

Document SAC-11-08

11TH MEETING OF THE SCIENTIFIC ADVISORY COMMITTE, La Jolla, California (USA)
11-15 May 2020

Postponed until a later date to be determined

Outline

- Background
 - Previous issues with the EPO tropical tuna assessments
 - Workplan to improve the tropical tuna assessments
 - Uncertainty
- Objectives of the risk analysis
- The staff's pragmatic approach
- Results of the risk analysis
 - Current stock status (YFT and BET)
 - Decision analysis for different durations of the temporal closure
- Conclusions

Issues with EPO tropical tuna stock assessments

- Management advice based on a "best assessment" approach
- F multiplier from the YFT and BET base case assessment models used to determine the duration of the seasonal closure
- 2018: BET assessment model not reliable enough to determine closure (SAC-09 INF-B)
 - Assessment overly sensitive to new data (mainly for the indices of abundance from the longline fishery)
 - Other issues
- 2019: Same conclusion extended to YFT assessment (SAC-10 INF-F)

2018-2020: Workplan to improve the stock assessments of tropical tuna

2017			
Collaboration with Japanese scientists on identifying targeting changes	Report, SAC-09		
2018			
February: CAPAM workshop on the development of spatiotemporal models of fishery catch-per-unit-effort data to	SAC-09-09		
derive indices of relative abundance (Special Issue of Fisheries Research)			
Developing a spatially structured stock assessment for bigeye tuna and other model improvements	Project <u>I.1.a</u>		
October: CAPAM workshop on spatial stock assessment models focusing on bigeye tuna	Project X.1.a		
2019			
January: Workshop to evaluate differences in bigeye tuna age estimation methods and resulting growth models	Project <u>E.2.b</u>		
utilized in current stock assessments by the IATTC and WCPFC			
February: Workshop to improve the longline indices of abundance of bigeye and yellowfin tunas in the EPO	Project H.1.d		
March: Independent review of bigeye assessment (report)	Project <u>T.1.a</u>		
May: SAC-10, exploratory bigeye and yellowfin assessments	SAC-10 INF-G		
Oct-Nov: Construct indices of abundance and composition data for longline fleets	Project H.1.e		
Nov-Dec: Yellowfin tuna assessment independent review	Project T.1.b		
2020			
May: Benchmark bigeye and yellowfin assessments	Report, SAC-11		
July: New management recommendations to the Commission	IATTC annual meeting		

- Both external reviews suggested a <u>variety of alternative models</u> rather than a replacement for base case
- Change from "best assessment" to a risk analysis approach which considers multiple models

Uncertainty

- There is uncertainty in stock assessments (e.g. parameter uncertainty, structural/model uncertainty, others)
- IATTC HCR for tropical tunas (Resolution <u>C-16-02</u>) addresses uncertainty through probability statements:
 - "if the probability that F will exceed the limit reference point (F_{LIMIT}) is greater than 10%, as soon as is practical management measures shall be established that have a probability of at least 50% of reducing F to the target level (F_{MSY}) or less, and a probability of less than 10% that F will exceed F_{LIMIT} ."
- Two approaches ongoing which incorporate uncertainty (*Antigua Convention, Precautionary Approach*):
 - Management Strategy Evaluation (MSE): ongoing workplan at IATTC (2018-2023)
 - A new pragmatic risk analysis approach to evaluate the risk of exceeding RPs

Objectives of the risk analysis

- Current stock status: At current levels of F, estimate the probability (P) (risk) of exceeding RPs specified in Resolution C-16-02:
 - a) $P(F>F_{MSY})$, $P(F>F_{LIMIT})$
 - b) $P(S < S_{MSY})$, $P(S < S_{LIMIT})$

- <u>Decision analysis</u>: Under alternative durations of the purse-seine closure, estimate the probability of exceeding the RPs:
 - a) $P[F(\text{closure days}) > F_{MSY}]$, $P[F(\text{closure days}) > F_{LIMIT}]$
 - b) $P[S(closure days) < S_{MSY}], P[S(closure days) < S_{LIMIT}]$

The staff's pragmatic risk analysis approach

Described in Maunder et al. 2020 (SAC-11 INF-F):

- **1. Identify alternative hypotheses** (*'states of nature'*) about the population dynamics of the stock that address the main issues in the assessments
 - YFT: SAC-11-J; BET: SAC-11 INF-F
- 2. Implement stock assessment models representing alternative hypotheses
 - YFT: SAC-11-07; BET: SAC-11-06
- 3. Assign relative weights to each hypothesis (model)
 - YFT: SAC-11 INF-J; BET: SAC-11 INF-F
- Compute combined probability distributions for management quantities using model relative weights
 - YFT and BET: SAC-11-08

YFT CURRENT STOCK STATUS

YFT: F_{cur} probability distributions relative to RPs

YFT: S_{cur} probability distributions relative to RPs \longrightarrow

YFT: Current stock status (Kobe plot)

TARGETS

- Only 9% probability that F_{MSY} has been exceeded: $P(F_{cur} > F_{MSY}) = 9\%$
- Only 12% probability that S_{cur} is below S_{MSY} : $P(S_{cur} < S_{MSY}) = 12\%$

LIMITS

• There is zero probability that either S and F limit reference points have been exceeded: $P(S_{cur} < S_{LIMIT}) = 0\%; P(F_{cur} > F_{LIMIT}) = 0\%$

BET CURRENT STOCK STATUS

BET: F_{cur} probability distributions relative to RPs

BET: S_{cur} probability distributions relative to RPs

LIMIT/LÍMITE

 4 6 8 1

BET: Composition of F_{cur}/F_{MSY} prob. distribution

BET: Current stock status (Kobe plot)

TARGETS

- 50% probability that F_{MSY} has been exceeded: $P(F_{cur}>F_{MSY}) = 50\%$
- 53% probability that S_{cur} is below S_{MSY} : $P(S_{cur} < S_{MSY}) = 53\%$

0.9 • LIMITS

 There probability that either S and F limit reference points have been exceeded is not negligible:

$$P(S_{cur} < S_{LIMIT}) = 6\%$$
; $P(F_{cur} > F_{LIMIT}) = 5\%$

DECISION ANALYSIS

BET: Decision table

TABLE 4. Decision table for bigeye tuna in the EPO. See explanation of codes in Table BET.														
Clos	ure da	ys	Env-Fix I	nv-Gro	Env-Sel	Env- <u>Mrt</u>	Srt-Fix	Srt-Gro	Srt-Sel	Srt-Mrt	Mov Gr	Sel	Mrt	Comb
P(model))	0.01	0.13	0.05	0.02	0.04	0.22	0.11	0.07	0.01 0.2	4 0.09	0.02	
P(F>F _{MSY}) Probability ≤50% >50%														
	0		1.00	0.48	0.78	0.98	1.00	1.00	0.99	1.00	0.47 0.0	9 0.31	0.65	0.62
	36	7	1.00	0.32	0.63	0.93	1.00	0.99	0.97	1.00	0.30 0.0	3 0.17	0.45	0.56
	70		1.00	0.19	0.44	0.84	1.00	0.97	0.92	0.99	0.15 0.0	1 0.07	0.25	0.50
	72		1.00	0.18	0.43	0.83	1.00	0.96	0.91	0.98	0.14 0.0	1 0.06	0.24	0.49
	88		1.00	0.13	0.35	0.75	1.00	0.93	0.87	0.97	0.09 0.0	0.04	0.17	0.46
	100		1.00	0.09	0.28	0.67	1.00	0.88	0.81	0.95	0.06 0.0	0 0.02	0.11	0.43
P(F>F _{LIMIT}) Probability ≤10% >1										>10%				
	0		0.97	0.00	0.04	0.17	0.89	0.39	0.37	0.57	0.00 0.0	0.00	0.00	0.21
	36		0.79	0.00	0.01	0.06	0.67	0.19	0.18	0.33	0.00 0.0	0.00	0.00	0.12
	70		0.33	0.00	0.00	0.01	0.38	0.07	0.06	0.14	0.00 0.0	0.00	0.00	0.05
	72		0.30	0.00	0.00	0.01	0.36	0.06	0.06	0.13	0.00 0.0	0.00	0.00	0.05
	88		0.11	0.00	0.00	0.00	0.25	0.03	0.03	0.08	0.00 0.0	0.00	0.00	0.03
	100		0.04	0.00	0.00	0.00	0.17	0.02	0.02	0.04	0.00 0.0	0.00	0.00	0.02

YFT: Risk curves for exceeding RPs

BET: Risk curves for exceeding RPs

BET: Risk curves for exceeding F_{MSY}

BET: Risk curves for exceeding F_{LIMIT}

Conclusions: general

- The transition from the "best assessment approach" to risk analysis incorporating uncertainty significantly advances science and the formulation of management advice for tropical tuna at IATTC:
 - 1. The process resulted in the identification of a set of reference models (alternative states of nature)
 - 2. The approach provides a methodology for assigning relative weights to the plausibility of these alternative hypotheses
 - 3. The final product are probability statements for exceeding the reference points established in the HCR

Conclusions: YFT

- The risk analysis ambiguously shows that the YFT stock is healthy
 - Targets: $P(F_{cur} > F_{MSY}) = 9\%$, $P(S_{cur} < S_{MSY}) = 12\%$
 - Limits: $P(F_{cur} > F_{LIMIT}) = 0\%$; $P(S_{cur} < S_{LIMIT}) = 0\%$

Conclusions: BET

- The risk analysis results are less clear for BET:
 - Targets: $P(F_{cur} > F_{MSY}) = 50\%$, $P(S_{cur} < S_{MSY}) = 53\%$
 - Limits: $P(F_{cur} > F_{LIMIT}) = 5\%$; $P(S_{cur} < S_{LIMIT}) = 6\%$

- The bimodal nature of the probability distributions indicates that the stock is either well below or well above the MSY levels
 - At this stage, the risk analysis for BET should not be used for optimal management

Conclusions: SKJ

- Traditional stock assessments have not been successful for SKJ
 - High productivity of the stock
 - Strong recruitment fluctuations which are strongly dependent on environment
 - Tagging program ongoing
- SKJ stock status indicators are produced on a yearly basis
 - Long-term trends in catch, catch per set and average size indicate increased F for SKJ
 - Are these rates sustainable?

Conclusions: SKJ (cont.)

- PSA rationale
 - SKJ and BET have similar susceptibility
 - SKJ more productive than BET

Adequate management measures for BET should protect SKJ

Staff's recommendations: rationale

- IATTC HCR for tropical tunas (Resolution <u>C-16-02</u>) addresses uncertainty through probability statements:
 - "if the probability that F will exceed the limit reference point (F_{LIMIT}) is greater than 10%, as soon as is practical management measures shall be established that have a probability of at least 50% of reducing F to the target level (F_{MSY}) or less, and a probability of less than 10% that F will exceed F_{LIMIT} ."
- Based on precautionary grounds, the staff takes the risk analysis results of the BET pessimistic models for management advice:
 - $P(F_{cur} > F_{MSY}) = 95\%; P(F_{cur} > F_{LIMIT}) = 10\%$
- A status quo harvest strategy (72 day closure) is appropriate in the short-term
 - Since the probability that F will exceed the F_{LIMIT} is 10%, the current closure is adequate as long as F is not increased

Future work

- Continue Management Strategy Evaluation (MSE) workplan (2018-2023):
 - The IATTC risk analysis calculate P of exceeding RPs and does not replace MSE process
 - MSE process should be completed to:
 - Further specify management objectives and performance metrics (dialogue)
 - Further specify elements of the current harvest strategy (dialogue)
 - Elicit alterative harvest strategies (dialogue)
 - Evaluate the current and alternative harvest strategies (technical)
- MSE Workplan (through 2023)
 - Recent MSE Workshops
 - Proposal to continue funding after 2020

