
A quick Github how-to

If you don’t have a git software, go download Git Desktop (it will make things easier)

https://desktop.github.com/

If you want to have access to the cpue.rfmo package, ask Simon for access:
simon.hoyle@gmail.com (give him your Github user name)

Outline:

> Install cpue.rfmo with a personal token
> Create a new personal git project and add files
> Add a collaborator to your project and go through conflicts

> Make a Github webpage

https://desktop.github.com/
mailto:Simon.hoyle@gmail.com

How to access the CPUE.rfmo library from R (1/2)
1. Create a github account (https://github.com/join)
2. It is a private repository, so you will need to be granted view access by Simon

(you will get an email from github asking you to confirm)
3. Because it is a private directory, R needs a way to verify you are authorized to

download it. The easy way to do that is to create a personal access token from
within your github account:

i. Sign-in to your github account
ii. Go to: https://github.com/settings/tokens to make a token

Give the token a name
(doesn’t matter what it is…
just for future reference)

Tick the ‘repo’ box

iii. Scroll to the bottom and click ‘Generate token’
iv. Copy the token (you can save it to a .txt for later use if you want)

https://github.com/settings/tokens

How to access the CPUE.rfmo library from R (2/2)

4. Within R, make sure you have the devtools library installed
5. Install cpue.rfmo in R by launching:

> library(devtools)
> install_github(‘hoyles/cpue.rfmo’,

username=‘yourgithubuser’,
auth_token=‘PASTEYOURTOKENHERE’)

> library(cpue.rfmo) # this should work now

Boom!

How to create your own Github project (or ‘repository’)

Sign-in to your Github account
Click on the ‘Repositories’ tab
Click on the green button with New on the right-hand side
Pick a name for your directory and decide if it should be Public
or Private

… the other options can be changed later
Click Create repository

Pick a project name
(it will become a folder
in your computer)

How to create your own Github project (or ‘repository’)

You have now created the ‘remote’ or ‘origin’ version of you
directory. Now you need to make the ‘local’ version on your
computer.

Get the link for your new repository in Github by clicking on the
Clone or download button. Copy the provided link (or click on
Open in Desktop if you are using Github Desktop)

Back to your computer, go to your Git software (e.g. Github
Desktop, SourceTree, or the terminal)

Click on File > Clone repository > URL tab > Paste the provided link
Also pick a location for the repository folder to be located, e.g.
C:/Projects or User/Documents/
Click on Clone

You have a Github project, now what?

Save or copy existing files (e.g. R scripts) to the directory.

New files need to be ‘added’ to the project so they get tracked
(‘version-controlled’) (this will store the original version of the file,
from which subsequent changes will be tracked)

Within Github Desktop new files will show under the Changes tab
on the left-hand side with a green plus logo

Commit (add a message) and Push the changes to the origin. You
should now be able to see the new files online on the Github
project.

You have a Github project, now what?

Add new file

Commit
(add changes to log!)
Then:

Add a message to describe what your commit is about

More details if you
want (optional)

You have a Github project, now what?

Do the same thing for any changes to existing project files

1. Save the changes to the file(s)
2. Commit (with a useful message)
3. Push

* If you are working with a collaborator, make sure to pull changes
(or ‘sync’) before starting to work on files, to make sure you have
the latest version. Else you might have to solve a conflict between
file versions.
* To add a collaborator to your project, go to

> Collaborators

Example project with a webpage
https://github.com/lauratboyer/iattc_tutorial/

Tell Github to create a webpage for the directory
(---> scroll down to GitHub Pages ‘Source’)

Files needed by Github to be able to make a website:
_site.yml *** defines the structure and layout of your webpage
index.html (from index.Rmd if using rmarkdown)
(+ any other .html listed in your _site.yml)
The webpage won’t compile without those two files!

You can create all of the pages of your webpage with Rmarkdown (.Rmd) and use
the function rmarkdown::render_site() to translate all of the .Rmd within a folder
to .html (needs _site.yml + index.Rmd to work)

Commit + Push all the generated webpage files to your Github project and a
webpage will automatically be created at:
https://yourusername.github.io/yourprojectname/ (there might be a <1min delay)

https://github.com/lauratboyer/iattc_tutorial/
https://yourusername.github.io/yourprojectname/

A simple _site.yml:

name: "lauras-website"
output_dir: "."
navbar:

title: "A random website"
left:
- text: "Home"

href: index.html
- text: "Fish things"

href: Web1.html

Where to look for webpage
content? ‘.’ means in the
current folder,
otherwise defaults to ‘_site’

Navigation bar for the
website (by default, on top)
with labels for each page
(Home and Fish things)

index.html and Web1.html were
created by render_site()

User only needs to create and
edit index.Rmd and Web1.Rmd

See the resulting webpage here:
https://lauratboyer.github.io/iattc_tutorial/

https://lauratboyer.github.io/iattc_tutorial/
https://lauratboyer.github.io/iattc_tutorial/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

