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1. INTRODUCTION 

The tropical tuna purse-seine fishery in the Eastern Pacific Ocean (EPO) is one of the biggest in the world, 
with recent annual catches exceeding 600,000 tons (SAC-10-03). Although management measures to 
maintain exploitation rates at sustainable levels are in place (e.g., Resolution C-17-02), some populations 
may have started to experience notable declines. This is the case for bigeye tuna (Thunnuns obesus), for 
which the last assessment showed considerable uncertainty with respect to stock status, and that a de-
creasing trend in spawning stock biomass is projected to continue into the near future (SAC-09-05). Un-
fortunately, this is not only a local issue and similar declines may be occurring in other regions (e.g. ICCAT). 

https://www.iattc.org/Meetings/Meetings2019/SAC-10/Docs/_English/SAC-10-03_The%20fishery%20in%202018.pdf
https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-17-02-Active_Tuna%20conservation%20in%20the%20EPO%202018-2020%20and%20amendment%20to%20resolution%20C-17-01.pdf
https://www.iattc.org/Meetings/Meetings2018/SAC-09/PDFs/Docs/_English/SAC-09-05-EN_Bigeye-tuna-assessment-for-2017.pdf
https://www.iccat.int/Documents/SCRS/DetRep/BET_SA_ENG.pdf
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Because of this, the IUCN has classified bigeye tuna as a vulnerable species with a decreasing population 
trend (Collette et al. 2011). To meet management objectives, the Inter-American Tropical Tuna Commis-
sion (IATTC) has implemented a 2018-2020 conservation plan, which includes a 72-day fishery closure, as 
well as an additional 30-day closure of an area known as the “corralito”. These measures are vessel class-
specific but the relationship between capacity and fishing mortality is unclear. Moreover, most of the 
bigeye purse-seine catch is produced by the fishery on floating-objects which targets skipjack tuna 
(Katsuwonus pelamis).  

Considering the continuing increase in fishing effort in the purse-seine fishery, in terms of the number of 
sets, despite restrictions on adding capacity to the fleet since 2002 (Resolution C-02-03), in 2018 the staff 
proposed limiting the number of floating-object and unassociated sets. However, this proposal was not 
adopted, due in part to anticipated difficulties with implementation and monitoring. Thus, alternative and 
adaptive management measures that decrease bigeye catches while minimizing the impact on skipjack 
catches need to be developed. Toward this end, the commission funded project J.2.a, which has to, among 
other tasks, evaluate alternative management measures, such as closed areas and gear restrictions.   

This study, which is part of the J.2.a project, investigates the relationship between bigeye catch and a suite 
of variables, including spatio-temporal, operational and environmental factors, to understand bigeye tuna 
distribution and dynamics in the EPO. This document explores the utility of these habitat models to pro-
vide decision-makers and resource-users with near real-time maps of high probability of bigeye catches. 
The application of our approach for forecasting on a seasonal timescale and how our outputs can assist 
end-users in the development of effective catch-based conservation measures are also discussed. 

2. METHODS 

All data processing and analytical work was carried out in the Microsoft R Open environment (MRO 3.4.3; 
https://mran.microsoft.com/rro). Microsoft R Open is the enhanced distribution of R from Microsoft Cor-
poration and includes additional capabilities for improved performance, parallelization, and reproducibil-
ity.  

2.1. Fisheries observer data 

We used 23 years (1995–2017) of fisheries’ observer data2 from the EPO tropical tuna purse-seine fishery 
(IATTC vessel class 6; > 363 t of capacity). The data include set-level information on total tuna catch by 
weight category and  species along with location, date and time of fishing, and other operational charac-
teristics (details on the onboard observer program can be found in here). The data set contained infor-
mation on more than 450,000 sets, ~75,000 (16.5%) of which caught bigeye tuna. The distribution of purse 
seine fishing effort was reasonably constant over the IATTC convention area3 through this time period, 
with most effort concentrated between 20N and 20S. However, almost the totality of bigeye tuna is caught 
on floating-object sets (FOB sets) (i.e. bigeye tuna is rarely caught by purse seiners when fishing on tunas 
associated with dolphins or on unassociated schools), which principally occur between 10N and 20S (IATTC 
2018). Because of this, the working dataset was constrained to 10N-20S and FOB sets only. Since the late 
1990s, most FOB sets of Class-6 vessels are estimated to have been sets on drifting fish aggregating de-
vices (FADs) (FSR 4, FSR 16). The final dataset contained 145,877 sets, ~73,000 (~50%) of which had posi-
tive bigeye tuna catch (Table 1). During this period, the observer coverage rate was 98.07% on purse seine 
vessels of class 6. The proportion of zeros varied between size class: 25, 43, 46 and 23% for small (=<2.5 
kg.), medium (>2.5 and =<15 kg.), juveniles (=<15 kg.) and large tuna (>15 kg.), respectively (Table 2). The 

 

2 Data collected by AIDCP onboard observer program. 

3 The eastern Pacific Ocean from 50°S to 50°N and from the coast to 150°W. 

https://www.iattc.org/PDFFiles/Resolutions/IATTC/_English/C-02-03-Active_Capacity%20of%20the%20tuna%20fleet%20operating%20in%20the%20EPO.pdf
https://www.iattc.org/Meetings/Meetings2018/IATTC-93/PDFs/Docs/_English/IATTC-93-06b_Staff%20research%20activities.pdf#page=38
https://www.iattc.org/Meetings/Meetings2018/IATTC-93/PDFs/Docs/_English/IATTC-93-06b_Staff%20research%20activities.pdf#page=38
https://mran.microsoft.com/rro
https://www.iattc.org/IDCPDocumentsENG.htm
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“juveniles” category approximates immature bigeye and was created as the sum of small and medium size 
bigeye tuna.    

2.2. Predictive variables 

A total of 23 variables were available for inclusion in species distribution models (SDMs), which included 
3 spatio-temporal variables, 12 surface variables, 4 subsurface variables, and 4 operational variables (Ta-
ble 3). The three spatio-temporal variables included location of set and day of the year, as seasonality may 
affect catches. Spatio-temporal variables can be confounded with environmental factors and reflect cer-
tain natural processes not captured by the surface and subsurface variables. The majority of environmen-
tal data was sourced from daily/weekly fields of global data assimilative models (i.e. assimilate available 

data from satellites and in situ platforms) that include the IATTC convention area at 0.25◦ (∼25 km) reso-

lution (available at http://marine.copernicus.eu/ and https://www.aviso.altimetry.fr/). The 0.25◦ spatial 
resolution, combined with a fine temporal scale, is considered sufficient for habitat modeling (Scales et 
al. 2016).  

The twelve surface variables chosen included sea surface temperature (SST) and its gradient (SST_grad; 
calculated as the change in temperature at the same pixel over a period of 7 days), salinity (Sal), sea sur-
face height (SSH), current vorticity (Vol), current speed (Speed), current direction (Dir), eddy kinetic en-
ergy (EkE), finite size Lyapunov exponents (FSLE), front index (FrontIndex; estimated as a count of the 
front pixels in the grid cell for the 7 day window), Chlorophyll a (CHL), and Chlorophyll a gradient 
(CHL_grad; computed as the difference in Chlorophyll a concentration in the same pixel over a 7-day pe-
riod).  

The four subsurface variables included temperature at 100 m depth (sst_100), mixed layer depth (MLD), 
isothermal layer depth (ILD) and bulk buoyancy frequency (BF, also known as Brunt-Väisälä frequency). 
Whereas the use of temperature at 100 m depth and mixed layer depth is well known by the scientific 
community, ILD and BF are reasonably new (Brodie et al. 2018). ILD and BF provide indices of water col-
umn structure, respectively, the depth of surface mixing and degree of stratification in the upper water 
column. ILD was calculated as the depth corresponding to a 0.5◦C temperature difference relative to sea 
surface temperature (Monterey and Levitus 1997). BF offers a measure of the upper water column stabil-
ity and was averaged over the upper 200 m of the water column to produce a daily field, where higher BF 
values indicate a more stable water column. Both variables provide a daily field of 0.25◦ resolution com-
parable to surface variables. The two-dimensional (i.e. vertical and horizontal space) structure of ILD and 
BF described water column properties and have proven to be helpful to improve SDMs for large pelagic 
species (Brodie et al. 2018).  

The four operational variables included net depth (NetDepth; the hanging depth of the purse-seine net), 
object depth (OBJDepth; the observer’s estimate of the length of the material hanging below the floating 
object), set time (SetTime), and the percentage of the object covered with epibiota (OBJEpibiotaPcnt). All 
operational variables were taken from observer data for each fishing set. These operational variables were 
chosen as they are known to affect catches of tuna (Lennert-Cody et al. 2008; Orue et al. 2019).  

2.3. Model specification 

In the interest of robustness and to inform comparisons, we took a multi-model approach, building 7 size-
specific presence–absence (catch vs. zero catch per set, binary response) models with each set of varia-
bles, from simplest to most complex models. The following models were established for each tuna size 
category: i) spatio-temporal, ii) surface, iii) subsurface, iv) environmental (surface + subsurface), v) spatio-
temporal and environmental, vi) operational, and vii) operational and environmental (Table 4). 

http://marine.copernicus.eu/
https://www.aviso.altimetry.fr/
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2.3.1. Spedies distribution models: Boosted Regresstion Trees 

Model building – Boosted Regression Trees (BRTs) are a flexible classification algorithm based on machine 
learning principles (De'ath 2007; Elith et al. 2008). Because of that, some of the caveats of more commonly 
used techniques (e.g. generalized linear or generalized additive mixed models - GLMM/GAMM) are not 
applicable. BRTs present a series of advantages, such as being tolerant to missing values, outliers, colline-
arity, and non-independence, and the inclusion of irrelevant predictors (Leathwick et al. 2006). While 
GLMM/GAMM methods seek to fit the most parsimonious model to a data set, BRTs combine predictions 
of many simple models (i.e. many shallow classification trees) to maximize robustness and predictive per-
formance and reduce associated error (Scales et al. 2017). Accordingly, we fitted size category-specific 
BRTs with all available sets of covariates. Nonetheless, GAM and Random Forest (RF) models were also 
fitted to the tuna presence-absence data in a preliminary stage of the modeling to better understand 
consistency and help interpretation between algorithms. BRTs performed better than their equivalent 
GAMMs and had very similar performance to the RFs. As such, we decided to use BRTs to build all the 
models in this study. All algorithms were implanted in R (BRTs: dismo package (Hijmans et al. 2017); RF: 
randomForest package (Liaw and Wiener 2002); GAM: mgcv package (Wood 2001)). 

In fitting BRTs, we adapted the protocols outlined by Brodie et al. 2018, Elith et al. 2008, and Scales et al. 
2017, and the dismo package developed by. Presence–absence models were built with a binomial (Ber-
noulli) distribution. We used a tree complexity of 3, a bag fraction of 0.7, and conducted sensitivity anal-
yses on learning rate (“shrinkage”) for each model set, aiming for at least 1,000 trees in final model con-
figurations. The sensitivity runs determined 0.1 as the learning rate to be used in all the models, except 
for subsurface models for small and large tuna, where a value of 0.075 was used. Tree complexity refers 
to the number of nodes in a tree, which constrains the maximum size of each of the regression trees that 
together make up a boosted regression tree model. By controlling the number of nodes/branches, tree 
complexity also sets the maximum number of interactions between predictor variables that are possible 
(i.e. 3 in this case as two/three-way interactions among variables might be important). Bag fraction refers 
to the percentage of the data that is randomly used for model building at each step, which usually ranges 
between 0.6-0.75 (Elith et al. 2008). The stochasticity that this step provides to the model building process 
improves model performance (Soykan et al. 2014). 

The potential for model simplification was evaluated with the function gbm.simplify. Simplified models 
were fitted by re-running models without those variables that gave no evidence of improving predictive 
performance. Deviance explained, variable importance, as well as interactions between variables were 
also estimated for all the models using the function gbm.interactions. Final size-specific models (i-vii) were 
run 10 times to investigate consistency and robustness and estimate standard deviations. Each of these 
configuration settings and the performance procedure are described in detail by Elith and Leathwick 2017; 
Elith et al. 2008; Hazen et al. 2018; Scales et al. 2017; and Soykan et al. 2014.  

Model validation – A k-fold cross-validation method was used to evaluate the reliability and the predictive 
performance of final models. This method consists of using independent data sets for model building (i.e. 
the training data) and model validation (i.e. the test data), where data is partitioned into k equally sized 
segments or folds through random resampling. Model performance is assessed by successively removing 
each subset, re-building the model on the retained data, and predicting on the omitted data (Elith and 
Leathwick 2009). In this study, a k = 4 partitioning method was used, meaning that 75% of the observations 
were used for model building, and the other 25% for model validation in an iterative procedure that was 
repeated 10 times. Hold-out validation avoids the overlap between training data and test data, yielding a 
more accurate estimate of the generalization performance of the algorithm (Villarino et al. 2015).   

The predictive power of the model was assessed by computing a set of diagnostic metrics. The mean Area 
Under the receiver-operating Curve (AUC) (Hanley and McNeil 1982) and the mean True Skill Statistic (TSS) 
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(Allouche et al. 2006) were calculated for each iteration from each confusion matrix. The AUC provides a 
single measure of overall model accuracy that is threshold independent, with an AUC value of 0.5 indicat-
ing the prediction is as good as random, whereas 1 indicates perfect prediction (Fielding and Bell 1997). 
AUC has been extensively used in SDMs and measures the ability of the model to correctly predict where 
a species is present or absent (Elith et al. 2006). An AUC value of >0.75 is considered to have a good 
predictive power and is acceptable for conservation planning (Pearce and Ferrier 2000). TSS is an alterna-
tive measure of model accuracy that is threshold dependent and not affected by the size of the validation 
set (Allouche et al. 2006). It is an appropriate evaluative tool in cases where model predictions are formu-
lated as presence–absence maps (Allouche et al. 2006). TSS is on a scale from -1 to +1, with 0 representing 
no predictive skill and is calculated from the confusion matrix outputs as sensitivity plus specificity minus 
1 (i.e. TSS = sensitivity + specificity - 1). Threshold independent and dependent statistics, such as AUC and 
TSS, respectively, should be used in combination when evaluating the predictive power of a SDM (Pearson 
et al. 2006).  

Making predictions – For illustration purposes, we generated a series of daily predictions of the probability 
of occurrence of bigeye tuna per size-class over the IATTC convention area for 10 days randomly selected 
between 2002-2017. A series of time-matched environmental data fields (both surface and subsurface 
variables) and the median values of the operational parameters were used to generate daily predictions 
based on final models and their best number of trees using function predict in the package raster (Hijmans 
et al. 2015). Two sets of predictions were independently generated using model iv (environmental) and 
model vii (environmental + operational) and the difference between them estimated to inform con-
sistency and interpretation, and to visualize the effect of accounting for operational variables on the pre-
dictions. The spatial resolution of predictive surface was set at the lowest common resolution of environ-
mental data fields (0.25°).  

3. RESULTS 

3.1. Model performance 

Models including environmental and operational variables (i.e. model vii) demonstrated better perfor-
mance under the diagnostic measures we used (deviance explained, AUC and TSS) (Table 4). In general, 
complex models (i.e. models v, vii) had better performance than simpler models including sets of variables 
individually (i.e. models i, ii, iii). Models explained between 7.51% and 31.19% (mean 21.89%) of the de-
viance in the data, had AUC values between 0.68 and 0.85 (mean 0.79), and had TSS values that ranged 
between 0.25 and 0.55 (mean 0.45) (Table 4). The comparison in model performance lead us to recom-
mend the use of models that include environmental and operational data (model vii) for dynamic ocean 
management. 

3.2. Drivers of Bigeye tuna presence 

An examination of the relationships between environmental and operational variables (best model, model 
vii) and species presence showed a range of patterns for each bigeye tuna size category, based on variable 
importance analysis (Fig. 1) and partial dependence plots (Fig 2, 3, 4, 5, 6).  

3.2.1. Small bigeye 

17 variables were included in the final model, for which relative variable importance was 2.5%-14.6%. EkE, 
CHL_grad and FSLE were dropped from the final model as they did not improve predictive capability. Only 
7 variables contributed more than 5%: SST100 (14.6%), SSH (11.5%), OBJDepth (10.7%), NetDepth (8.6%), 
FrontIndex (7.8%), Sal (6.5%) and CHL (6.5%) (Fig. 1).  

In predicting the relative probability of small bigeye, the model identified elevated probabilities of small 
tuna catch in the 20-28⁰C SST100 range. SSH showed an evident positive relationship with small bigeye 
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catch, and so did with two operational variables (OBJDepth and NetDepth). Deeper floating objects (up to 
100 m depth) and nets (>120 fathoms) were associated with higher probabilities of catching small bigeye. 
Similarly, the model showed higher probabilities of small tuna catch with moderate FrontIndex values, 
salinity values around 33-35 PSU, and low CHL values. The effect of the remaining environmental and 
operational variables on small bigeye included in model vii are detailed in the partial dependence plots of 
Fig. 2.   

3.2.2. Medium bigeye  

20 variables were included in the final model, for which relative variable importance was 0.1%-27.6%. No 
variables were dropped from the final model based on the gbm.simplify test. Only 7 variables contributed 
more than 5%: SST100 (27.6%), Sal (10.1%), NetDepth (9.3%), ILD (6.9%), FrontIndex (6.5%), Vel (6.5%) and 
SSH (6.5%) (Fig. 1).  

The model identified elevated probabilities of medium size bigeye catch in the 20-28⁰C SST100 range and 
salinity values around 35 PSU. NetDepth showed a positive relationship with medium size bigeye catch, 
and so did low and moderate values of ILD. Similarly, the model showed higher probabilities of medium 
size bigeye catch with moderate-high FrontIndex values, current speed values > 1 knot, and high values of 
SSH. The effect of the remaining environmental and operational variables on medium size bigeye included 
in model vii are detailed in the partial dependence plots of Fig. 3.   

3.2.3. Juvenile bigeye 

The category “juveniles” was artificially created as the presence of either small and/or medium size big-
eye, as observers do not use this category when reporting catches. From the ~68,000 occurrences used 
to build the juvenile model, ~63,000 corresponded to medium size tuna. Thus, similarities should be ex-
pected between the medium and juvenile categories, although differences also exist.  

19 variables were included in the final model, for which relative variable importance was 1%-27.5% (i.e. 
EkE was dropped from the final model based on the gbm.simplify test). Only 8 variables had contributions 
above 5%: SST100 (27.5%), Sal (10%), NetDepth (9.4%), ILD (7.1%), Vel (6.3%), FrontIndex (6%), SSH (5.7%) 
and CHL (5.2%) (Fig. 1).  

Once again, the model identified elevated probabilities of juvenile bigeye catch in the 20-28⁰C SST100 range 
and salinity values peaking around 35 PSU. NetDepth showed a positive relationship with juvenile bigeye 
catch, and so did with low and moderate values of ILD. Similarly, the model showed higher probabilities 
of juvenile bigeye catch with current speed values > 1 knot, moderate-high FrontIndex values, high values 
of SSH, and low values of CHL (< 1 mg m-3). The effect of the remaining environmental and operational 
variables on juvenile bigeye included in model vii are detailed in the partial dependence plots of Fig. 4.  

3.2.4. Large bigeye 

17 variables were included in the final model, for which relative variable importance was 2.2%-15.9%. EkE, 
CHL_grad and FSLE were dropped from the final model as they did not improve performance capability. 
Only 7 variables contributed more than 5%: Sal (15.9%), SST100 (13%), FrontIndex (11.3%), SST (8.6%), Vel 
(5.9%), CHL (5.6%), and ILD (5.5%) (Fig. 1). It is worth noting that no operational variables contributed 
more than 5% for this size category. 

The model identified higher probabilities of large tuna catch around salinity values of 35 PSU. For SST100, 
higher probabilities of large bigeye were found in 15-28⁰C range, whereas a positive relationship was ob-
served for FrontIndex. SST showed an evident negative relationship with large bigeye catch, with a peak 
around 21⁰C, while the opposite relationship was observed for Vel (higher probabilities at higher current 
speeds). Similarly, the model showed higher probabilities of large bigeye catch at low CHL (<1 mg.m-3) and 
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ILD (< 50 m) values. The effect of the remaining environmental and operational variables on large bigeye 
included in model vii are detailed in the partial dependence plots of Fig. 5. 

3.2.5. Total bigeye 

Like for the category “juveniles”, from the ~73,000 presences used to build the total model, ~63,000 cor-
responded to medium size tuna. Thus, similarities should be expected between these two categories, alt-
hough differences also exist due to the relationships associated with small and large bigeye tuna.  

19 variables were included in the final model, for which relative variable importance was 1.1%-26.1% (i.e. 
EkE was dropped from the final model based on the gbm.simplify test). Only 7 variables had contribu-
tions above 5%: SST100 (26.1%), Sal (10.4%), NetDepth (8.7%), ILD (7.5%), FrontIndex (7%), Vel (6.6%), and 
CHL (5.2%) (Fig. 1).  

Once again, the model identified elevated probabilities of total bigeye catch in the 20-28⁰C SST100 range 
and salinity values peaking around 35 PSU. NetDepth showed a positive relationship with total bigeye 
catch, and so did at low and moderate values of ILD. Similarly, the model showed higher probabilities of 
total bigeye catch at moderate-high FrontIndex values, with current speed values > 1 knot, and low values 
of CHL (< 1 mg m-3). The effect of the remaining environmental and operational variables on total bigeye 
catch included in model vii are detailed in the partial dependence plots of Fig. 6.  

3.3. Predictions 

Models iv and vii were used to predict species habitat suitability in the convention area for 10 days ran-
domly selected between 2000 and 2017. The difference between predictions established using each 
model were computed to inform the effect of fixing operational parameters in the predictions.  

Predictions for those 10 days revealed spatial differences among sizes, with, in general, higher probabili-
ties of large bigeye predicted in latitudes of 20S and >20N, higher probabilities of small bigeye predicted 
around 20N and 20S bands, and the other three size categories (i.e. medium, juveniles and total) predicted 
more intensively offshore of -80E and in all the equatorial band (20N-20S) (Fig. 7).  

The effect of including operational variables into species distribution models was apparent for all size-
category predictions (Fig. 8). Differences in the predicted probability between models iv and vii indicated 
that operational variables can affect predictions at different levels according to the size category. For ex-
ample, adding operational variables increased, in general, the probability for small bigeye but decreased 
it for juveniles and total. In the case of medium and large size categories, differences are area specific with 
higher probabilities in the equatorial band and negative poleward.   

4. DISCUSSION 

Dynamic ocean management (DOM) tools are emerging as practical management solutions to accommo-
date the different biological, environmental, economic, and social needs in a dynamic world. Many fish-
eries are taking advantage of this novel approach to adaptively manage both target and non-target spe-
cies. Some good examples of implementation are the ECOCAST program off the US west coast 
(https://coastwatch.pfeg.noaa.gov/ecocast/) (Hazen et al. 2018), and the bluefin tuna seasonal forecast-
ing program in Australia (Hobday et al. 2011a). Usually, the implementation of DOM tools is facilitated by 
a four-stage operationalization4 framework: acquisition, prediction, dissemination, and automation 
(Welch et al. 2018). This study has conducted the acquisition and prediction stages, is disseminating, as a 
first step, results in different scientific events, including the SAC and international conferences (e.g. 
CLIOTOP), and is planning for automation with the assistance of external collaborators. However, this is a 

 
4 A stepwise process by which a DOM tool is implemented and applied 

https://coastwatch.pfeg.noaa.gov/ecocast/
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workflow that must be continuously repeated to integrate data requirements and management needs.  

Ideally, our DOM tool should operate in near real-time (e.g. weekly) and be designed to maximize target 
species catch while minimizing bycatch. Because of that, the staff is working on similar models for skipjack 
and yellowfin tuna, which are expected to be ready in the short-medium term. Figure 9 shows, as an 
example, partial dependence plots of model vii (i.e. environmental + operational) for juvenile yellowfin 
tuna. Although similarities exist, both bigeye and yellowfin tuna models show differences that could be 
translated into different spatio-temporal distributions. Thus, the inclusion of weighting parameters in 
model assembling, based on management and decision makers needs, seems an additional aspect to con-
sider for the effective implementation of the DOM tool in the EPO.  

The DOM tool can be used as a forecast tool that produces spatial management recommendations for 
near-real time or future environmental conditions. However, its use can be very different depending on 
the approach chosen for the implementation and the additional management measures that are in force 
(e.g. catch-based limits). For example, high probability bigeye tuna maps (or ratios when other species are 
integrated) can be produced to inform fleets on the areas to be ideally avoided by either ethic principles 
or because catch-limits exist. The latter requires well-defined catch limits that are usually derived from 
reliable stock assessment outputs as well as clear allocation systems. Because of these requirements, the 
implementation of this DOM option would not be straightforward. A third possibility would be to use 
DOM outputs to shape adaptive seasonal closures. Current management measures include a 72 days clo-
sure and an additional 30 days closure in the area known as the “corralito”, which is static. Although the 
effectiveness of the closure has not been evaluated in detail yet, it could be expected that dynamic and 
adaptive closures present benefits over static closures, especially for highly migratory species like tunas. 
This has proven to be true in other ocean regions for several large pelagic species, including tuna, sword-
fish, or sharks (Hazen et al. 2018; Hobday et al. 2011a; Hobday et al. 2016; Hobday et al. 2011b; Little et 
al. 2015; Siedlecki et al. 2016; Tommasi et al. 2017).       

The present work has also identified the potential effect of some gear characteristics on the catch of big-
eye tuna. Floating-object depth and net depth seem to be significant variables when considering bigeye 
tuna catch probabilities, with higher probabilities found, in general, at both deeper floating objects and 
nets. Unlike floating object depth, however, which seemed to be more similar throughout the study area, 
net depth is negatively correlated with longitude (Fig. 10); i.e. vessels operating in the western area of the 
EPO often used deeper nets. Because catches could also be explained by inherent spatio-temporal dy-
namics, it is hard to attribute such an effect uniquely to gear characteristics. Thus, future analyses should 
consider this and other additional factors (e.g. FAD densities, Vessel ID, number of sets in an area) to 
better understand which changes in capture probability are due to catchability or abundance, particularly 
in a highly dynamic fishing system like the EPO.      
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Table 1. Number of sets by set type with and without bigeye tuna catch and proportion of sets with oc-
currences. 

Set Type Sets with absences Sets with presence Total number of Sets Proportion of sets with 
occurrences 

DOL 200151 51 200202 0.02 

UNA 102234 1413 103647 1.36 

FOB 75994 73372 149366 49.12 

Total 378379 74836 453215 16.51 

 

Table 2. Number of sets by set type and size-category with and without bigeye tuna catch and proportion 
of sets with occurrences. 

Size class Sets with absences Sets with presence Proportion of sets with 
occurrences 

Small 108563 37314 25.58 

Medium 82448 63429 43.48 

Juveniles 77680 68197 46.75 

Large 112289 33588 23.02 

Total 72771 73106 50.11 
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Table 3. Comparing variables’ data sources for species distribution models.  

Variable 
Acronym 
and unit 

Spatial 
resolu-
tion 

Tem-
poral 
Fre-
quency 

Tem-
poral 
cover-
age 

Product Source 

Spatio-tem-
poral 

      

Latitude Lat (⁰) 
Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

Longitude Lon (⁰) 
Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

Day of year DoY (day) - 
Set by 
set 

1995-
2017 

- Fisheries observer data 

Surface        

Sea surface 
tempera-
ture 

SST (⁰C)  0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Δ Sea sur-
face tem-
perature 

SST grad 
(⁰C) 

0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

Derived from models 

Salinity Sal (PSU) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Sea surface 
height  

SSH (m) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Current vor-
ticity 

Vol (m/s) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Current 
speed 

Speed 
(m/s) 

0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Current di-
rection 

Dir (de-
grees) 

0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
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Eddie Ki-
netic En-
ergy 

EkE (m/s) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

Derived from models 

Finite Size 
Lyapunov 
Exponents 

FSLE (days-

1) 
0.04⁰ daily 

1995-
2017 

Lyapunov Exponents and Ori-
entations 

https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lya-
punov-exponents.html  

Front Index 
FrontIndex 
(count) 

0.25⁰ weekly 
2002-
2017 

 Derived from models 

Chlorophyll 
a 

CHL (mg/l) 0.25⁰ weekly 
1998-
2017 

GLOBAL_REANALY-
SIS_BIO_001_029 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_BIO_001_029  

Δ Chloro-
phyll a 

CHL grad 
(mg/l) 

0.25⁰ weekly 
1998-
2017 

GLOBAL_REANALY-
SIS_BIO_001_029 

Derived from models  

Subsurface       

Tempera-
ture at 100 
m 

sst_100 
(⁰C) 

0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Isothermal 
layer depth 

ILD (m) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

Derived from models 

Bulk Brunt-
Väisälä fre-
quency 

BF (s-1) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

Derived from models 

Mixed layer 
depth 

MLD (m) 0.25⁰ daily 
1995-
2017 

GLOBAL_REANALY-
SIS_PHY_001_025 

 

http://marine.copernicus.eu/services-portfolio/access-to-products/?op-
tion=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025  

Opera-
tional 

      

Net depth 
NetDepth 
(fathoms) 

Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

Object 
depth 

OBJDepth 
(m) 

Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

Set time 
SetTime 
(h) 

Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

Percent 
coverage 
epibiota 

OBJEpibi-
oPcnt (%) 

Exact  
location 

Set by 
set 

1995-
2017 

- Fisheries observer data 

https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lyapunov-exponents.html
https://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-lyapunov-exponents.html
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_BIO_001_029
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_025
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Table 4. Performance of models i) spatio-temporal, ii) surface, iii) subsurface, iv) environmental (surface + subsurface), v) spatio-
temporal and environmental, vi) operational, and vii) operational and environmental for each size category of bigeye tuna. 

 Model Lr n.trees Dev Dev.SD AUC AUC.SD TSS TSS.SD Dropped variables 

Small 

1 fit 0.1 1050 14.38 0.07 0.79 0.00 0.44 0.00  

  simp - - - - - - - -  

2 fit 0.1 1650 15.37 - - - - -  

  simp 0.1 1600 15.15 0.15 0.76 0.00 0.38 0.01 EkE, chl_grad, FSLE 

3 fit 0.075 1150 9.74 0.14 0.71 0.00 0.32 0.01  

  simp - - - - - - - -  

4 fit 0.1 1900 17.00 - - - - -  

  simp 0.1 1850 16.79 0.12 0.77 0.00 0.40 0.00 EkE, chl_grad, FSLE 

5 fit 0.1 1900 19.84 - - - - -  

  simp 0.1 2000 19.51 0.18 0.79 0.00 0.43 0.00 EkE, FSLE, BF, Dir, Chl_grad, Vel, MLP 

6 fit 0.1 3400 11.24  0.11 0.72   0.31    

  simp - - - - - - - -  

7 fit 0.1 4400 25.50 0.17 0.82  0.48  EkE, chl_grad, FSLE 

  simp - - - - - - - -  

Medium 

1 fit 0.1 1350 25.28 0.06 0.82 0.00 0.50 0.00  

  simp - - - - - - - -  

2 fit 0.1 2050 23.20 - - - - -  

  simp 0.1 2000 23.28 0.12 0.81 0.00 0.47 0.01 EkE 

3 fit 0.1 1550 16.27 0.09 0.76 0.00 0.39 0.01  

  simp - - - - - - - -  

4 fit 0.1 2250 25.62 0.15 0.82 0.00 0.50 0.00  

  simp - - - - - - - -  

5 fit 0.1 1700 29.48 - - - - -  

  simp 0.1 1750 29.12 0.06 0.84 0.00 0.54 0.00 sst_grad, chl_grad, vel, MLP, BF, EkE, Dir_cor, FSLE, SSH, Vol 

6 fit 0.1 2650 11.92  0.14 0.73  0.00 0.33  0.00  

  simp - - - - - - - -  

7 fit 0.1 3400 30.22 0.16 0.85  0.54 0.00  

  simp - - - - - - - -  

Juveniles 

1 fit 0.1 1300 24.79 0.06 0.82 0.00 0.49 0.00  

  simp - - - - - - - -  

2 fit 0.1 2000 22.99 - - - - -  

  simp 0.1 2200 23.13 0.08 0.81 0.00 0.47 0.00 EkE 

3 fit 0.1 1300 16.22 0.11 0.76 0.00 0.39 0.00  

  simp - - - - - - - -  

4 fit 0.1 2200 25.08 - - - - -  

  simp 0.1 2300 25.19 0.13 0.82 0.00 0.49 0.00 EkE 

5 fit 0.1 1800 29.11 - - - - -  

  simp 0.1 2100 29.10 0.10 0.84 0.00 0.53 0.00 EkE, FSLE, Chl grad, Vel, Dir, BF, Vol, SST grad 

6 fit 0.1 2600 12.18 0.09 0.72 0.00 0.33 0.00  

  simp - - - - - - - -  

7 fit 0.1 3150 29.74 0.18 0.84 0.00 0.52 0.00 EkE 

  simp - - - - - - - -  

Large 

1 fit 0.1 1900 22.74 0.03 0.81 0.00 0.49 0.01  

  simp - - - - - - - -  

2 fit 0.1 2200 20.17 - - - - -  

  simp 0.1 2150 20.29 0.19 0.80 0.00 0.44 0.00 EkE 

3 fit 0.075 1350 11.75 0.13 0.73 0.00 0.34 0.00  

  simp - - - - - - - -  

4 fit 0.1 2700 23.70 - - - - -  

  simp 0.1 2650 23.35 0.20 0.82 0.00 0.48 0.01 EkE, FSLE, Chl grad 

5 fit 0.1 2100 28.60 - - - - -  

  simp 0.1 2350 28.38 0.16 0.84 0.00 0.54 0.00 EkE, FSLE, Chl grad, SSH, Dir_cor, Vel, Mlp, SST grad, Vol, BF 

6 fit 0.1 2150 7.51 0.08  0.68 0.00  0.25 0.00   

  simp - - - - - - - -  

7 fit 0.1 3650 27.58 0.14 0.83 0.00 0.50 0.00 EkE, FSLE, Chl grad 

  simp - - - - - - - -  

Total 

1 fit 0.1 1450 26.46 0.07  0.83 0.00 0.51 0.00  

  simp 0.1 - - - - - - -  

2 fit 0.1 2150 22.19 - - - - -  

  simp 0.1 2100 22.09  0.10 0.80 0.00 0.46 0.01 EkE 

3 fit 0.1 1100 16.16  0.09 0.76 0.00 0.39 0.00  

  simp 0.1 - - - - - - -  

4 fit 0.1 2550 25.63 - - - - -  

  simp 0.1 2650 25.76  0.10 0.82 0.00 0.49 0.01 EkE 

5 fit 0.1 2050 30.67 - - - - -  

  simp 0.1 1800 30.17 0.11 0.84 0.00 0.55 0.00 EkE, FSLE, chl_grad, Vel, Dir, sst_grad, SSH, Vol 

6 fit 0.1 2400 11.83  0.09 0.72  0.00 0.31 0.01   

  simp - - - - - - - -  

7 fit 0.1 3450 31.19 0.17 0.85 0.00 0.54 0.01 EkE 

  simp - - - - - - - -   
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Figure 1. Spider plots and bar plots of the relative influence (%) of each environmental and operational variable 
within species distribution models for bigeye tuna: total (purple); large (dark blue); medium (turquoise); small 
(green); juveniles (yellow). Variable acronyms are described in Table 3. 
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Figure 2. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of small bigeye tuna as a response to environmental and operational variables. Variable im-
portance scores are listed for each variable in parenthesis.  
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Figure 3. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of medium size bigeye tuna as a response to environmental and operational variables. Variable 
importance scores are listed for each variable in parenthesis. 
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Figure 4. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of juvenile bigeye as a response to environmental and operational variables. Variable importance 
scores are listed for each variable in parenthesis. 
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Figure 5. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of large bigeye as a response to environmental and operational variables. Variable importance 
scores are listed for each variable in parenthesis. 
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Figure 6. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of total bigeye as a response to environmental and operational variables. Variable importance 
scores are listed for each variable in parenthesis. 
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Figure 7. Prediction by size category using model vii (i.e. environmental and operational variables) for a day randomly 
selected between 2002 and 2017 (i.e. 2002-03-11). 
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Figure 8. Differences by size category for predictions considering operational variables (i.e. model vii) and those 
predictions without operational variables (i.e. model iv) for a day randomly selected between 2002 and 2017 (i.e. 
2002-03-11).   
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Figure 9. Partial dependence plots of presence–absence boosted regression trees (BRTs), showing relative probabil-
ity of the presence of juvenile yellowfin tuna as a response to environmental and operational variables. Variable 
importance scores are listed for each variable in parenthesis. 
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Figure 10. Boxplots of operational variables in relation to Longitude in the eastern Pacific Ocean.  


