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RESUMEN EJECUTIVO 

Se presenta un nuevo modelo espaciotemporal tipo Petersen y se aplica a datos de marcado y recaptura 
para el atún barrilete (SJK, Katsuwonus pelamis) en el Océano Pacífico oriental (OPO). El modelo 
proporciona una estimación de la biomasa absoluta utilizando los datos disponibles de captura y de 
marcado y recaptura, así como patrones de desplazamiento estimados por un modelo de marcado (SAC-
13-08, SAC-14 INF-E). La biomasa estimada de SJK en el OPO oscila entre 0.29 y 3.6 millones de 
toneladas. La incertidumbre asociada con las estimaciones trimestrales de biomasa es generalmente 
alta, pero depende en gran medida del número de recapturas de marcas disponibles. Los datos 
disponibles parecen suficientes para cinco trimestres con coeficientes de variación (CV) entre 0.3-0.6 y 
con suficiente tiempo entre ellos para tener una correlación insignificante entre las estimaciones de 
biomasa. Los resultados sugieren una alta preferencia y una biomasa máxima en distintas longitudes 
alrededor de la línea ecuatorial. 

Este documento está siendo traducido; la versión completa en español estará disponible 
próximamente. 

2. INTRODUCTION 

Tag recapture data are a valuable data type that not only allow estimation of important life history 
parameters such as growth and mortality rates, movement patterns, and stock lineation, but also 
provide information about the total abundance (Bailey, 1951; Chapman, 1954). For example, the 
Petersen-type model utilises information from the proportion of recaptured individuals that have tags to 
estimate total animal abundance (Seber, 1986). While the estimation of total abundance by the 
Petersen-type model in a non-spatial context is quite straight-forward and only requires tag recapture 
and catch data, it is more challenging in a spatial context and requires additional information such as 
transition probabilities. In the case of skipjack tuna (SKJ, Katsuwonus pelamis) in the eastern Pacific 
Ocean (EPO), tag recapture data has been used to estimate growth rates (e.g. Maunder, 2001) and 
fishing mortality (e.g. Maunder 2012) but has not been used to estimate stock size at time of writing of 
this report to the knowledge of the authors.  Tag recapture data has been used to estimate natural 
mortality rates in the western and central Pacific Ocean (Peatman et al., 2022) and used in integrated 
assessments (Castillo Jordan, 2022). This report introduces a spatiotemporal Petersen-type model for the 
estimation of total abundance based on tag recapture data and describes its application to available tag 
recapture and catch data for SKJ in the EPO. Required transition probabilities are estimated by the 
tagging movement model that has been developed to estimate movement patterns for SKJ in the EPO 
based on available tag recapture data (SAC-13-08, SAC-14 INF-E). The movement is described by a few 
parameters and flexible functions linking the advection (or taxis) and diffusion to environmental 
covariates such as water temperature or bathymetry (Thorson et al., 2021). If reliable effort information 

https://www.iattc.org/getattachment/67b89e71-181b-441d-bd8c-67e0fd51e434/SAC-13-08_Modelo-espaciotemporal-de-marcado-del-barrilete.pdf
https://www.iattc.org/getattachment/67b89e71-181b-441d-bd8c-67e0fd51e434/SAC-13-08_Modelo-espaciotemporal-de-marcado-del-barrilete.pdf
https://www.iattc.org/GetAttachment/5d5a8b6b-8974-4d83-9072-4aeadeae43c2/SAC-14-INF-E_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
https://www.iattc.org/getattachment/a89cea47-8552-4ab7-b6ca-5b4115f2e1c9/SAC-13-08_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
https://www.iattc.org/GetAttachment/5d5a8b6b-8974-4d83-9072-4aeadeae43c2/SAC-14-INF-E_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
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is not available, the model assumes uniformly distributed effort in space and time without reliable effort 
information. If reliable effort data is available, this information can be utilised in the estimation of 
movement patterns and stock biomass.  

3. METHODOLODGY 

3.1. Spatiotemporal Petersen-inspired model 

The spatiotemporal Petersen-type model is inspired by the original Petersen method that assumes 
complete mixing between a tag-and-release event and a recapture event, and estimates the population 
size by N=mC/x, where N is the population estimate, m is the number of marked individuals, x is the 
number of recaptures, and C is the total catch. This estimator is derived simply by noting that if 
complete mixing has occurred then the fraction of tagged fish observed in the recapture event x/C is 
expected to be the same as the fraction of tagged fish in the population m/N. A natural statistical model, 
that would lead exactly to the Petersen estimator is: x ~ Bin(C, m/N), where N is the only model 
parameter to be estimated, as x is the observation and C and m are known covariates. Assuming the 
catch C is large and the fraction of tags in the population is small, then the binomial model will be 
approximately equivalent to the Poisson model (Serfling, 1978): x ~ Pois(Cm/N), which again will lead to 
the same well-known estimator. With multiple observations, we can account for overdispersion 
(compared to the Poisson distribution), by replacing the Poisson distribution with a negative binomial 
with the same mean value µ=Cm/N and an additional overdispersion parameter 𝜓𝜓 > 0 , such that the 
variance scales with the mean value as µ(1+ µ/𝜓𝜓). This will be annotated as: x ~  Nbin(Cm/N,𝜓𝜓 ). The 
statistical modelling approach allows more flexibility in how the tagged population is modelled, 
including spatial distribution, and the assumptions about sampling. 

Complete mixing typically does not occur in tagging experiments of fish populations. Therefore, the 
spatial distribution of releases and recaptures should be taken into consideration. Here, we describe an 
approach to take the spatial distribution into consideration within a Petersen estimator context. In this 
example, the stock area is divided into grid-cells i=1...G by 5x5 degree and the time is divided into 
quarters t=1...Q. The movement model provides the probability of moving between cells, as a GxG-
matrix Pt of transition probabilities between cells at each time-step. This movement pattern is used to 
calculate the expected number of tagged fish available Ti,t,r in each cell (i), at each time (t), from each 
tagging release event (r). Assuming complete mixing of tagged and untagged fish within each cell this 
leads to a Petersen inspired model of the recoveries of the tags. Considering the number of tagged fish 
caught xi,t,r in a specific cell i, at a specific time t, from a specific previous tagging event r. This number 
can be assumed to follow a binomial distribution: xi,t,r ~ Bin(Ci,t ,Ti,t,r/Ni,t) and since we know the catch and 
the expected number of tagged fish available, the only unknown is the population size within the cell. 
Notice that it is possible to have multiple observations within each cell at the same time if multiple 
previous release events are available. This Petersen inspired observation model can again be coupled 
with a spatial model to account for correlations and to provide estimates in cells and at times where no 
observations are available. The joint model is: 

The covariance matrix Σ of log(N)=(log(N)t,i)t=1...Q, i=1...G is set up to represent the spatial neighborhood 
structure between the cells and the temporal structure. Such a spatio-temporal model accounts for the 
correlated nature of the abundance and uses this estimated correlation to provide population size 
estimates for cells and times without direct measurements (zero recoveries). Finally, the biomass 
estimate at each point in time is obtained by summing the estimated population sizes in all cells.  
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There are some important things to note about this Petersen inspired approach. The purpose of the 
approach is to avoid using effort information, and the post processing is not using the effort 
information. However, the model used to estimate movement based on the tagging data uses effort to 
predict recoveries. Fortunately, the estimated movement pattern appears insensitive to different effort 
assumptions, including uniform effort, so this may not be an issue of practical importance. If the same 
set of tags are used to estimate the movement pattern as are used in the post processing step, then the 
tagging information is used twice. The estimated movement pattern is relatively consistent to different 
sub-setting (using only archival tags or only conventional tags), but to be sure this reuse is not 
problematic a sensitivity run is included where the movement pattern is estimated only from archival 
tags and where the post processing is only using the conventional tags. The main issue with the Petersen 
inspired index of population size is that it reduces the observations used to estimate the index. In 
periods and areas where no tagging experiments are nearby it leads to indices that are very uncertain. 
Indices derived by this method are found in Figure 6 and selection to obtain near-independence is in 
Figure 7. 

3.2. Biomass estimation with effort data 

If reliable effort data is available, this information can be used for the estimation of the movement 
patterns as outlined in SAC-14 INF-E, as well as for the estimation of the index of the population size. 
Consider again the stock area divided into grid-cells i=1...G by 5x5 degree and the time divided into 
quarters t=1...Q. Within each cell and quarter, the observed catch Ct,i and effort Et,i are known and the 
natural mortality rate (M) and fishing mortality rates (Ft,i) can be estimated by the movement model 
(SAC-14 INF-E).  This approach assumes a relationship between E and F that is constant in time and 
space. Here, we compare three different relationships, (1) F = \lambda * E, where E \in {0,1}, i.e. E is 
either zero or 1 if effort is larger than 0 (“Binomial effort”), (2) F = \lambda * E (“Proportional effort”), 
(3) F = (\lambda_1 * I_1 + \lambda_2 * I_2), where Ik is an indicator field for effort in a pre-determined 
range leading to a flexible relationship between E and F with multiple breakpoints and slopes between 
the breakpoints (“Flexible effort”). The catch in each cell with positive effort given M and F can then be  

 
predicted by the Baranov catch equation, where the biomass in each grid cell and at each time step and 
Nt,i is the only quantity being estimated. A spatio-temporal model is set up to get a combined estimate 
of the entire area and to account for observation noise. The model is: 

With same assumptions w.r.t. structure of correlations in time and space as the Petersen inspired 
approach. The downside of this approach is that it is based on effort information, which may not be 
considered to be a useful predictor of fishing mortality as is the case for catch-per-set of skipjack tuna in 
the purse seine fishery. Nevertheless, different assumptions regarding the relationship between E and F 
lead to similar relative abundance trajectories. Indices calculated this way can be found in Figure 10. 

The framework is implemented as a software package using the Template Model Builder (TMB; 
Kristensen et al. 2016) and R 4.0.2 (R Core Team 2020). 

4. DATA 

The spatiotemporal Petersen-type model requires spatiotemporal tag-recapture data, transition 
probabilities, spatiotemporal catch data and additional information such as the natural mortality rate 
and immediate and continuous tag shedding and non-reporting probabilities/rates.  

https://www.iattc.org/GetAttachment/5d5a8b6b-8974-4d83-9072-4aeadeae43c2/SAC-14-INF-E_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
https://www.iattc.org/GetAttachment/5d5a8b6b-8974-4d83-9072-4aeadeae43c2/SAC-14-INF-E_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
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4.1. Transition probabilities 

The movement probabilities are based on the spatiotemporal tagging model that describes movement 
as an advection-diffusion process (SAC-13-08, SAC-14 INF-E). The advection component is based on a 
habitat preference function that is defined as a smooth function of sea surface temperature (SST) and 
the kinetic energy of the water (EKE) based on monthly environmental fields and a 5°x5° grid. The results 
suggest a stronger preference for areas along the equator corresponding to intermediate SST and high 
EKE (Figure 1A). The resulting advection is towards areas of higher preference (Figure 1B). These results 
are consistent between a model using both archival and conventional tags and models using only one of 
these tagging types (Figure 1). Diffusion was estimated as a constant rate in space and time and around 
14 degree2/quarter. In contrast to the consistent advection component, estimated diffusion varied 
considerably between the models with the different tagging types and ranged from 4 degree2/quarter 
(archival data only) to 22 degree2/quarter (conventional data only).  

 
FIGURE 1. Average annual habitat preference and advection in 2022 for the baseline model (A,B) and 
alternative models using only archival (C,D) or conventional tagging data (E,F). 

While other environmental fields such as the mixed layer depth or passive advection due to currents 
might also inform the movement of SKJ in the EPO, the results for these fields were less robust, i.e. 
showing various habitat preference functions for different model settings. In contrast, models with 

https://www.iattc.org/getattachment/a89cea47-8552-4ab7-b6ca-5b4115f2e1c9/SAC-13-08_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
https://www.iattc.org/GetAttachment/5d5a8b6b-8974-4d83-9072-4aeadeae43c2/SAC-14-INF-E_Spatiotemporal-tagging-model-for-skipjack-in-the-EPO.pdf
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either only SST or only EKE resulted in overall similar preferences for intermediate SST and high EKE and 
diffusion (Figure 2G-J). Estimating spatially variable diffusion as a function of SST and EKE affected the 
habitat preference and predicted similar diffusion in the core area with most data (around the equator) 
and lower diffusion at extreme latitudes (Figure 2C-F). However, model estimates were considerably 
more uncertain with spatially variable diffusion. The sensitivity of the biomass estimates on various 
assumptions regarding the tagging movement model were explored and are presented below. 

 
FIGURE 2. Average annual habitat preference and diffusion in 2022 for the baseline model (A,B) and 
alternative models with variable diffusion as a function of SST (C,D) and as a function of EKE (E,F), as well 
as a model based on SST only and with constant diffusion (G,H) and based on EKE only with constant 
diffusion (I,J). 

4.2. Tag recapture data 

While the tagging movement model with the Kalman filter utilises the tag recovery information in 
continuous space and time, the observed tag releases and recoveries must be discretised for the tagging 
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biomass model. We discretised the observed tag releases and recoveries for a 5°x5° grid and quarterly 
time steps.  

 
FIGURE 3. Total number of observed number of tag recoveries per 5°x5° grid cell over the whole study 
period (2000-2022). 

The expected number of tag recoveries from a specific tagging event was calculated using estimated 
transition probabilities and assuming a survival probability. As no information on fishing mortality is 
available and fishing effort is not considered a useful predictor, we assume survival is only dependent on 
natural and tagging-related mortality. The natural mortality rate was assumed to be 2.02 year-1, 
corresponding to the average natural mortality over all age classes assumed in the stock assessment 
model. Tagging-related mortality is assumed to correspond to a probability of 15%. In addition to the 
survival probability, tag loss and non-reporting might also affect the expected number of tag recoveries. 
The values assumed for these immediate probabilities and continuous rates are presented in Table 1. 
The sensitivity to the assumed natural mortality and shedding and non-reporting rates is presented 
below. 

TABLE 1. Immediate and continuous natural mortality, tag-related mortality, tag loss, and non-reporting 
probability and rates assumed in the spatiotemporal Petersen-type model. 

Type Time period Immediate 
(probability) 

Continuous 
(Rate [year-1]) 

Natural mortality 2000-2023  2.02 
Tag-related mortality 2000-2023 0.15 0 
Tag loss 2000-2023 0.01375 0.095 
Non-reporting 2000-2018 0.3  
 2019-2023 0.1425  

 

Given these rates and the transition probabilities, the expected number of tag recoveries can be 
calculated for the same grid and time step as observed recoveries (Figure 4). 
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FIGURE 4. Observed and expected number of tag recoveries per 5°x5° grid cell and quarter for 2020.  

4.3. Catch data 

Catch information of purse seiners was available from 2000 to 2023 as the biomass in metric tons on a 
fine spatial resolution (1°x1° grid), per day, and fleet (floating object associated sets (OBJ), unassociated 
sets (NOA), dolphin-associated sets (DEL)), and vessel size (class). For the spatiotemporal Petersen-type 
model, the catch was aggregated to the total catches on a 5°x5° grid per quarter (Figure 5). 
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FIGURE 5. Quarterly catches for all purse seine fleets in thousand tons per 5°x5° grid cell from 2019-
2023. 

5. RESULTS 

Biomass estimates for SKJ in the EPO based on the biomass tagging model range between 290 thousand 
and 3.6 million tons during the period from 2000 to 2023. Estimates for the core area of commercial 
fisheries vary between 220 thousand and 2.2 million tons (Figure 6). However, most of these estimates 
are highly uncertainty and therefore unreliable. Estimates with moderate CVs (<= 0.6) range from 0.22 to 
1.44 million tons. 
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FIGURE 6. Spatial grid for the spatiotemporal Petersen-type model for SKJ in the EPO (A) and estimated 
total biomass per quarter in million tons (B). The red dashed line corresponds to the biomass summed 
over the whole grid (red and blue grid cells), while the blue line corresponds to the total biomass in the 
core area (blue grid cells). The shaded blue area corresponds to the 95% confidence intervals of the 
biomass in the core area. 

The results indicate large uncertainty associated with the biomass estimates up to a CV of 1.4, 
particularly for biomass estimates in years with limited or no tagging data. For example, the period from 
2008 to 2018 is characterised by large uncertainty as no tagging events took place during this period. 
This is also indicated by the strong correlation between the number of recaptures and the uncertainty of 
the biomass estimates (R2 > 0.7; Figure 7). Out of twelve data points with a CV below 0.7, we identified 
five biomass estimates with low CVs (0.3-0.6) and low correlation coefficients (<0.13) allowing to use the 
biomass estimates as independent biomass estimates in the stock assessment model (Figure 7). 
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FIGURE 7. Coefficient of variation (CV) for the biomass estimates and the number of tag recoveries per 
quarter (A), correlation between the uncertainty (CV) and the logarithm of the number of recaptures (B), 
and the correlation matrix of the selected biomass estimates (C). The red circles indicate the biomass 
estimates with a CV<0.7 and the blue circles indicate the estimates with lowest CVs and low correlation 
(<0.13). 
The biomass estimates for these quarters show reasonable uncertainty and consistent patterns across a 
wide range of scenarios (Figure 8). From tested sensitivity scenarios, natural mortality rates were the 
most influential parameters with 25% larger natural mortality rates leading on average to 34% lower 
biomass estimates and 25% lower rates leading to 65% larger biomass estimates (Figure 8C).  
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FIGURE 8. Estimated biomass in million tons for the selected quarters and movement probabilities 
based on archival or conventional tags only (A), with various assumptions regarding the advection and 
diffusion component (B), different assumptions regarding the natural mortality and shedding and non-
reporting probabilities/rates (C), and using the Poisson distribution and smaller and larger cut-offs for 
the minimum number of expected recoveries (D). 

The logarithm of the selected biomass estimates with associated lower and upper 95% confidence 
intervals (CI) are provided in Table 2. 
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TABLE 2. Selected biomass estimates for the core distribution area of SKJ in the EPO (Figure 6) based on 
the spatiotemporal Petersen-type model. 

Year Quarter log(Biomass) Lower 95% CI Upper 95% CI sd(log(Biomass)) 
2000 2 13.68 12.55 14.81 0.58 
2006 2 13.06 11.98 14.15 0.55 
2020 2 12.3 11.72 12.88 0.3 
2020 3 13.36 12.2 14.51 0.59 
2021 2 14.18 13.02 15.34 0.59 
 

The estimated spatiotemporal distribution shows the highest biomass at varying longitudes around the 
equator (Figure 10). The uncertainty maps indicate large uncertainty at lower and higher latitudes in line 
with the spatial distribution of available tagging information (Figure 3). 
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FIGURE 9. Estimated biomass per grid cell in thousand tons (first column) and the coefficient of variation 
(CV) per grid cell (second column) for the selected years. 

6. DISCUSSION 

This report introduces a spatiotemporal Petersen-inspired method that estimates fish abundance in 
space and time. Moderately reliable estimates of biomass for SKJ in the EPO are between 0.29 and 3.6 
million tons. Most estimates are characterised by large uncertainty that is strongly correlated with the 
number of recaptures. Nevertheless, the biomass estimates in five quarters had acceptable uncertainty 
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and correlation. The CV of the biomass estimates in the selected quarters ranges between 0.3 and 0.6 
and the correlation is below 0.13, a commonly used threshold for almost independence of observations 
in spatial contexts (Lindgren et al., 2011). The estimates are relatively robust to a range of assumptions 
regarding the estimation of transition probabilities by the tagging movement model such as spatially 
variable diffusion or different environmental covariates informing the habitat preference. By contrast, 
the results revealed that the biomass estimates are sensitive to the assumed natural and tagging-related 
mortality rates and immediate and continuous shedding and non-reporting probabilities/rates. The 
probabilities and rates used here correspond to the best currently available information and to the 
values used in the stock assessment model for SKJ. The temporal trend over the whole period is likely 
less reliable given the large uncertainty in some quarters and the nature of the spatiotemporal Petersen-
type model assuming the spatiotemporal average biomass in areas or periods without tag recaptures. 
The estimated biomass is likely most representative of the vulnerable stock biomass, i.e. the length 
classes that are caught by the purse seine fleets and thus represented in the catch and tagging data. The 
overall length distribution of purse seine catches and archival and conventional tags ranges from 25 cm 
to 80 cm with two distinct peaks at lengths around 45-50cm and 65-70cm for the tag recapture data and 
a wide length distribution with highest density around 40-50 cm for the purse seine catches 
(Supplementary Figure S1).  

The approach presented here utilises the conventional tagging data multiple times: For the estimation 
of the natural mortality rate and shedding/non-reporting probabilities/rates, for the estimation of the 
transition probabilities, and the estimation of the biomass. However, the results highlight that the 
transition probabilities and biomass estimated based on the movement tagging model with archival tags 
only are comparable to the results based on the archival and conventional tags combined. The main 
difference is a lower diffusion estimate for the model with archival tags only. As described above, using 
available effort data allows us to estimate fishing mortality and, thus, a more certain biomass estimate 
over the spatial domain and time period. However, the absolute biomass becomes then dependent on 
the reliability of the effort information and assumed/estimated relationship between E and F (Figure 
10A). Nevertheless, regardless of the assumptions of the E~F relationship, estimated biomass with and 
without effort information spans similar ranges. Moreover, the relative biomass trend is almost identical 
across a wide range of assumed E~F relationships (Figure 10B). The relative biomass (mean 1) estimates 
of the biomass model with the flexible effort model are provided in Supplementary Table S1. 

There are several avenues for future development of the model. The Petersen model assumes that only 
natural and tagging mortality influence the tagged population. This is because effort data is not used to 
represent fishing mortality. However, fishing mortality is an important component of the tag dynamics. 
Since the spatiotemporal numbers are directly modelled and spatiotemporal catch data is available, then 
this can be used to represent the spatiotemporal fishing mortality for both the movement and biomass 
estimation, which could be estimated simultaneously. It is not clear if using the estimated numbers for 
fishing mortality would use information needed for estimating abundance or movement, but use of 
archival tagging data to inform movement might overcome this possible issue. Another improvement of 
the model would be to stratify the model by size to account for size specific fishing mortality and growth. 
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FIGURE 10. Estimated absolute biomass in million tons for the selected years with and without using 
effort information for the whole spatial domain (B) and standardised biomass without effort and various 
assumptions regarding the effort~fishing mortality relationship (A). While the lines in A are biomass 
estimates based on the biomass model using various effort assumptions, the plotting symbols are based 
on the Petersen-type model and the transition probabilities and natural mortality estimated by the 
tagging movement model utilising effort information. 
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9. SUPPLEMENTARY MATERIAL 
TABLE S1. Relative biomass estimates (mean 1) per year and quarter  for SKJ in the EPO based on tagging 
biomass model using flexible effort assumption. 

Year Q1 Q2 Q3 Q4 
2000 1.59 1.13 0.74 0.81 
2001 0.95 0.76 0.75 0.83 
2002 0.77 0.81 0.71 0.77 
2003 1.01 1.22 1.3 1.24 
2004 1.02 0.94 0.85 1.19 
2005 1.37 1.25 0.99 1 
2006 1.16 1.09 1.27 1.07 
2007 0.99 0.89 0.8 0.71 
2008 1.04 0.99 0.82 0.87 
2009 0.71 0.64 0.71 0.92 
2010 0.87 0.8 0.77 1.09 
2011 1.11 1 0.93 0.74 
2012 0.85 1.09 1.04 1.09 
2013 1.14 1.21 0.92 0.96 
2014 0.82 0.85 0.98 1.21 
2015 1.08 1.02 1.14 1.35 
2016 1.04 1.05 0.96 1.23 
2017 1.33 1.15 0.97 0.94 
2018 0.9 1.12 0.87 0.91 
2019 0.85 1.18 1.12 1.27 
2020 1.3 1 0.81 0.93 
2021 0.95 1.02 0.85 1.23 
2022 1.1 1.16 0.99 1.04 
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FIGURE S1. Length distribution of conventional tags (at time of release, A), of archival tags (at time of 
release, B), of NOA catches (C), of OBJ catches (D). 
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