subtropical, que constituye el hábitat de los atunes y peces picudos, ha estado disponible desde 2003 para ayudar en la toma de decisiones de ordenación. Esta sección brinda un panorama coherente, resumiendo los conocimientos del impacto directo de la pesca sobre varias especies y grupos de especies en el ecosistema, y presenta los conocimientos del medio ambiente y de otras especies que no son afectadas directamente por la pesca, pero podrían ser afectadas indirectamente mediante interacciones depredador-preso en la red alimenticia.

Este análisis no sugiere objetivos para la incorporación de consideraciones de ecosistema en la ordenación de las pesquerías de atunes o peces picudos ni nuevas medidas de ordenación. Su propósito principal es más bien brindar a la Comisión la oportunidad de asegurar que dichas consideraciones formen parte de su agenda.

Es importante tener en cuenta que la perspectiva que tenemos del ecosistema se basa en el pasado reciente; disponemos de muy poca información sobre el ecosistema antes de que comenzara la explotación. Además, el medio ambiente está sujeto a cambios en varias escalas temporales, entre ellas las conocidas fluctuaciones de El Niño y cambios a mayor plazo recientemente reconocidos, tales como la Oscilación Decadal del Pacífico y otros cambios climáticos.

Además de reportar las capturas de las especies principales de atunes y peces picudos, el personal reporta las capturas incidentales de especies no objetivo que son o retenidas o descartadas. En la presente sección, se presentan datos sobre dichas capturas incidentales en el contexto del efecto de la pesca sobre el ecosistema. Desgraciadamente, mientras que se cuenta con información relativamente buena para los atunes y peces picudos, no se dispone de información para la pesquería entera. La información es completa para los buques cerqueros grandes (de más de 363 toneladas de capacidad de acarreo) que llevan observadores bajo el Acuerdo sobre el Programa Internacional para la Conservación de los Delfines (APICD), y se registra información sobre capturas retenidas también para otros buques cerqueros, barcos cañeros, y gran parte de la flota palangrera. Se dispone de cierta información sobre tiburones retenidos por partes de la flota palangrera. Se reporta información especies no objetivo retenidas y descartadas en el caso de los cerqueros grandes, y se cuenta con esta información para unos pocos viajes por buques de menor tamaño. Se dispone de poca información sobre las capturas incidentales y descartes de otros

buques pesqueros.

2. IMPACTO DE LAS CAPTURAS

2.1. Evaluaciones de especies individuales

En otros documentos preparados para esta reunión se presenta información sobre el efecto de la pesca atunera sobre las poblaciones de especies individuales en el Océano Pacífico oriental (OPO) y evaluaciones detalladas. Una perspectiva ecosistémica requiere un enfoque en cómo la pesca puede haber cambiado varios componentes del ecosistema. Los documentos señalados en los apartados 2.2 y 2.3 siguientes presentan información sobre la biomasa actual de cada población considerada comparada con lo que hubiera sido en ausencia de la pesca. No hay medidas directas del tamaño de la población antes de que comenzara la pesca y, en todo caso, las poblaciones hubiesen variado entre años. Además, el tamaño de la población sin explotación podría ser afectado por la abundancia de los depredadores y las presas, la cual no es incluida en los análisis de las especies individuales.

2.2. Atunes

En los Documentos SAC-02-<u>06</u>, <u>07</u>, y <u>08</u> se presenta información sobre los efectos de la pesca sobre los atunes aleta amarilla, patudo, y barrilete, respectivamente. No se tratan los atunes aleta azul del Pacífico y albacora en la presente reunión.

2.3. Peces picudos

En el Documento SAC-02-09 se presenta información sobre los efectos de la pesca atunera sobre el pez espada. No se tratan otros peces picudos en la presente reunión.

2.3.1. Marlín negro, pez vela, y marlín trompa corta

No se han realizado recientemente evaluaciones de las poblaciones de estas especies, pero existen ciertos datos, publicados conjuntamente por científicos del Instituto Nacional de Investigación de Pesquerías de Ultramar (NRIFSF) del Japón y la CIAT en la serie de Boletines de la CIAT, que indican tendencias en las capturas, el esfuerzo, y la captura por unidad de esfuerzo (CPUE).

2.4. Resumen

En las Tablas A-2a y A-2b del Documento <u>SAC-02-04</u> se presentan las estimaciones preliminares de las capturas (incluyendo descartes de la pesca de cerco), en toneladas, de atunes, bonitos, y peces picudos durante 2010 en el OPO.

2.5. Mamíferos marinos

En el OPO, se encuentran frecuentemente mamíferos marinos, especialmente delfines manchados (*Stenella attenuata*), tornillo (*S. longirostris*), y comunes (*Delphinus delphis*), asociados con atunes aleta amarilla de entre unos 10 y 40 kg. Los pescadores con red de cerco descubrieron que podían lograr las capturas máximas de aleta amarilla en el OPO si cercaran manadas de delfines asociadas con atunes, y luego liberaran los delfines sin dejar al pescado escapar. La mortalidad incidental de delfines en esta operación fue alta en los primeros años de la pesquería, y las poblaciones de delfines fueron reducidas de sus niveles sin explotación durante las décadas de 1960 y 1970. A partir de fines de la década de los 1980 la mortalidad incidental disminuyó precipitadamente, y ahora hay evidencias de una recuperación de las poblaciones. En la Tabla 1 se detallan las estimaciones preliminares de la mortalidad de delfines ocasionada por la pesca en 2010.

Los estudios de la asociación de atunes con delfines forman un componente importante del enfoque a largo plazo del personal para comprender las interacciones clave en el ecosistema. El grado al cual los atunes aleta amarilla y los delfines compiten por recursos, o si uno u otro se beneficia de la interacción, constituyen información crítica, en vista de la gran biomasa de ambos grupos, y su altas tasas de consumo de presas. Análisis de la dieta y de isótopos estables de atunes aleta amarilla y delfines manchado y

tornillo capturados agregaciones multiespecíficas por buques cerqueros en el OPO demostraron diferencias importantes en los hábitos de alimentación y en la posición trófica de las tres especies, lo cual sugiere que la asociación atúndelfín probablemente mantenida por ventajas alimentación. Esta conclusión es apoyada por estudio de rastreo por radio de delfines manchados con grabadoras de tiempo profundidad, que indicó que los delfines alimentan se principalmente de noche con organismos asociados con la capa profunda de dispersión, mientras que estudios de los hábitos de alimentación del atún aleta

TABLA 1. Mortalidad de delfines ocasionada por la pesca en 2010

Egyptia w wahlasión	Mortalidad incidental			
Especie y población	número	toneladas		
Delfín manchado de altamar				
Nororiental	170	11		
Occidental/sureño	135	9		
Delfín tornillo				
Oriental	510	23		
Panza blanca	92	6		
Delfín común				
Norteño	124	9		
Central	116	8		
Sureño	8	0,6		
Otros mamíferos*	15	1		
Total	1.170	67		

"Otros mamíferos" incluye las siguientes especies y poblaciones, con las mortalidades observadas correspondientes: delfín tornillo centroamericano (*Stenella longirostris centroamericana*), 2 (<0,1 t); delfín listado, 2 (0,1 t); orca falsa 1 (0.6 t); delfines no identificados, 10 (0,6 t).

amarilla señalaron una alimentación principalmente diurna.

Durante agosto-diciembre de 2006, científicos del Servicio Nacional de Pesquerías Marinas (NMFS) de EE.UU. realizaron un crucero de investigación como parte del proyecto STAR (Stenella Abundance Research). La meta principal de este estudio plurianual es investigar tendencias en el tamaño de las poblaciones de delfines que son capturadas incidentalmente en la pesquería de cerco en el OPO. Se tomaron datos de los estudios de transectos lineales a gran escala sobre la distribución y el tamaño y composición de manadas de cetáceos para estimar la abundancia de los delfines. El estudio de 2006 cubrió las mismas zonas y usó los mismos métodos que los estudios anteriores. Los datos del estudio de 2006 produjeron nuevas estimaciones de abundancia, y se analizaron de nuevo los datos previos para producir estimaciones revisadas, para 10 especies y/o poblaciones de delfines en el OPO entre 1986 y 2006. Las estimaciones de 2006 para el delfín manchado nordeste de altamar fueron algo mayores, y para el delfín tornillo oriental sustancialmente mayores, que aquéllas de los estudios previos en 1998-2000. Las estimaciones de incremento de estas dos poblaciones mermadas, y del delfín manchado costero mermado, podrían indicar que se están recuperando, pero la población del delfín manchado de altamar occidental-sureño podría estar disminuyendo. Las estimaciones de abundancia de 1998-2006 de los delfines manchado costero, tornillo panza blanca, y de dientes rugosos (Steno bredanensis) mostraron una tendencia creciente, mientras que aquéllas de los delfines listado (S. coeruleoalba), común de hocico corto (Delphinus delphis), tonina (Tursiops truncatus), y de Risso (Grampus griseus), fueron generalmente similares a estimaciones previas obtenidas con los mismos métodos.

Científicos del NMFS han calculado estimaciones de la abundancia de varias otras especies de mamíferos marinos a partir de datos de cruceros de investigación realizados entre 1986 y 2000 en el OPO. Los cruceros STAR de 2003 y 2006 proveerán más estimaciones de la abundancia de estos mamíferos. De las especies no afectadas significativamente por la pesquería atunera, las ballenas piloto de aletas cortas (*Globicephala macrorhynchus*) y tres poblaciones de delfines comunes presentaron tendencias crecientes en abundancia durante esos 15 años. La mayor abundancia aparente de estos mamíferos podría haber causado una disminución en la capacidad de carga del OPO para otros depredadores que comparten su dieta, entre ellos el delfín manchado. La abundancia estimada de la ballena de Bryde (*Balaenoptera edeni*) también aumentó, pero coinciden muy poco las dietas de estas ballenas barbadas y de los depredadores de alto nivel afectados por las pesquerías. La abundancia estimada del delfín listado

(Stenella coeruleoalba) no demostró ninguna tendencia clara con el tiempo, y las estimaciones de abundancia del cachalote (*Physeter macrocephalus*) han tendido a disminuir en los últimos años.

Ciertos mamíferos marinos son afectados adversamente por la reducción en la disponibilidad de alimento durante eventos de El Niño, especialmente en ecosistemas costeros. Ejemplos documentados incluyen delfines y pinnípedos frente a Perú, pinnípedos en las Islas Galápagos, y ballenas de Bryde frente a Perú. Las ballenas grandes pueden desplazarse en reacción a cambios en la productividad y distribución de sus presas.

2.6. Tortugas marinas

Las tortugas marinas son capturadas en los palangres cuando toman el cebo en los anzuelos, se traban al dar accidentalmente con un anzuelo, o se enredan en una línea. Hay pocas estimaciones de la mortalidad incidental de tortugas causada por la pesca con palangre o red de trasmalle. En la cuarta reunión del Grupo de Trabajo sobre Captura Incidental de la CIAT en enero de 2004 se informó que la captura incidental de tortugas en la pesquería palangrera japonesa en el OPO en 2000 consistió de 166 tortugas laúd (*Dermochelys coriacea*), de las cuales 25 estaban muertas, y unas 6,000 tortugas de todas las otras especies, principalmente golfinas (*Lepidochelys olivacea*), de las cuales aproximadamente la mitad estaba muerta. En la sexta reunión del Grupo de Trabajo en febrero de 2007, se informó que la flota española de palangre de superficie que pesca pez espada en el OPO tuvo en promedio 65 interacciones y 8 mortalidades por millón de anzuelos durante 1990-2005. Es probable que las tasas de mortalidad sean similares para otras flotas que pescan atún patudo, y posiblemente mayores que aquéllas flotas que pescan albacora y pez espada a menor profundidad. Unos 23 millones de los 200 millones de anzuelos calados cada año en el OPO por buques palangreros de aguas lejanas están dirigidos hacia el pez espada en palangres poco profundos.

Además, hay una flota considerable de buques palangreros artesanales que pescan atunes, peces picudos, tiburones y dorado (*Coryphaena* spp.) en el OPO. Desde 2005, miembros del personal de la CIAT y de otras organizaciones, junto con los gobiernos de varias naciones costeras de Latinoamérica, han participado en un programa para reducir las tasas de enganche y la mortalidad de tortugas marinas en estas pesquerías. En la sección 8.2 se presenta información adicional sobre este programa.

Las tortugas marinas son capturadas ocasionalmente en redes de cerco en la pesquería atunera del OPO. La mayoría de las interacciones ocurren cuando las tortugas se asocian con objetos flotantes, y son capturados cuando el objeto es cercado; en otros casos, una red calada alrededor de un cardumen de atunes no asociados, o un cardumen asociado con delfines, captura tortugas marinas que están presentes. La tortuga golfina es, por mucho, la especie de tortuga marina capturada con mayor frecuencia por buques cerqueros; la siguen la tortuga verde (*Chelonia mydas*), y, muy ocasionalmente, las tortugas caguama (*Caretta caretta*) y carey (*Eretmochelys imbricata*). Se ha registrado mortalidad de solamente una tortuga laúd en los 10 años en que los observadores de la CIAT registran esta información. Algunas tortugas no son identificadas por estar demasiado lejos del buque o porque no había suficiente luz para permitir al observador identificarla. A veces las tortugas marinas se enredan en malla debajo de dispositivos

agregadotes de peces (plantados) y se ahogan. En unos pocos casos. son sacadas del agua por el aparejo de mientras pesca están enmalladas. y

TABLA 2. Mortalidad de tortugas ocasionada por buques cerqueros grandes en 2010

	1	Tipo de lance			
	OBJ	NOA	DEL	Total	
Golfina	5	3	1	9	
Verde del Pacífico oriental	0	3	0	3	
Caguama	0	0	0	0	
Carey	0	0	0	0	
Laúd	0	0	0	0	
No identificada	3	1	2	6	
Total	8	7	3	18	

pueden caer de la red de alturas considerables y ser heridas, o ser pasadas por la pasteca hidráulica. En la Tabla 2 se presentan las estimaciones preliminares de la mortalidad de tortugas, en número, causada por buques cerqueros grandes durante 2010, por tipo de lance (sobre objetos flotantes (OBJ), atunes no asociados (NOA), y delfines (DEL)).

La pesca atunera de cerco es probablemente una causa de mortalidad de tortugas marinas menos importante que otros tipos de actividad humana, entre ellas el aprovechamiento de huevos y adultos, utilización de playas, contaminación, enmalle en detritos en el mar, ingestión de los mismos, y los impactos de otras pesquerías.

Las poblaciones de tortugas golfina, verde, y caguama están designadas como en peligro, y las de carey y laúd como en peligro crítico, por la Unión Mundial para la Conservación de la Naturaleza (UICN).

2.7. Tiburones y otros peces grandes

Los tiburones y otros peces grandes son capturados por buques cerqueros y palangreros. El tiburón jaquetón o sedoso (*Carcharhinus falciformis*) es la especie de tiburón capturada con mayor frecuencia en la pesquería de cerco, seguido por el tiburón oceánico o punta blanca (*C. longimanus*). Las pesquerías palangreras capturan también de tiburones jaquetón, y es necesario un análisis de la pesca palangrera y cerquera en el Pacífico entero para estimar el impacto de la pesca sobre la población. Los índices de abundancia relativa de tiburones jaquetón grandes, basadas en datos de lances cerqueros sobre objetos flotantes, señalan una tendencia decreciente durante 1994-2004; las tendencias fueron similares en los datos no estandarizados de captura incidental por lances en los dos otros tipos de lance cerquero (no se dispone todavía de datos estandarizados). Las capturas incidentales por lance medias no estandarizadas de tiburones oceánicos también demostraron tendencias descendentes para los tres tipos de lance durante el mismo período. Se ignora si dicha tendencia se debió a la captura incidental en las pesquerías, a cambios en el medio ambiente (quizá asociados con el Niño de 1997-1998), o a otros factores. La tendencia decreciente no parece ser debida a cambios en la densidad de los objetos flotantes.

Científicos en la Universidad de Washington realizaron un análisis de la frecuencia temporal de zonas de captura incidental elevada del tiburón jaquetón en los lances cerqueros sobre objetos flotantes, el cual será útil para determinar la eficacia de las vedas de tiempo y zona como método de reducción de la captura incidental de tiburones. Los resultados señalan que tanto las predicciones del modelo como los datos observados suelen indican que la frecuencia de estas capturas incidentales fue máxima al norte de 4°N y al oeste de 100-105°O. Sin embargo, debido a las grandes capturas de atún al sur de 5°N, se lograría la mayor reducción de esta captura incidental con la menor pérdida de captura de atún al norte de aproximadamente 6°N.

Entre mayo de 2007 y junio de 2008 científicos de la CIAT y del NMFS realizaron un proyecto para obtener y archivar muestras de tejido de tiburones, rayas y otros peces grandes, para análisis genéticos. Se están usando los datos de las muestras archivadas en estudios de la estructura de las poblaciones de estos grupos a gran escala, información esencial para las evaluaciones de las poblaciones y que falta generalmente en todo el Océano Pacífico. Los resultados preliminares de un análisis del tiburón jaquetón indicaron dos poblaciones, una al norte y la otra al sur de la línea ecuatorial.

Una evaluación de la población del tiburón azul (*Prionace glauca*) en el Océano Pacífico Norte ha sido realizada por científicos del NMFS y del NRIFSF. Los resultados preliminares brindan un rango de valores verosímiles del RMS de 1,8 a casi 4 veces la captura anual de la especie en 2001. Una evaluación más reciente, que usó datos de captura y esfuerzo de 1971-2002, señaló una disminución de la abundancia en los años 1980, seguida por una recuperación a un nivel mayor que aquel de 1971. Se supuso que la población de tiburón azul en 2009 estuvo cerca del nivel de RMS y el esfuerzo de pesca podría estar acercándose al nivel de RMS en el futuro.

En la Tabla 3 se presentan las estimaciones preliminares de las capturas (incluidos los descartes de la pesca de cerco), en toneladas, de tiburones y otros peces grandes en el OPO durante 2009 (aparte de

TABLA 3. Capturas de tiburones y otros peces grandes, en toneladas, 2010

	Tipo de lance			Total
	OBJ	NOA	DEL	Total
Tiburón jaquetón o sedoso (Carcharhinus falciformis)	358	62	69	489
Tiburón oceánico punta blanca (C. longimanus)	2	0	<1	2
Cornudas (Sphyrna spp.)	49	3	4	56
Tiburones zorro (<i>Alopias</i> spp.)	1	2	6	10
Otros tiburones	32	17	25	74
Rayas (Mobulidae)	7	97	56	160
Raya látigo del Pacífico (Dasyatidae)	<1	<1	3	3
Dorado (Coryphaena spp.)	1,570	4	1	1,575
Peto (Acanthocybium solandri)	465	1	<1	466
Salmón (Elagatis bipinnulata) y jurel (Seriola lalandi)	24	58	0	82
Otros peces grandes	82	319	11	412

aquéllos mencionados en lo anterior) por buques cerqueros grandes. No se dispone de datos completos de buques cerqueros pequeños, palangreros y otros.

Aparte del tiburón azul, no existen evaluaciones de las poblaciones de estas especies en el OPO, y por lo tanto se ignoran los impactos de las capturas incidentales sobre las mismas. En 2011 se intentará realizar una evaluación preliminar de la población del tiburón jaquetón en el OPO, y se planea hacer lo mismo con el tiburón oceánico punta blanca en un futuro cercano.

Las tasas de captura de especies aparte de los atunes en la pesquería cerquera son diferentes para cada tipo de lance. Con unas pocas excepciones, las tasas de captura incidental son máximas en lances sobre objetos flotantes, seguidos por lances no asociados y, en un nivel mucho más bajo, lances sobre delfines. Las tasas de captura incidental de delfines son máximas en lances sobre delfines, seguidos por lances no asociados y, en un nivel mucho más bajo, lances sobre objetos flotantes. Las tasas de captura incidental de pez vela (*Istiophorus platypterus*), rayas (Mobulidae), y mantarrayas (Dasyatidae) son máximas en lances no asociados, seguidos por lances sobre delfines, y mínimas en lances sobre objetos flotantes. Debido a estas diferencias, es necesario seguir los cambios en la frecuencia de los distintos tipos de lance para poder interpretar los cambios en las cifras de captura incidental. En la Tabla A-7 del Documento SAC-02-04 se detalla el número estimado de lances cerqueros de cada tipo realizados durante 1995-2010 en el OPO.

En octubre de 2006, el NMFS convocó una reunión técnica sobre la reducción de la captura incidental en la pesquería de cerco en el OPO. Los asistentes acordaron apoyar una propuesta de investigación de métodos para reducir la captura incidental de los tiburones, alejándolos de los objetos flotantes antes de calar la red. Se tiene planeado un estudio de factibilidad. Los asistentes apoyaron también una serie de experimentos de campo sobre aparejos y técnicas para reducir la captura incidental; incluirían modificación y manipulación de los plantados, una evaluación de indicadores de comportamiento y fisiológicos de estrés, y sacar los animales vivos de la red y de la cubierta (por ejemplo, rejas clasificadoras, puertas de burbujas, y bombas de vacío). En una tercera propuesta, asimismo apoyada por los asistentes, se usarían los datos de la CIAT para determinar si los factores espaciales, temporales, y ambientales pueden ser usados para predecir las capturas incidentales en los lances sobre plantados y para determinar en cuál grado las vedas de temporada o zona serían eficaces para reducir dichas capturas incidentales.

3. OTROS COMPONENTES DEL ECOSISTEMA

3.1. Aves marinas

Hay aproximadamente 100 especies de aves marinas en el OPO tropical. Algunas aves marinas se asocian con depredadores epipelágicos cerca de la superficie del agua, tales como peces (especialmente atunes) y mamíferos marinos. Estos depredadores arrean a las presas a la superficie para atraparles en la interfaz entre el agua y el aire, donde las aves las pueden alcanzar. La mayoría de las especies de aves marinas capturan sus presas a menos de medio metro de la superficie del mar o en el aire (peces voladores (Exocoetidae) y calamares (Ommastrephidae)). Los depredadores subsuperficiales causan que las aves puedan conseguir las presas más fácilmente no sólo al arrearlas a la superficie, sino también al herirlas o desorientarlas y al dejar restos después de alimentarse de presas grandes. Las oportunidades de alimentación de algunas especies de aves marinas dependen de la presencia de cardúmenes de atunes alimentándose cerca de la superficie.

Las aves marinas son afectadas por la variabilidad del ambiente oceánico. Durante el Niño de 1982-1983, las poblaciones de aves marinas en todo el Océano Pacífico tropical y noreste padecieron fracasos de reproducción y mortalidades masivas, o migraron a otros lugares en busca de alimento. Algunas especies, empero, aparentemente no son afectadas por eventos de El Niño. En general, las aves marinas que se alimentan en las zonas de afloramiento del OPO tropical y la Corriente de Perú padecen fracasos de reproducción y mortalidades debido a falta de alimento durante eventos de El Niño, mientras que aquéllas que se alimentan en zonas menos afectadas por El Niño podrían resultar relativamente ilesas.

Según el Report of the Scientific Research Program under the U.S. International Dolphin Conservation Program Act (Informe del Programa de Investigación Científica bajo la Ley sobre el Programa Internacional para la Conservación de los Delfines de EE.UU.), preparado por el NMFS en septiembre de 2002, no hubo tendencias temporales significativas en las estimaciones de abundancia del período de 1986-2000 de ninguna especie de ave marina en el OPO tropical, excepto una tendencia decreciente en caso del petrel de Tahití (Pseudobulweria rostrata). Se están revisando la condición y las tendencias de las poblaciones de albatros de las Galápagos (Phoebastria irrorata), patinegro (P. nigripes), y de Laysan (P. immutabilis).

Algunas aves marinas, especialmente los albatros y petreles, son susceptibles a la captura en los anzuelos cebados en las pesquerías palangreras pelágicas. Datos de rastreo por satélite y de observaciones en el mar han identificado la importancia del Área de la CIAT para los albatros de las Galápagos, de Laysan, y ojeroso (*Thalassarche melanophrys*), más varias especies que se crían en Nueva Zelanda pero que se alimentan frente a Sudamérica. El albatros de las Galápagos es motivo de preocupación especial, por ser endémico del OPO y anidar únicamente en Galápagos. Los datos de observadores en buques artesanales no indicaron interacciones del albatros de Galápagos con las faenas de pesca de estos buques. Los datos de la pesquería palangrera pelágica de EE.UU. in el Pacífico nordeste indican que ocurren capturas incidentales de albatros patinegro y de Laysan. Se dispone de pocos datos comparables de las pesquerías palangreras en el Pacífico central y sudeste. En la sexta reunión del Grupo de Trabajo en febrero de 2007, se informó que la flota española de palangre de superficie que pesca pez espada en el OPO tuvo en promedio 40 interacciones con aves marinas por millón de anzuelos durante 1990-2005, casi todas de las cuales resultaron en mortalidad. En 2007, el Grupo de Trabajo sobre Evaluaciones de Poblaciones de la CIAT identificó áreas de vulnerabilidad a la pesca industrial de palangre para varias especies de albatros, y propuso medidas de mitigación.

3.2. Alimento

Los grupos taxonómicos de alimento que ocupan los niveles tróficos medios en el OPO son obviamente componentes importantes del ecosistema, formando un vínculo entre la producción primaria en la base de la red trófica y los depredadores de nivel trófico superior, como los atunes y peces picudos. Los efectos indirectos sobre estos depredadores causados por la variabilidad ambiental son transmitidos a los niveles

tróficos superiores por medio de los grupos taxonómicos de alimento. Sin embargo, se sabe poco acerca de las fluctuaciones en abundancia de la gran variedad de especies de presas en el OPO. Científicos del NMFS registraron datos sobre la distribución y abundancia de grupos de presas comunes, entre ellos peces linterna (Myctophidae), peces voladores, y ciertos calamares, en el OPO tropical durante 1986-1990 y 1998-2000. Las estimaciones de abundancia media de todos los grupos taxonómicos de peces, y en menor grado los calamares, aumentaron durante 1986-1990; fueron bajas de nuevo en 1998, y luego aumentaron hasta 2000. Su interpretación de este patrón fue que los eventos de El Niño en 1986-1987 y 1997-1998 ejercieron efectos negativos sobre estas poblaciones de presas. Durante los cruceros STAR de NMFS en 2003 y 2006 se obtuvieron más datos sobre estos grupos taxonómicos.

El tamaño y la distribución geográfica de las poblaciones del calamar gigante o de Humboldt (*Dosidicus gigas*) en el OPO han aumentado en los últimos años. Además, en 2002 los observadores en buques atuneros de cerco reportaron incrementos de las capturas incidentales de la especie con los atunes, principalmente el barrilete, frente al Perú. Las etapas juveniles de este calamar constituyen una presa común de los atunes aleta amarilla y patudo, y de otros peces depredadores, y el calamar de Humboldt es también un depredador voraz de peces pequeños y de cefalópodos en toda su zona de distribución. Han sido observados atacando a los atunes aleta amarilla y barrilete en una red de cerco. Estos calamares no sólo han afectado los ecosistemas a los cuales se han expandido, sino que se piensa que son capaces de afectar la estructura trófica en las regiones pelágicas. Cambios en la abundancia y distribución geográfica del calamar de Humboldt podrían afectar el comportamiento de alimentación de los atunes y otros depredadores, cambiando quizá su vulnerabilidad a la captura.

Algunos peces pequeños, muchos de los cuales son alimento para los depredadores más grandes, son capturados por buques cerqueros en el OPO. Las melvas (*Auxis* spp.), por ejemplo, son presas comunes de muchos de los animales que ocupan los niveles tróficos superiores en el OPO tropical. En el modelo del ecosistema del OPO tropical (Sección 7), las melvas forman el 10% a más de la dieta de ocho

TABLA 4. Capturas de peces pequeños, en toneladas, por buques cerqueros grandes con observadores a bordo en el OPO durante 2010

	Tipo de lance		Total		
	OBJ	NOA	DEL	Total	
Peces ballesta (Balistidae) y cachúas (Monacanthidae)	74	<1	<1	75	
Otros peces pequeños	22	<1	<1	22	
Melvas (Auxis spp.)	552	195	<1	747	

categorías de depredadores. Pequeñas cantidades de melvas son capturadas por buques cerqueros en alta mar, y por pesquerías artesanales locales en algunas regiones costeras de América Central y del Sur. La gran mayoría de las melvas capturadas por buques atuneros de cerco es descartada en el mar. En la Tabla 4 se presentan las estimaciones preliminares de las capturas (incluidos los descartes de la pesca de cerco), en toneladas, de peces pequeños, por buques cerqueros grandes con observadores a bordo en el OPO.

3.3. Peces larvales y plancton

Desde hace muchos años, el personal del Southwest Fisheries Science Center del NMFS captura peces larvales en el OPO con redes de arrastre de superficie. De las 314 categorías taxonómicas identificadas, se descubrió que 17 tenían la mayor probabilidad de mostrar los efectos de cambios ambientales. La frecuencia, abundancia, y distribución de estos grupos clave no mostró ninguna tendencia temporal consistente. Investigaciones recientes demuestran una pendiente longitudinals en la estructura comunal de los conjuntos de ictioplanctón la charca cálida, con la abundancia, riqueza de especies, y diversidad de especies altas en el este (donde la termoclina es poco profunda y la productividad primaria es alta) y bajas pero variables en el oeste (donde la termoclina es profunda y la productividad primaria es baja).

Las poblaciones de fitoplancton y zooplancton en el OPO tropical son variables. Por ejemplo, las concentraciones de clorofila en la superficie del mar (un indicador de afloramientos de fitoplancton) y la abundancia de copépodos fueron reducidas marcadamente durante el Niño de 1982-1983, especialmente al oeste de 120°O. Similarmente, las concentraciones de clorofila en la superficie disminuyeron durante el Niño de 1986-1987 y aumentaron durante la Niña de 1988 debido a cambios en la disponibilidad de nutrientes.

La composición por especies y tamaños del zooplancton es a menudo más variable que la biomasa de zooplancton. Cuando aumenta la temperatura del agua, especies de agua cálida a menudo reemplazan especies de agua fría en lugares particulares. La abundancia relativa de copépodos pequeños frente al norte de Chile, por ejemplo, aumentó durante el Niño de 1997-1998, mientras que la biomasa de zooplancton no cambió.

Los copépodos forman a menudo el componente predominante de la producción secundaria en los ecosistemas marinos. Un estudiante del Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional en La Paz (México), realizó un análisis de la estructura trófica entre la comunidad de copépodos pelágicos en el OPO, usando muestras recolectadas por científicos del proyecto STAR del NMFS. Se usaron los valores del isótopo estable de nitrógeno de copépodos omnívoros en un análisis separado de la posición trófica del atún aleta amarilla, tratando los copépodos como sustituto de la variabilidad isotópica en la base de la red alimenticia (ver la sección siguiente).

4. INTERACCIONES TRÓFICAS

Los atunes y peces picudos son depredadores generalistas de gran alcance con requisitos energéticos elevados, y como tal, son componentes clave de los ecosistemas pelágicos. No se entienden bien las relaciones ecológicas entre estos grandes depredadores pelágicos, y entre ellos y los animales de niveles tróficos más bajos. A la luz de la necesidad de evaluar las implicaciones de las actividades de pesca sobre los ecosistemas subyacentes, es esencial adquirir representaciones exactas de los vínculos tróficos y los flujos de la biomasa por la red de alimentación en los ecosistemas del océano abierto, así como conocimientos básicos de la variabilidad natural impuesta por el medio ambiente.

Históricamente, los conocimientos de la ecología trófica de los peces depredadores se basaron en análisis del contenido de los estómagos. Los depredadores pelágicos grandes son considerados muestreadotes eficaces de los organismos micronécticos, que son mal muestreados por redes y arrastres. Los estudios de las dietas han descubierto muchos de los vínculos tróficos clave en el OPO pelágico, y han formado la base para la representación de las interacciones de las red de alimentación en un modelo de ecosistema (Boletín de la CIAT, Vol. 22, No. 3) para explorar los efectos indirectos de la pesca sobre el ecosistema. En dos estudios separados por una década, la presa más común de los atunes aleta amarilla capturados por buques cerqueros en alta mar fue las melvas (Auxis spp.), el canguro rojo (Pleuroncodes planipes), calamares de Humboldt, un pez mesopelágico (Vinciguerria lucetia) y varios peces epipelágicos. El atún patudo se alimenta a mayor profundidad que el aleta amarilla y barrilete, y consume principalmente cefalópodos y peces mesopelágicos. Se informó, a fines de los años 1950, que la presa más importante del barrilete fue, en general, los crustáceos eufásidos mientras que a principios de los 1990 el pequeño pez mesopelágico Vinciguerria lucetia pareció predominar en la dieta. Los atunes que se alimentan cerca de la costa utilizan a menudo presas diferentes a aquéllos capturados mar afuera. Recientemente, los estudios de dieta se han enfocado en entender redes de alimentación enteras, inicialmente con descripciones de las conexiones interespecíficas entre las comunidades de depredadores, formadas por los atunes, tiburones, peces picudos, el dorado, peto, salmón, y otros. En general, es evidente una repartición considerable de recursos entre los componentes de estas comunidades, y los investigadores buscan comprender la escala espacial de los patrones tróficos que se pueden observar, así como la influencia de la variabilidad climática sobre estos patrones.

Mientras que los estudios de la dieta han contribuido mucho a los conocimientos de la materia, los análisis de isótopos estables son un complemento útil al contenido de los estómagos para delinear la

estructura compleja de las redes de alimentación marinas. El contenido de los estómagos representa una muestra de solamente las horas más recientes de alimentación en el momento en el que fue capturado el animal, y bajo las condiciones necesarias para su captura. Los isótopos estables de carbono y nitrógeno, en cambio, integran información sobre todos los componentes de la dieta en el tejido del animal, brindando así un historial reciente de las interacciones tróficas e información sobre la estructura y dinámica de las comunidades ecológicas. AA-CSIA (compound-specific stable isotope analysis, o análisis de isótopos estables por compuesto) de los aminoácidos brinda una mayor comprensión. En muestras de tejido de consumidores, los aminoácidos "fuente" (por ejemplo, fenialanina, glicina) retuvieron los valores isotópicos en la base de la red de alimentación, y los aminoácidos "tróficos" (por ejemplo, ácido glutámico) fueron enriquecidos en ¹⁵N aproximadamente un 7% con respecto a la línea de referencia. En AA-CSIA, el tejido de los depredadores por sí mismo es suficiente para estimaciones de la posición trófica, y no es necesario un análisis separado de la composición isotópica de la base de la red de alimentación. Un análisis reciente de la distribución espacial de los valores de los isótopos estables del atún aleta amarilla en relación con aquéllos de los copépodos indicó que la posición trófica del atún aleta amarilla aumentó con distancia de la costa en el OPO, una característica de la red de alimentación nunca detectada en la dieta. Los datos de dieta de las mismas muestras de aleta amarilla analizadas paro el contenido isotópico mostraron una variabilidad comparable en la posición trófica del aleta amarilla, pero no mostraron una pendiente de la posición trófica con distancia de la costa.

Las muestras de estómago de un depredador generalista ubicuo, como el atún aleta amarilla, pueden ser usadas para inferir cambios en las poblaciones de presas mediante la identificación de cambios en el comportamiento de alimentación. Cambios inducidos por las presas en el comportamiento de alimentación podrían causar que los atunes, por ejemplo, cambiasen su distribución típica de profundidad mientras se alimentan, lo cual podría afectar su vulnerabilidad a la captura. Las poblaciones de presas que sostienen los depredadores ápice varían a lo largo del tiempo (ver 3.2 Alimento), y ciertas presas ejercen una presión depredadora considerable sobre los animales que ocupan los niveles tróficos más bajos (incluidas las etapas tempranas de vida de peces grandes). Existen dos ejemplos recientes de investigaciones de dieta pertinentes: 1) Se recolectaron muestras de estómago de aletas amarillas capturados con red de cerco durante 1992-1994 y de nuevo durante 2003-2005. Se está usando un nuevo método de análisis de árbol de clasificación, desarrollado por el Dr. P. Kuhnert, de CSIRO, Australia, para separar las covariables espaciales, temporales, y de tamaño de aleta amarilla que expliquen diferencias en los patrones de depredación a escala decadal. Se detectaron diferencias estadísticas entre los dos períodos de muestreo: predominaron las melvas y otros peces epipelágicos durante los años 1990 y peces mesopelágicos y un cangrejo galateido pelágico fueron más importantes en los 2000. Las cantidades de alimento consumido por día (ración diaria, porcentaje del peso del cuerpos) fueron menores durante este último período. Mientras que las pruebas circunstanciales apoyan el conceptto que los cambios en la disponibilidad de presas en el medio ambiente pueden ser detectados mediante un seguimiento del contenido del estómago de un depredador no selectivo, tal como el atún aleta amarilla, y no existen pruebas que la comunidad alimenticia del OPO haya cambiado desde principios de los años 1990. 2) En un segundo estudio, se obtuvieron muestras de estómago de aleta amarilla de lances cerqueros sobre atunes asociados con delfines durante el cuarto trimestre de 2006 solamente, y comparadas con muestras de lances sobre delfines realizados durante 2003-2005 en la misma zona de pesca, a fin de detectar posibles cambios en el comportamiento de alimentación. De interés especial fueron las diferencias interanuales en la depredación sobre el calamar de Humboldt debido a cambios recientes en su abundancia y distribución geográfica (ver 3.2 Alimento). La cantidad de tejido fresco de calamar en los estómagos de los aletas amarillas fue muy baja, y no hubo diferencias de año en año en las proporciones en la dieta por peso. Las mandíbulas (o picos) de los cefalópodos son retenidas en el estómago, y la frecuencia porcentual de las mandíbulas de calamares de Humboldt disminuyó un 21% entre 2004 y 2006. En general, no existe evidencia convincente de que hayan ocurrido cambios sustanciales en la estructura trófica durante 2003-2006, a partir de los hábitos de alimentación de los atunes aleta amarilla capturados en asociación con delfines.

5. AMBIENTE FÍSICO¹

Las condiciones ambientales afectan a los ecosistemas marinos, la dinámica y capturabilidad de los atunes y peces picudos, y las actividades de los pescadores. Los atunes y peces picudos son pelágicos durante todas las etapas de la vida, y los factores físicos que afectan al Océano Pacífico tropical y subtropical pueden ejercer efectos importantes sobre su distribución y abundancia. Se cree que las condiciones ambientales causan una variabilidad considerable en el reclutamiento de los atunes y peces picudos. Las evaluaciones de las poblaciones realizadas por la CIAT a menudo han incorporado el supuesto que las condiciones oceanográficas podrían afectar el reclutamiento en el OPO.

Distintos tipos de perturbaciones climáticas podrían afectar la pesca de distintas formas. Se cree que una termoclina poco profunda en el OPO contribuye al éxito de la pesca atunera de cerco, actuando tal vez de barrera térmica para los cardúmenes de atunes pequeños, manteniéndolos cerca de la superficie del agua. Cuando la termoclina se hunde, como durante un evento de El Niño, los atunes parecen ser menos vulnerables a la captura, y las tasas de captura disminuyen. Temperaturas superficiales del mar (TSM) cálidas o frías pueden asimismo causar que estos peces móviles se desplacen a un hábitat más favorable.

El ambiente oceánico varía en una variedad de escalas temporales, de estacional a interanual, decadal, y mayores (por ejemplo, fases o regímenes climáticos). La causa dominante de variabilidad en las capas superiores del OPO es conocida como El Niño-Oscilación del Sur (ENOS). El ENOS es una fluctuación irregular que afecta al Océano Pacífico tropical entero y la atmósfera global. Resulta en variaciones de los vientos, la precipitación, profundidad de la termoclina, circulación, productividad biológica, y la alimentación y reproducción de peces, aves y mamíferos marinos. Los eventos de El Niño ocurren a intervalos de entre 2 y 7 años, y son caracterizados por vientos alisios más débiles, una termoclina más profunda, y TSM anormalmente elevadas en el OPO ecuatorial. La fase contraria de El Niño, denominado comúnmente La Niña, es caracterizada por vientos alisios más fuertes, una termoclina menos profunda, y TSM más bajas. La investigación ha documentado una conexión entre el ENOS y la tasa de producción primaria, la biomasa de fitoplancton, y la composición por especies del fitoplancton. Durante los episodios de El Niño disminuye el afloramiento de agua subsuperficial, rica en nutrientes, lo cual lleva a una reducción notoria en la producción primaria y secundaria. El ENOS también afecta directamente a los animales en los niveles tróficos medianos y altos. Los investigadores han concluido que el Niño de 1982-1983, por ejemplo, incrementó la profundidad de la termoclina y nutriclina, redujo la producción primaria, redujo la abundancia de zooplancton, y al final redujo las tasas de crecimiento, el éxito reproductivo, y la supervivencia de varias aves, mamíferos, y peces en el OPO. Sin embargo, en general los habitantes del océano se recuperan en períodos cortos, porque su ciclo vital está adaptado para responder a un hábitat variable.

La CIAT informa trimestralmente de los datos oceanográficos y meteorológicos mensuales medios del OPO, incluyendo un resumen de las condiciones actuales del ENOS. Las condiciones de El Niño que afectaron al OPO durante los siete últimos meses de 2009, con TSM superiores a lo normal y mayor profundidad de la termoclina, continuaron durante el primer trimestre de 2010, pero disminuyeron durante febrero y marzo. Las TSM fueron mayormente superiores al promedio desde enero hasta abril, aproximadamente medias durante mayo, y principalmente inferiores al promedio durante junio-diciembre de 2010. Según el *Climate Diagnostics Bulletin* del Servicio Meteorológico Nacional de EE.UU. de diciembre de 2010, se espera que continúen las condiciones de La Niña hasta bien entrada la primavera del hemisferio septentrional de 2011

La variabilidad a escala decadal (o sea, de 10 a 30 años) también afecta al OPO. A fines de la década de 1970 ocurrió en el Pacífico Norte un cambio importante en las condiciones físicas y biológicas. Este cambio de clima fue detectado en el OPO tropical también, mediante pequeños aumentos de las TSM, un

¹ Gran parte de la información en esta sección proviene de Fiedler, P.C. 2002. *Environmental change in the eastern tropical Pacific Ocean: review of ENOS and decadal variability*. Mar. Ecol. Prog. Ser. 244: 265-283.

debilitamiento de los vientos alisios, y un cambio moderado en los niveles de clorofila en la superficie. Algunos investigadores han reportado otro cambio importante en el Pacífico Norte en 1989. La variabilidad en el océano causada por el clima ha sido descrita a menudo en términos de "regímenes" caracterizados por promedios y patrones relativamente estables en las variables físicas y biológicas. Análisis realizados por el personal de la CIAT indican que el atún aleta amarilla en el OPO ha pasado por regímenes de reclutamiento bajo (1975-1982) y alto (1983-2001), y posiblemente otro intermedio (2002-2006). Se cree que el mayor reclutamiento durante 1983-2001 se debe a un cambio a un régimen de productividad más alta en el Océano Pacífico. Las fluctuaciones decídales en el afloramiento y transporte de agua son simultáneas con el patrón de ENOS más frecuentes y tienen efectos en toda la cuenca sobre las TSM y la pendiente de la termoclina que son similares a los que causa el ENOS, pero a escala temporal mayor.

Existen evidencias que el Océano Pacífico Norte se encuentra actualmente en un régimen frío, mientras que no son aparentes evidencias similares en el caso del Pacífico ecuatorial.

La variabilidad ambiental en el OPO tropical es manifestada de forma diferente en las diferentes regiones donde se capturan los atunes. Por ejemplo, las anomalías de la TSM en la zona cálida del OPO (5° a 20°N, al este de 120°O) han ocurrido con la mitad de la magnitud y varios meses después de aquéllas en el área NIÑO3 en el Pacífico ecuatorial (5°S a 5°N, 90° a 150°O).

6. INDICADORES AGREGADOS

El reconocimiento de las consecuencias de la pesca para los ecosistemas marinos ha fomentado una investigación considerable en los últimos años. Han sido propuestos numerosos objetivos para evaluar los impactos de la pesca sobre los ecosistemas y para definir la sobrepesca desde una perspectiva ecosistémica. Mientras que se han usado los puntos de referencia principalmente para la ordenación de especies objetivo individuales, se cree que un primer paso factible sería aplicar medidas de desempeño y puntos de referencia a especies no objetivo. Ejemplos actuales incluyen límites de mortalidad incidental de delfines en la pesquería cerquera del OPO bajo el APICD. Otra área de interés es la posibilidad de elaborar indicadores útiles de desempeño basados en propiedades a nivel de ecosistema. Han sido propuestos varios indicadores de ecosistema, entre ellos la estructura del tamaño de la comunidad, índices de diversidad, riqueza y uniformidad de especies, índices de solape, espectros tróficos de la captura, abundancia relativa de una especie o un grupo indicador, y numerosos indicadores ambientales. Se opina generalmente que se debería usar indicadores múltiples a nivel de sistema, pero existen dudas sobre la suficiencia de los conocimientos prácticos de la dinámica de estos indicadores, y sobre la existencia de un fundamento teórico para identificar puntos de referencia precautorios o límite basados en las propiedades de los ecosistemas. El uso de indicadores basados en ecosistemas para la ordenación de pesquerías todavía no es común.

Las relaciones entre los índices de asociaciones de especies en las características de la captura y el medie ambiente son consideradas información potencialmente valiosa para la mitigación de la captura incidental. Un trabajo preliminar en 2007-2008, basado en métodos novedosos de ordenación desarrollados por científicos en el Instituto de Matemática Estadística en Tokio (Japón), señaló patrones espaciales a gran escala claros en distintas agrupaciones de especies objetivo y de captura incidental en los lances sobre objetos flotantes en la pesquería de cerco en el OPO y relaciones con variables ambientales, tales como TSM, densidad de clorofila a, y la profundidad de la capa de mezcla. Es necesario un trabajo más extenso en este u otro enfoque similar.

Los enfoques ecosistémicos a la ordenación de la pesca ponen énfasis de nuevo en lograr representaciones fieles de los vínculos tróficos y los flujos de biomasa por la red alimenticia en los sistemas explotados. La estructura de la red alimenticia y las interacciones entre sus componentes desempeñan un papel demostrable en la determinación de la dinámica y productividad de los ecosistemas. En la ecología de las redes tróficas se usan los niveles tróficos (TL) para caracterizar el papel funcional de los organismos, para facilitar las estimaciones del flujo de energía o masa por las comunidades, y para elucidar aspectos de la

trofodinámica del funcionamiento de los ecosistemas. En la Figura J-1 se presenta un diagrama simplificado, con NT aproximados, de la red trófica del OPO tropical pelágico. Las ballenas dentadas (Odontoceti, NT medio 5.2), depredadores de calamar grande (atún patudo grande y pez espada, NT medio 5.2) y tiburones (NT medio 5.0) son depredadores ápice. Los otros atunes y peces piscívoros grandes, delfines (NT medio 4.8), y aves marinas (NT medio 4.5) ocupan NT ligeramente más bajos. Peces epipelágicos menores (melvas y peces voladores (NT medio 3.2), por ejemplo), cefalópodos (NT medio 4.4), y peces mesopelágicos (NT medio 3.4) son el alimento principal de muchos de los depredadores de alto nivel en el ecosistema. Los peces pequeños y crustáceos se alimentan de dos grupos de zooplancton, y el microzooplancton herbívoro (NT 2) se alimenta de los productores, fitoplancton y bacterias (NT 1).

En los ecosistemas pelágicos explotados, las pesquerías dirigidas hacia peces piscívoros grandes funcionan de depredadores ápice del sistema. Con el tiempo, la pesca puede causar una disminución de la composición por tamaño general de la captura, y en general, los NT de los organismos pequeños son más bajos que los de los más grandes. El NT medio de los organismos capturados por una pesquería es un indicador útil de cambios en el ecosistema y de su sustentabilidad, porque integra una variedad de información biológica sobre los componentes del mismo. Se está prestando mayor atención al análisis del NT medio de las capturas y descartes de la pesca desde que un estudio demostró que, según estadísticas de descargas de FAO, el NT medio de los peces e invertebrados descargados a nivel mundial disminuyó entre 1950 y 1994, y la hipótesis de los autores del estudio es que esto perjudica los ecosistemas. Sin embargo, algunos ecosistemas han cambiado en la otra dirección, de comunidades de NT bajo a comunidades de NT más alto. En vista de la utilidad potencial de este enfoque, se estimaron los NT de una serie de tiempo de capturas y descartes anuales por especie desde 1993 hasta 2008 para tres modalidades de pesca cerquera y la pesquería cañera en el OPO. Se calcularon las estimaciones mediante la aplicación de los NT del modelo de ecosistema del OPO (Sección 7), ponderados por los datos de captura por pesquería y año correspondientes a todos los grupos del modelo de las bases de datos de la CIAT de atún, captura incidental, y descartes. Se determinaron los NT del modelo ecosistémico mediante estimaciones de la dieta media de todos los grupos de especies. Los NT de las capturas sumadas de todas las pesquerías de cerco y de caña fueron bastante constantes de año a año, con menos de un 0.1 NT de variación (Figura J-2: promedio PS-LP), Una leve tendencia decreciente de los lances no asociados, equivalente a 0,4 TL durante el período de 16 años, fue estadísticamente significativo (p<0,001). No obstante, no es considerada una tendencia ecológicamente perjudicial porque fue causada por proporciones crecientes de barrilete en la captura con el tiempo. Las capturas de aleta amarilla grande (≥90 cm, NT 4.66), barrilete (NT 4.57), aleta amarilla pequeño (<90 cm, NT 4.57), y patudo grande (≥80 cm, NT 5.17) contribuyeron el 36, 34, 19, y 6%, respectivamente, al NT general (4.63) durante 1993-2008. Las capturas retenidas y descartadas de todas las otras especies y grupos contribuyeron menos del 5% del NT general de las capturas, incluyendo el patudo pequeño (4.7%, NT 4.53) y todas las especies de captura incidental. En general, los NT de los lances no asociados y la pesquería de caña fueron inferiores al promedio, y aquéllos de los lances sobre delfines superiores al promedio en la mayoría de los años (Figura J-2). Los NT de los lances sobre objetos flotantes variaron más que los de los otros tipos de lance y las otras pesquerías, debido principalmente a la variabilidad interanual en las cantidades del patudo y barrilete capturadas en esos lances. Los NT de los lances sobre objetos flotantes estuvieron positivamente relacionados con el porcentaje de la captura total formado por patudo grande (p<0.001) y negativamente relacionado con el porcentaje de la captura formado por barrilete (p<0.001) (Figura J-3).

Se estimaron también por separado NT para la serie de tiempo de capturas retenidas y descartadas de la pesquería de cerco en cada año del período de 1993 a 2008 (Figura J-4). Las capturas descartadas fueron mucho menores que las capturas retenidas, y por lo tanto los patrones de los NT de las capturas totales (retenidos más descartadas) (Figura J-2) fueron determinados principalmente por los NT de las capturas retenidas (Figura J-4). Los NT de las capturas descartadas variaron más entre años que aquéllos de las capturas retenidas, debido a la diversidad de especies en las capturas incidentales. La disminución considerable de los NT de los descartes en los lances sobre delfines durante el período de 16 años (Figura

J-4) está relacionada con una reducción de las mortalidades de delfines y los descartes de atún aleta amarilla. En el caso de los lances no asociados, la disminución notoria del NT durante 1997 se debió a una mayor captura incidental de rayas (NT 3.68), que se alimentan de plancton y otros animales pequeños que ocupan NT bajos, y una disminución de las capturas de tiburones grandes (NT 4.93), y un aumento de los peces presa (por ejemplo, Clupeiformes, Nomeidae, Tetraodontiformes, y *Auxis* spp.; NT 3,19-3,86) en la captura incidental. Desde 1997 hasta 2001, las capturas descartadas de rayas disminuyeron paulatinamente en los lances no asociados y aquéllas de tiburones grandes y aletas amarillas pequeños aumentaron, resultando en un aumento progresivo de los NT de las capturas descartadas durante ese intervalo. En el caso de los lances sobre objetos flotantes, los descartes de patudo están relacionados con NT más altos.

7. EVALUACIÓN DE RIESGOS ECOLÓGICOS

La sustentabilidad ecológica a largo plazo es un requisito de la ordenación ecosistémica de la pesca. La pesca afecta las poblaciones de no sólo las especies objetivo, sino también las especies capturadas incidentalmente. La vulnerabilidad a la sobrepesca de muchas de las poblaciones capturadas incidentalmente en las pesquerías atuneras del OPO es desconocida, y los datos biológicos y de pesca de la mayoría de esas poblaciones son muy escasos. Para el presente análisis, se define la vulnerabilidad como el potencial de reducción de la productividad de una población por presión de pesca directa e indirecta. El personal de la CIAT está evaluando métodos establecidos para determinar la vulnerabilidad de especies no objetivo para los que se cuenta con pocos datos.

Una versión del análisis de productividad y susceptibilidad (PSA²), usado para evaluar otras pesquerías en años recientes, considera la vulnerabilidad de una población como una combinación de su productividad y su susceptibilidad a la pesca. La productividad de una población es la capacidad de la misma de recuperarse si es mermada, y es una función de los rasgos del ciclo vital de la especie. La susceptibilidad de una población es el grado al cual una pesquería puede ejercer un efecto negativo sobre una población, es decir, la propensión de una especie de ser capturada por una pesquería, y padecer mortalidad a causa de la misma. Los índices de productividad y susceptibilidad de una población son determinados mediante la derivación de una puntuación de entre 1 (baja) y 3 (alta) para un conjunto estandarizado de atributos relacionados con cada índice. Las puntuaciones individuales de los atributos son entonces promediadas para cada factor y presentados en una gráfica de dispersión x-y. Se usaron diez atributos de productividad y doce de susceptibilidad en el PSA⁵ reciente. Al puntuar los atributos, se evaluó la calidad de los datos asociados con cada puntuación de un atributo, y se ponderaron los atributos por la puntuación de calidad de los datos. Se consideró que las poblaciones que recibieron una puntuación de productividad (p) baja y una puntuación de susceptibilidad (s) alta corren un alto riesgo de ser mermados, mientras que las poblaciones con un puntuación de productividad alta y una puntuación de susceptibilidad baja corren un riesgo bajo. Las puntuaciones de vulnerabilidad (v) fueron calculadas a partir de las puntuaciones p y s como la distancia euclidiana desde el origen de la gráfica de dispersión xy y el punto de dato:

$$v = \sqrt{(p-3)^2 + (s-1)^2}$$

A fin de examinar la utilidad de los índices de productividad y susceptibilidad para evaluar la vulnerabilidad de poblaciones de peces, tortugas, y mamíferos a la sobrepesca, se realizó una evaluación preliminar de tres « pesquerías » de cerco en el OPO. Se enfocó el PSA preliminar en 26 especies (Tabla J-1) que formaban la mayor parte de la biomasa extraída por los buques de cerco de más de 363 toneladas métricas de capacidad de acarreo durante 2005-2009. Nueve atributos de productividad y ocho de susceptibilidad se basaron en el PSA² ejemplar, y algunas fueron modificadas para mayor consistencia

² Patrick, W.S., P. Spencer, J. Link, J. Cope, J. Field, D. Kobayashi, P. Lawson, T. Gedamke, E. Cortés, O. Ormseth, K. Bigelow, and W. Overholtz. 2010. Using productivity and susceptibility indices to assess the vulnerability of United States fish stocks to overfishing. Fish. Bull. U.S. 108: 305-322.

IATTC-82-05 - Atunes y peces picudos en el OPO 2010

con las pesquerías atuneras en el OPO. En las Tablas J-2 y J-3 se presentan los atributos de productividad y susceptibilidad y los umbrales de puntuación usados en el PSA preliminar de la CIAT.

Se compiló información correspondiente a los atributos de productividad de cada especie de una variedad de fuentes en la literatura publicada en inédita y de datos de pesca del OPO (o sea, no adoptados de PSA previos) para un mejor ajuste a la distribución de las características del ciclo vital observadas en las especies presentes en el OPO. Se derivaron los umbrales de puntuación para los atributos de productividad (Tabla J-2) al dividir los datos compilados en percentiles de un tercio. Los criterios de puntuación para los atributos de susceptibilidad (Tabla J-3) fueron tomados del PSA² ejemplar y modificados en casos apropiados para un mejor ajuste a las pesquerías del OPO. Se promediaron entonces las puntuaciones de cada índice. En las Figuras J-5 a J-7 se presentan gráficas de dispersión de las puntuaciones promediadas de productividad y susceptibilidad correspondientes a subconjuntos de las 26 especies capturadas por tres pesquerías de cerco: sobre delfines, sobre atunes no asociados, y sobre objetos flotantes. La escala del eje x en las figuras está invertida porque las especies/poblaciones con una puntuación de productividad alta y una puntuación de susceptibilidad baja (o sea, al origen de las gráficas) son consideradas las menos vulnerables.

En general, algunos de los tiburones, la mantarraya gigante, y los delfines tuvieron las puntuaciones de productividad más bajas. Los atunes y algunos de los « peces grandes » (Tabla J-1) tuvieron las puntuaciones de productividad más altas. La tortuga golfina, la cornuda gigante, y el tiburón zorro ojón en lances sobre objetos flotantes tuvieron las puntuaciones de susceptibilidad más bajas, mientras que el jurel voraz, el medregal rabo amarillo en lances no asociados, y el marlín negro en lances sobre objetos flotantes tuvieron las puntuaciones de susceptibilidad más altas. En términos de la vulnerabilidad general a la sobrepesca (ecuación previa), algunos de los tiburones y la mantarraya en lances sobre delfines tuvieron las puntuaciones más altas.

Se aconseja cautela en la interpretación de este PSA preliminar en el caso de los tiburones jaquetón y oceánico. El análisis indica que el jaquetón es más vulnerable a la sobrepesca en los lances sobre delfines y no asociados (Figuras J-5 y J-6), y el tiburón oceánico más vulnerable en los lances sobre delfines, que en los lances sobre objetos flotantes (Figura J-7). Esto se debe a puntuaciones de susceptibilidad más altas para aquellos tiburones en el índice de traslapo zonal-concentración geográfica y retención porcentual de la captura incidental ("Deseabilidad/valor de la captura," Tabla J-3) en los lances sobre delfines que en las otras pesquerías. Este resultado es engañoso, ya que solamente el 3% y 8% de la captura incidental cumulativa (en número de individuos) de tiburones jaquetón y oceánico, respectivamente, registrada durante 2005-2009 fue capturado en lances sobre delfines (Tabla J-1). Los lances sobre objetos flotantes, que produjeron el 93% y 91% de la captura incidental de tiburones jaquetón y oceánico, respectivamente, (Tabla J-1) tienen evidentemente el potencial de producir el mayor impacto sobre estos tiburones en el OPO.

El personal de la CIAT piensa continuar la evaluación de riesgos ecológicos para el OPO. El PSA será mejorado y ampliado más allá del análisis preliminar aquí descrito, e incluirá más de las pesquerías que operan en el OPO. Además, se explorarán otros tipos de evaluación de riesgos ecológicos.

8. MODELADO DE ECOSISTEMAS

Es evidente que los distintos componentes de un ecosistema interactúan. La ordenación ecosistémica de la pesca es facilitada por la elaboración de modelos ecosistémicos multiespecíficos que representan las interacciones ecológicas entre las especies o gremios. Nuestros conocimientos del complicado laberinto de conexiones en los ecosistemas del océano abierto están en su etapa temprana, y, por lo tanto, la mayor utilidad de los modelos de ecosistema actuales es como instrumentos descriptivos para explorar los efectos de una mezcla de hipótesis y conexiones establecidas entre los componentes del ecosistema. Los modelos de ecosistema necesitan mantener un equilibrio entre representaciones simplistas por un lado y una complejidad imposible de manejar por el otro.

El personal de la CIAT ha desarrollado un modelo del ecosistema pelágico en el OPO tropical (Boletín de la CIAT, <u>Vol. 22, No. 3</u>) para explorar cómo la pesca y la variación climática podrían afectar los animales en los niveles tróficos medianos y altos. El modelo tiene 38 componentes, entre ellos las principales especies explotadas (atunes, por ejemplo), grupos funcionales (tiburones y peces voladores, por ejemplo), y especies sensibles (tortugas marinas, por ejemplo). Algunos grupos taxonómicos están subdivididos en categorías (marlines grandes y pequeños, por ejemplo). La resolución taxonómica del modelo es más fina en los niveles tróficos superiores, pero la mayor parte de la biomasa del sistema está en los niveles tróficos medianos y bajos. Se estimaron las descargas y descartes para cinco "artes" de pesca: caña, palangre, y tres tipos de lances cerqueros: sobre atunes asociados con delfines, con objetos flotantes, y no asociados. El modelo está enfocado en las regiones pelágicas; no describe adecuadamente los ecosistemas locales costeros.

La mayor parte de la información que describe las interacciones interespecíficas en el modelo provino de un proyecto conjunto CIAT-NMFS, el que incluyó estudios de los hábitos alimenticios de atunes aleta amarilla, barrilete, y patudo, delfines, tiburones pelágicos, peces picudos, dorados, petos, salmones, y otros. El objetivo del proyecto fue contribuir a los conocimientos de la asociación atún-delfín, y se adoptó un diseño de muestreo a nivel de comunidad.

Se usó el modelo de ecosistema para evaluar los posibles efectos de variabilidad en los procesos forzados desde abajo por el medio ambiente sobre los niveles tróficos medianos y altos del ecosistema pelágico. Se incorporaron en el modelo series de tiempo predeterminadas de biomasa de productores para aproximar los cambios en la producción primaria documentados durante eventos de El Niño y La Niña, y se simuló la dinámica de los demás componentes del ecosistema. Se usó el modelo también para evaluar las contribuciones relativas de la pesca y el medio ambiente en la formación de la estructura del ecosistema en el OPO pelágico tropical. Se hizo esto usando el modelo para predecir cuáles componentes del ecosistema podrían ser susceptibles a efectos de la pesca de arriba hacia abajo, dada la importancia aparente de la variabilidad ambiental en la estructuración del ecosistema. En general, los animales con tasas de cambio relativamente bajas fueron afectados más por la pesca que por el medio ambiente, y aquéllos con tasas relativamente altas más por el medio ambiente que por la pesca.

9. ACCIONES DE LA CIAT Y EL APICD RELATIVAS A CONSIDERACIONES DE ECOSISTEMA

Tanto la Convención de la CIAT como el APICD tienen objetivos que versan sobre la incorporación de consideraciones de ecosistema en la ordenación de las pesquerías atuneras en el OPO. Acciones tomadas en el pasado incluyen:

9.1. Delfines

- a. Desde hace muchos años se evalúa el impacto de la pesquería sobre las poblaciones de delfines, y los programas para reducir o eliminar ese impacto han tenido un éxito considerable.
- b. Se ha limitado la mortalidad incidental de todas las poblaciones de delfines a niveles insignificantes con respecto al tamaño de las poblaciones.

9.2. Tortugas marinas

- a. Se ha compilado una base de datos sobre todos los avistamientos, capturas, y mortalidades de tortugas marinas reportadas por observadores.
- b. En junio de 2003, la CIAT adoptó una *Recomendación sobre tortugas marinas*, en la que se contempla "el desarrollo de un programa de tres años que podría incluir la reducción de capturas incidentales de tortugas marinas, investigaciones biológicas de tortugas marinas, perfeccionamiento de artes de pesca, educación de la industria y otras técnicas para mejorar la conservación de tortugas marinas." En enero de 2004, el Grupo de Trabajo sobre Captura Incidental propuso un programa detallado que incluye todos estos elementos e insta a todas las naciones con buques que pescan atunes

en el OPO a que provean a la CIAT información sobre interacciones de las pesquerías con tortugas marinas en el OPO, incluyendo capturas tanto incidentales como directas, y otros impactos sobre las poblaciones de tortugas marinas. En junio de 2004, la CIAT adoptó la Resolución C-04-07 sobre un programa de tres años para mitigar el impacto de la pesca atunera sobre las tortugas marinas; incluye disposiciones sobre la toma de datos, medidas de mitigación, educación de la industria, fomento de capacidad, e informes.

- c. La <u>Resolución C-04-05</u>, adoptada por la CIAT en junio de 2004, contiene disposiciones relativas a la liberación y tratamiento de tortugas marinas capturadas en redes de cerco. Prohíbe también a los buques desechar bolsas y otra basura plástica en el mar, y encarga al Director estudiar y formular recomendaciones acerca del diseño de plantados, particularmente el uso de malla de red sujetada bajo el agua a los mismos.
- d. La Resolución C-07-03, adoptada por la CIAT en junio de 2007, contiene disposiciones acerca de la instrumentación de programas de observadores en pesquerías bajo el amparo de la Comisión que podrían ejercer un efecto sobre las tortugas marinas y actualmente no son acatadas. La resolución exige que los pescadores fomenten la recuperación y reanimación de tortugas marinas de caparazón duro comatosas o inactivas antes de devolverlas al agua. Se dirige a las CPC con buques de cerco o palangre que pesquen especies abarcadas por la Convención de la CIAT en el OPO evitar a evitar encuentros con las tortugas marinas, reducir las mortalidades mediante el uso de una variedad de técnicas, y realizar investigaciones sobre la modificación de los diseños de los plantados y las artes de palangre y las prácticas de pesca.
- e. En respuesta a una solicitud de la Subsecretaría de Recursos Pesqueros del Ecuador, un programa fue establecido por World Wildlife Fund, la CIAT, y el gobierno de Estados Unidos, para mitigar la captura incidental y reducir la mortalidad de tortugas marinas causadas por la pesca con palangre. Un elemento clave de este programa es la comparación de las tasas de captura de atunes, peces picudos, tiburones, y dorado capturados con anzuelos J con las tasas de captura con anzuelos circulares. Los anzuelos circulares no enganchan tantas tortugas como los anzuelos J, usados tradicionalmente en la pesca palangrera, y la probabilidad de herir gravemente a las tortugas que muerden los anzuelos circulares es menor porque son más anchos y suelen engancharse en la mandíbula inferior, en lugar de internarse en el esófago y otras áreas, evento más peligroso y más común con los anzuelos J. Se difundieron además a las flotas palangreras de la región procedimientos y herramientas para liberar tortugas marinas enganchadas y enmalladas.

Al fin de 2008, el programa de intercambio de anzuelos y de observadores, que comenzó en Ecuador en 2003, fue activo en Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, México, Nicaragua, Panamá, y Perú, y está en desarrollo en Chile, con talleres en muchos puertos. El programa en Ecuador se está realizando en conjunto con el gobierno y la Overseas Fishery Cooperation Foundation del Japón, mientras que en los otros países es financiado por agencias de EE.UU. Los resultados iniciales señalan que, en las pesquerías dirigidas hacia los atunes, peces picudos y tiburones, ocurrió una reducción importante en las tasas de enganche de las tortugas marinas con los anzuelos circulares, y que menos anzuelos se alojaron en el esófago u otras áreas perjudiciales para las tortugas. Las tasas de captura de las especies objetivo son, en general, similares a aquéllas de los anzuelos J. Se realizó también un experimento en la pesquería de dorado con anzuelos circulares más pequeños; las tasas de enganche de tortugas disminuyeron, pero menos que en las pesquerías de atunes, peces picudos y tiburones. Además, miembros del personal de la CIAT y otros dirigieron talleres e hicieron presentaciones en todos los países que participan en el programa.

9.3. Aves marinas

a. La Recomendación <u>C-10-02</u>, adoptada por la CIAT en octubre de 2010, reafirmó la importancia que los miembros de la CIAT y los no miembros cooperantes apliquen, en caso apropiado, el *Plan de Acción Internacional para reducir las capturas incidentales de aves marinas en la pesca con*

palangre de la FAO (PAI – Aves marinas). Los gobiernos detallados en la recomendación acordaron notificar a la CIAT de su instrumentación del PAI-Aves Marinas, incluyendo, según proceda, la situación de su Plan de Acción Nacional para reducir la captura incidental de las aves marinas en las pesquerías de palangre. Se acordó además que los gobiernos exigirían de sus buques palangreros que pescan Especies gestionadas por la CIAT en zonas específicas (detalladas en el Anexo 1 de la recomendación) usar al menos dos de un conjunto de ocho medidas de mitigación determinadas. Además, se alentó a los miembros y no miembros cooperantes de la CIAT a establecer programas nacionales para asignar observadores a buques palangreros de su pabellón o que pescan en sus aguas, y adoptar medidas dirigidas a asegurar que las aves marinas capturadas vivas durante las faenas de pesca con palangre sean liberadas vivas y en las mejores condiciones posibles.

- b. La sexta reunión del Grupo de Trabajo de la CIAT sobre Captura Incidental recomendó que el Grupo de Trabajo sobre la Evaluación de Poblaciones sugiriese posibles medidas de mitigación en áreas en las que coinciden las distribuciones de aves marinas y esfuerzo palangrero, y que la CIAT considerase medidas de mitigación en su reunión en junio de 2007. Recomendó también que se obtuviesen datos sobre la captura incidental de aves marinas de todos los buques palangreros atuneros en el OPO.
- c. Se está elaborando un modelo de población para el albatros patinegro, a fin de evaluar la probabilidad de que los niveles actuales y pasados de captura incidental afecten de forma significativa las poblaciones de la especie, y generar un modelo de especie protegida que pueda ser aplicado a varias especies y usado para proveer asesoramiento sobre la ordenación. Se están usando los datos de los observadores de la CIAT en buques cerqueros para trazar las distribuciones de las aves marinas.

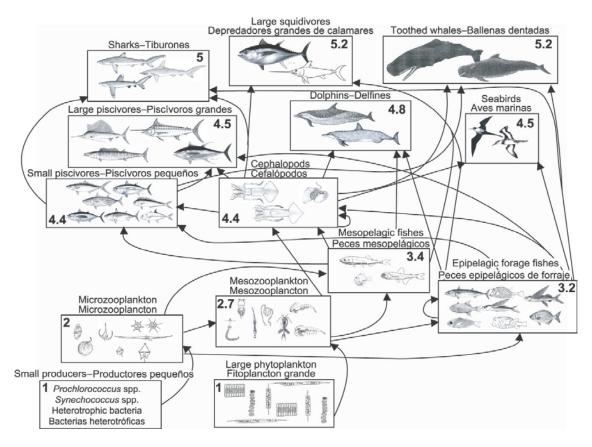
9.4. Otras especies

- a. En junio de 2000, la CIAT adoptó una resolución sobre la liberación de tiburones, rayas, peces picudos, dorados, petos, y otras especies no objetivo.
- b. La Resolución C-04-05, adoptada por la CIAT en junio de 2006, encarga al Director buscar fondos para la reducción de la mortalidad incidental de atunes juveniles, para desarrollar técnicas y/o equipo para facilitar la liberación de peces picudos, tiburones y rayas de la cubierta o de la red, y para realizar experimentos para estimar las tasas de supervivencia de peces picudos, tiburones y rayas liberados.

9.5. Todas especies

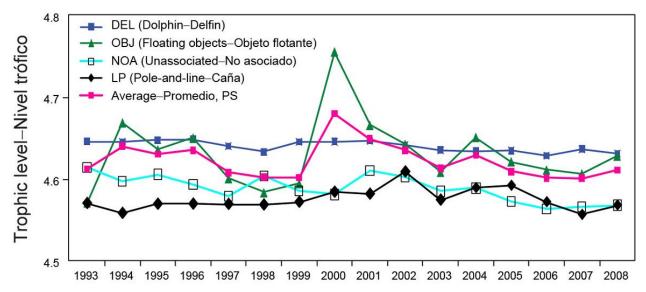
- a. Se está recabando datos sobre las capturas incidentales por buques cerqueros grandes, y se insta a los gobiernos a proveer información sobre las capturas incidentales de otros buques.
- b. Se han recabado datos sobre la distribución espacial de las capturas incidentales y las proporciones de captura incidental a captura para análisis de opciones de políticas de reducción de capturas incidentales.
- c. Se ha recabado información para evaluar medidas para reducir las capturas incidentales, tales come vedas, límites de esfuerzo, etc.
- d. Se han realizado evaluaciones de preferencias de hábitat y el efecto de cambios ambientales.

10. ACONTECIMIENTOS FUTUROS


Es poco probable, al menos en el futuro cercano, que se disponga de evaluaciones de las poblaciones de la mayoría de las especies de captura incidental. Es posible que en lugar de evaluaciones formales se puedan desarrollar índices para evaluar tendencias en la condición de estas especies. La experiencia del personal de la CIAT con los delfines sugiere que la tarea no es trivial si se desea una precisión relativamente alta.

Han sido propuestas varias medidas para estudiar cambios en las características del ecosistema, entre ellas

estudios del nivel trófico medio, espectros de tamaño, dominancia, diversidad, y otros, para describir el ecosistema de forma agregada.


La distribución de las pesquerías de atunes y peces picudos en el OPO es tal que incluye probablemente varias regiones con características ecológicas diferentes. Es posible que, dentro de éstas, masas de agua, características oceanográficas o topográficas, influencias del continente, etcétera, generen heterogeneidad que afecte la distribución de las distintas especies y su abundancia relativa en las capturas. Sería ventajoso incrementar los conocimientos de estos estratos ecológicos para poder usarlos en nuestros análisis.

Es importante continuar los estudios de los ecosistemas en el OPO. La capacidad de resolver problemas relacionados con la pesca y el ecosistema crecerá con el número de variables de hábitat, grupos taxonómicos y niveles tróficos estudiados y con series de tiempo de datos más largas.

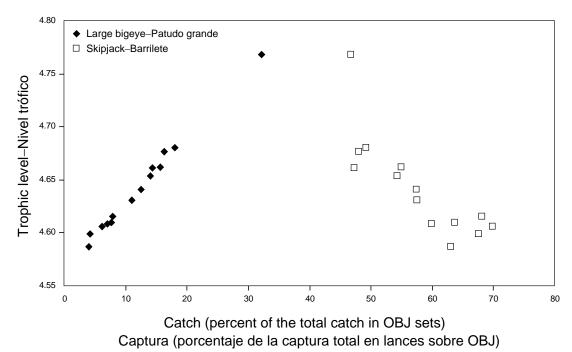

FIGURE J-1. Simplified food-web diagram of the pelagic ecosystem in the tropical EPO. The numbers inside the boxes indicate the approximate trophic levels of each group.

FIGURA J-1. Diagrama simplificado de la red trófica del ecosistema pelágico en el OPO tropical. Los números en los recuadros indican el nivel trófico aproximado de cada grupo.

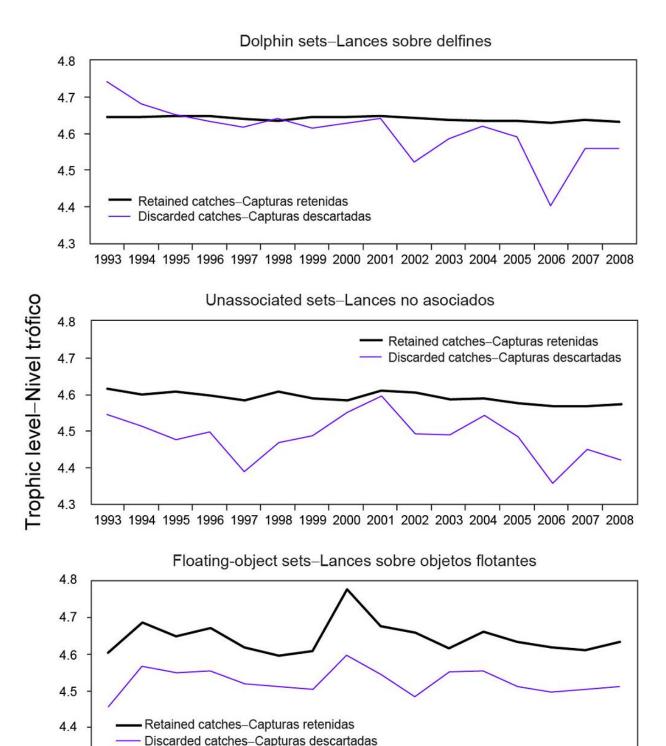
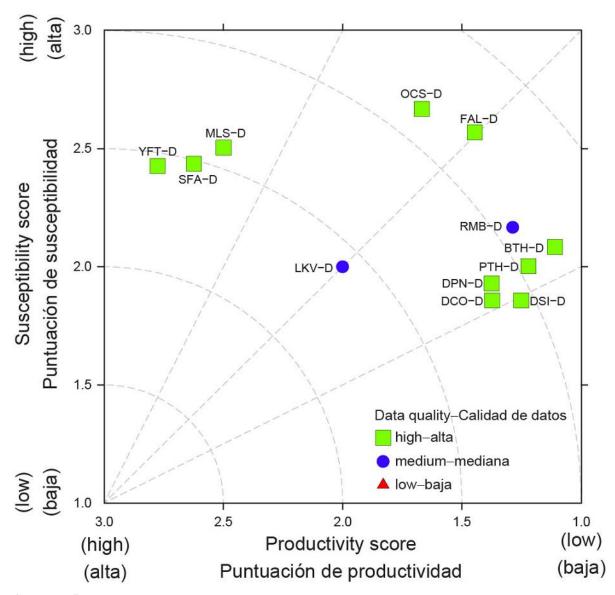

FIGURE J-2. Yearly trophic level estimates of the catches (retained and discarded) by the purse-seine and pole-and-line fisheries in the tropical EPO, 1993-2008.

FIGURA J-2. Estimaciones anuales del nivel trófico de las capturas (retenidas y descartadas) de las pesquerías cerquera y cañera en el OPO tropical, 1993-2008.

FIGURE J-3. Estimates of the trophic levels of the retained catches of large bigeye and of skipjack in floating-object sets (OBJ) in the tropical EPO, 1993-2006, versus the catches of large bigeye and of skipjack calculated as percentages of the total catches in floating-object sets each year.

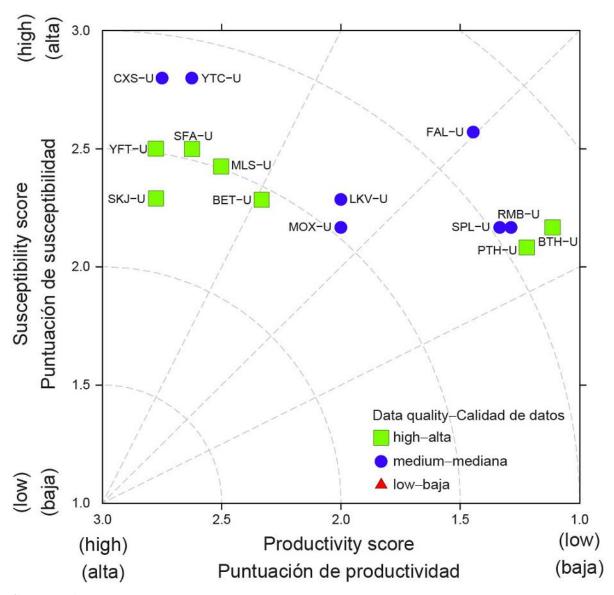
FIGURA J-3. Estimaciones de los niveles tróficos de las capturas retenidas y descartadas en lances sobre objetos flotantes (OBJ) en el OPO tropical, 1993-2006, relativas a las capturas de patudo grande y barrilete, calculadas como porcentajes de las capturas totales en lances sobre objetos flotantes cada año.

FIGURE J-4. Trophic level estimates of the retained catches and discarded catches by purse-seine fishing modes in the tropical EPO, 1993-2008.


1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

4.3

FIGURA J-4. Estimaciones del nivel trófico de las capturas retenidas y descartadas por modalidad de pesca cerquera en el OPO tropical, 1993-2008.


Species codes used in Figures J-5 - J-7- Códigos de especies usados en las Figuras J-5 - J-7

	Grouping	Species	Grupo	Especie
YFT	Tunas	Yellowfin tuna	Atunes	Atún aleta amarilla
BET		Bigeye tuna		Atún patudo
SKJ		Skipjack tuna		Atún barrilete
BLM	Billfishes	Black marlin	Peces picudos	Marlín negro
BUM		Blue marlin		Marlín azul
MLS		Striped marlin		Marlín rayado
SFA		Indo-Pacific sailfish		Pez vela del Indo-Pacífico
DPN	Dolphins	Spotted dolphin	Delfines	Delfín manchado
DSI		Spinner dolphin		Delfín tornillo
DCO		Common dolphin		Delfín común
DOL	Large fishes	Dolphinfish	Peces grandes	Dorado
WAH		Wahoo		Peto
RRU		Rainbow runner		Salmón
CXS		Bigeye trevally		Jurel arco iris
YTC		Yellowtail amberjack		Medregal rabo amarillo
MOX		Ocean sunfish		Pez luna
RMB	Rays	Giant manta	Mantarrayas	Mantarraya gigante
FAL	Sharks	Silky shark	Tiburones	Tiburón jaquetón (sedoso)
OCS		Oceanic whitetip shark		Tiburón oceánico (punta blanca)
BTH		Bigeye thresher shark		Zorro ojón
PTH		Pelagic thresher shark		Zorro pelágico
SPL		Scalloped hammerhead shark		Cornuda común
SPK		Great hammerhead		Cornuda gigante
SPZ		Smooth hammerhead shark		Cornuda cruz
CNT	Small fishes	Ocean triggerfish	Peces pequeños	Pez ballesta oceánico
LKV	Turtles	Olive Ridley turtle	Tortugas	Tortuga golfina

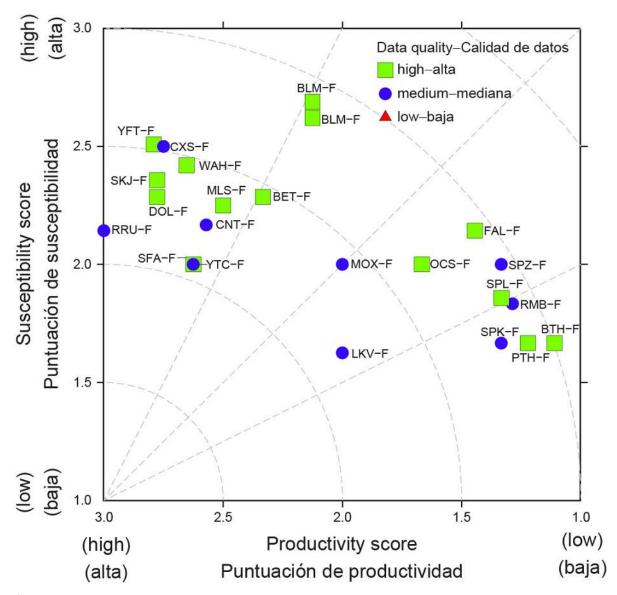

FIGURE J-5. Productivity and susceptibility x-y plot for target and bycatch species in dolphin sets in the purse-seine fishery of the eastern Pacific Ocean. 3-alpha species codes next to each point are defined on page 122; -D: dolphin sets.

FIGURA J-5. Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental en lances sobre delfines en la pesquería de cerco en el Océano Pacífico oriental. Se definen los códigos de especies de tres letras en la página 122; -D: lances sobre delfines.

FIGURE J-6. Productivity and susceptibility x-y plot for target and bycatch species of unassociated sets in the purse-seine fishery of the eastern Pacific Ocean. 3-alpha species codes next to each point are defined on page 122; –U: unassociated sets.

FIGURA J-6. Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental en lances no asociados en la pesquería de cerco en el Océano Pacífico oriental. Se definen los códigos de especies de tres letras en la página 122; –U: lances no asociados.

FIGURE J-7. Productivity and susceptibility x-y plot for target and bycatch species of floating-object sets in the purse-seine fishery of the eastern Pacific Ocean. 3-alpha species codes next to each point are defined on page 122; -F: floating-object sets.

FIGURA J-7. Gráfica x-y de productividad y susceptibilidad de especies objetivo y de captura incidental en lances sobre objetos flotantes en la pesquería de cerco en el Océano Pacífico oriental. Se definen los códigos de especies de tres letras en la página 122; –F: lances sobre objetos flotantes.

TABLA J-1. Especies objetivo y de captura incidental para los cuales se compilaron datos para definir los intervalos de puntuación de los atributos de productividad y susceptibilidad usados en un PSA preliminar de las pesquerías de cerco (delfines, no asociados, y objeto flotante) en el Océano Pacífico oriental. Los porcentajes de captura incidental corresponden a buques de cerco de más de 363 toneladas métricas de capacidad de acarreo durante 2005-2009. "n/a" indica las especies de atunes que fueron incluidas en el análisis, pero no se indicaron porcentajes porque los atunes no son captura incidental de esas pesquerías.

Especie			Captura incidental		
Grupo	Common name	Nombre científico	DEL	NOA	OBJ
Atunes	Atún aleta amarilla	Thunnus albacares	n/a	n/a	n/a
	Atún patudo	Thunnus obesus		n/a	n/a
	Atún barrilete	Katsuwonus pelamis		n/a	n/a
Peces					
picudos	Marlín negro	Makaira indica			85%
	Marlín azul	Makaira nigricans			89%
	Marlín rayado	Tetrapturus audax	28%	24%	48%
	Pez vela Indo-Pacífico	Istiophorus platypterus	68%	17%	15%
Delfines	Delfín manchado	Stenella attenuata	100%		
	Delfín tornillo	Stenella longirostris	100%		
	Delfín común	Delphinus delphis	100%		
Peces					
grandes	Dorado	Coryphaena hippurus			98%
	Peto	Acanthocybium solandri			100%
	Salmón	Elagatis bipinnulata			100%
	Jurel voraz	Caranx sexfasciatus		52%	48%
	Medregal rabo amarillo	Seriola lalandi		15%	85%
	Pez luna	Mola mola		14%	79%
Mantarrayas	Mantarraya gigante	Manta birostris	61%	25%	13%
Tiburones	Tiburon jaquetón (sedoso) Tiburón oceánico (punta	Carcharhinus falciformis	3%	4%	93%
	blanca)	Carcharhinus longimanus	8%		91%
	Zorro ojón	Alopias superciliosus	35%	51%	14%
	Zorro pelágico	Alopias pelagicus	34%	43%	23%
	Cornuda común	Sphyrna lewini		18%	77%
	Cornuda gigante	Sphyrna mokarran			93%
	Cornuda cruz	Sphyrna zygaena			88%
Peces	Pez ballesta oceánico				
pequeños		Canthidermis maculatus			100%
Tortugas	Tortuga golfina	Lepidochelys olivacea	18%	13%	69%

TABLE J-2. Preliminary productivity attributes and proposed scoring thresholds used in the IATTC PSA.

TABLA J-2. Atributos de productividad preliminares y umbrales de puntuación propuestos usados en el PSA de la CIAT.

	Ranking – Clasificación		
Productivity attribute	Low –	Moderate –	High –
Atributo de productividad	Bajo (1)	Moderado (2)	Alto (3)
Intrinsic rate of population growth (<i>r</i>)			
Tasa intrínseca de crecimiento de la población (<i>r</i>)	> 1.3	$> 0.1, \le 1.3$	≤ 0.1
Maximum age (years)			
Edad máxima (años)	\geq 20	> 11, < 20	≤ 11
Maximum size (cm)			
Talla máxima (cm)	> 350	$>$ 200, \le 350	≤ 200
von Bertalanffy growth coefficient (k)			
Coeficiente de crecimiento de von Bertalanffy (<i>k</i>)	< 0.095	0.095 - 0.21	> 0.21
Natural mortality (<i>M</i>)			
Mortalidad natural (<i>M</i>)	< 0.25	0.25 - 0.48	> 0.48
Fecundity (measured)			
Fecundidad (medida)	> 200,000	10 - 200,000	< 10
Breeding strategy			
Estrategia de reproducción	≥ 4	1 to-a 3	0
Age at maturity (years)			
Edad de madurez (años)	≥ 7.0	\geq 2.7, < 7.0	< 2.7
Mean trophic level			
Nivel trófico medio	> 5.1	4.5 - 5.1	< 4.5

TABLA J-3. Atributos de susceptibilidad preliminares y umbrales de puntuación propuestos usados en el PSA de la CIAT.

Atributo do suscentibilidad	Clasificación				
Atributo de susceptibilidad	Baja (1)	Moderada (2)	Alta (3)		
Estrategia de ordenación	Medidas de ordenación y responsabilidad proactiva en vigor	Poblaciones nombradas específicamente en resoluciones de conservación; estrechamente vigiladas	Sin medidas de ordenación; poblaciones estrechamente vigiladas		
Índice traslapo zonal - concentración geográfica	Capturas incidentales máximas fuera de zonas con el mayor número de lances y población no concentrada (o común)	Capturas incidentales máximas fuera de zonas con el mayor número de lances y población concentrada (o poco común), O Capturas incidentales máximas en zonas con el mayor número de lances y población no concentrada (o común)	Capturas incidentales máximas fuera de zonas con el mayor número de lances y población concentrada (o poco común)		
Traslapo vertical con el arte	< 25% de la población ocurre en las profundidades pescadas	Entre 25% y 50% de la población ocurre en las profundidades pescadas	> 50% de la población ocurre en las profundidades pescadas		
Migraciones estacionales	Migraciones estacionales reducen el traslapo con la pesquería	Migraciones estacionales no afectan sustancialmente el traslapo con la pesquería	Migraciones estacionales incrementan el traslapo con la pesquería		
Agrupación/agregación y otras reacciones comportamentales al arte	Reacciones comportamentales reducen la capturabilidad del arte	Reacciones comportamentales no afectan sustancialmente la capturabilidad del arte	Reacciones comportamentales incrementan la capturabilidad del arte		
Supervivencia potencial después de la captura y liberación con las prácticas de pesca actuales	Probabilidad de supervivencia > 67%	33% < probabilidad de supervivencia ≤ 67%	Probabilidad de supervivencia < 33%		
Deseabilidad/valor de la captura (porcentaje de retención)	Población no es altamente valorada o deseada por la pesquería (< 33% retención)	Población es moderadamente valorada o deseada por la pesquería (33-66% retención)	Población es altamente valorada o deseada por la pesquería (> 66% retención)		
Tendencias de captura	Captura por lance aumenta con el tiempo	Ninguna tendencia de la captura por lance con el tiempo	Captura por lance disminuye con el tiempo		