#### Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission



Incorporating results from tagging experiments into EPO regional stock assessments

## Outline

- Independent analyses
- Integrated assessment models
- Spatio-temporal modelling of tagging data



## Independent analyses

- •Analyze the data
- Include the results in a stock assessment as fixed parameters or priors
- Possible information
  - Absolute abundance/fishing mortality
  - Growth
  - Movement
  - Natural Mortality



### An improved growth curve using otolith and tagging data





# Richards in SS





# Haikun's movement





# Haikun's movement





#### Integrated assessment models

- Tag releases and recaptures at age (or length)
- •Adjust for tag mortality
- Include priors for tag reporting estimates or estimate inside assessment



# **Stock Synthesis**

#### • Data

- Tag releases by group (area, sex, age, and year)
- Tag recaptures by group, fishery (includes area), year
- Mixing time
- Accumulation time
- -logL component for the distribution of recaptures across areas

   -logL component for the decay of tag recaptures from a group
   over time



#### 10.9 Tag Recapture Parameters

Specify if tagging data are being used:

| Value | Label                | Description              |
|-------|----------------------|--------------------------|
| 1     | Tagging Data Present | 0 = no read              |
|       |                      | 1 = read following lines |

COND = 1 Read the following long parameter lines:

|     |      |      |       | <u> </u> | *     |       |   |                         |
|-----|------|------|-------|----------|-------|-------|---|-------------------------|
|     |      |      |       | PRIOR    | PRIOR |       |   |                         |
| #LO | ) HI | INIT | PRIOR | SD       | TYPE  | PHASE |   | LABEL                   |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss init 1         |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss init 2         |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss init 3         |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss chronic1       |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss chronic2       |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG loss chronic3       |
| 1   | 10   | 2    | 2     | 0.001    | 4     | -4    | 0 | #TG loss overdisperion1 |
| 1   | 10   | 2    | 2     | 0.001    | 4     | -4    | 0 | #TG loss overdisperion2 |
| 1   | 10   | 2    | 2     | 0.001    | 4     | -4    | 0 | #TG loss overdisperion3 |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG report fleet1       |
| -10 | 10   | 9    | 9     | 0.001    | 4     | -4    | 0 | #TG report fleet2       |
| -4  | 0    | 0    | 0     | 0.001    | 2     | -4    | 0 | #TG report decay1       |
| -4  | 0    | 0    | 0     | 0.001    | 2     | -4    | 0 | #TG report decay2       |

The tagging reporting rate parameter is transformed within SS during estimation to maintain a positive value and is reported according to the transformation:

Tagging Reporting Rate = 
$$\frac{e^{\text{input parameter}}}{1 + e^{\text{input parameter}}}$$
 (35)

## Spatio-temporal modelling of tagging data

- Deals with fine scale spatial variation
- Commonly used for modeling CPUE data
- •TMB can be used to efficiently implement these types of models



# Estimating abundance from tagging data

#### • Petersen

• 
$$\frac{r}{r} = \frac{n_1}{r}$$

- $n_2 N$
- $\bullet\,n_1$  number of individuals tagged
- $\bullet n_2$  sample size for the recovery data
- ${\scriptstyle \bullet \, r}$  the number of tagged individuals recovered
- ${\scriptstyle \bullet N}$  is the population size

• 
$$\widehat{N} = \frac{n_1 n_2}{r}$$



## **Spatial estimates**

 $\bullet \hat{N}_i = \frac{n_{1,i}n_{2,i}}{r_i}$ 

Need to model movement of tagged individuals

- $n_{1,i}$  number of tagged individuals in area i
- $n_{2,i}$  sample size for the recovery data in area *i*
- $r_i$  the number of tagged individuals recovered in area i
- $N_i$  is the population size in area i

Not all areas have tagged individuals so need to share information





- Need to model movement of tagged individuals
  - Advection diffusion model
  - e.g. Sibert et al. 1999. Can. J. Fish. Aquat. Sci. 56: 925-938.
- Need to share information on total abundance among space
  Spatial-temporal model
  - e.g. Thorson et al. 2015. ICES J. Mar. Sci. 72: 1297–1310.
- The abundance of tagged fish changes over time
  - Multiple likelihood calculations for each area
  - e.g. Hilborn 1990. Can. J. Fish. Aquat. Sci. 47: 635–643.



# Modelling "Assumptions"

•The total population is approximated using a spatiotemporal model

- No explicit movement or fishing needed
- Movement of tags is the same in all areas



#### Using spatio-temporal models of population growth and movement to monitor overlap between human impacts and fish populations

#### James T. Thorson\*, Jason Jannot and Kayleigh Somers

Fisheries Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E, Seattle, WA 98112, USA

# Spatiotemporal variation in size-structured populations using fishery data: an application to shortfin mako (*Isurus oxyrinchus*) in the Pacific Ocean<sup>1</sup>

Mikihiko Kai, James T. Thorson, Kevin R. Piner, and Mark N. Maunder

# Spatial delay-difference models for estimating spatiotemporal variation in juvenile production and population abundance

James T. Thorson, James N. Ianelli, Stephan B. Munch, Kotaro Ono, and Paul D. Spencer



# Thank you!



#### Advection diffusion model of tagged individuals

Thorson et al. 2016. J. Appl. Ecol. 54: 577-587

 $\boldsymbol{n}_{1,t} = \boldsymbol{m}\boldsymbol{n}_{1,t-1} + \boldsymbol{R}_t$ 

Where R<sub>t</sub> are the tag

releases

Movement function *m* typically includes both random and directed components, termed diffusion and advection, respectively. This function can be calculated from an instantaneous movement rate:

$$\frac{\partial}{\partial t}\mathcal{B} = (\mathbf{u}^{\mathrm{T}}\nabla + \nabla \cdot \Sigma\nabla)\mathcal{B} \qquad \text{eqn 7}$$

where  $\mathbf{u}^{\mathrm{T}} \nabla \mathcal{B}$  represents advective movement (where  $\nabla$  is the gradient operator, which yields a vector of length two when evaluated at location *s* because  $\mathcal{B}$  is a function defined in twodimensional space, and **u** is a direction vector of length two), and  $\nabla \cdot \Sigma \nabla$  represents diffusive movement (where  $\Sigma$  is a 2 × 2 rotation matrix governing the rate of diffusion in different directions, and if  $\Sigma = \mathbf{I}$  then  $\nabla \cdot \Sigma \nabla$  reduces to the Laplacian operator).

**Appendix S2.** Movement matrix computation on a triangulated mesh.

#### Spatial model

•  $\widehat{N}_i = exp(d_0 + \gamma_i)$ 

$$\gamma \sim MVN(0, \sigma_{\gamma}^2 \cdot R_{spatial})$$
 (2)

where  $\sigma_{\gamma}$  is the marginal standard deviation (SD) of spatial variation  $\gamma$  and  $R_{spatial}$  is spatial correlation for the random field:

$$R_{\text{spatial}}(s, s') = Matérn\left(\frac{|(s - s')|}{\kappa}\right)$$
 (3)

where *s* and *s'* are the location of two spatial stations,  $\kappa$  defines the rate at which correlations drop with increasing distance, and Matérn (|(s-s')|) is the Matérn correlation function, which calculates the correlation between  $\gamma$  at stations *s* and *s'* given their distance |s-s'|. We

#### Likelihood: Poisson

 $-lnL = \sum_{t,i} -r_{t,i} \ln[\lambda_{t,i}] + \lambda_{t,i}$ 

$$\lambda_{t,i} = \frac{n_{2,t,i}}{N_{t,i}} n_{1,t,i}$$

 $n_{1,i}$  number of tagged individuals in area *i*  $n_{2,i}$  sample size for the recovery data in area *i*  $r_i$  the number of tagged individuals recovered in area *i* 

#### Spatio-temporal model

- Accounts for movement and catch
- Does not use the information on movement from the tagging data
- Does not explicitly use the information on catch
- $\widehat{N}_i = exp(d_{0,t} + \gamma_i + \gamma_{t,i})$

#### Improvements

- Removing tag recoveries from the tagged population;
- Covariates for N
- Using the advection-diffusion process to move the total population;
- Removing catch from the total population;
- Alternative likelihood functions;
  - zero inflation
- Including size information.