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Summary 

The echosounder buoys that equip the drifting FADs (DFADs) used in tropical tuna purse-seine fisheries offer 
unique opportunities to observe pelagic communities and can potentially provide fishery-independent 
abundance indices for tropical tunas. Such data, however, differs considerably in nature depending on the 
software and hardware of the different brands and models, which is very often a limitation to their scientific use. 
This work proposes a new methodology based on machine learning, for characterizing fish aggregations under 
DFADs from the acoustic data collected by these devices. Our approach consists in specific processing of acoustic 
information, combined with random forest algorithm, to translate the raw data provided by the buoys into 
metrics of tuna presence and abundance. The classifications were built from a training dataset constituted from 
cross-referencing of acoustic and catch data recorded on the same schools, considered as tuna occurrences, and 
acoustic data recorded a few days after new DFAD deployments, or before DFAD visits without sets, considered 
as tuna absences. Our results evidenced that detection of tuna aggregations from echo sounder buoys was 
typically more effective during daytime periods and at ocean-specific depths. Our approach shows very good 
efficiency for pattern recognition of presence and absence of tuna aggregation under DFADs regardless of the 
ocean (75 and 85 % of correct predictions respectively in the Atlantic and Indian Ocean), but is less accurate for 
estimating the precise range of aggregation sizes. This work is one of the milestones towards of development of 
novel fishery-independent indices of abundance for tropical tuna based on acoustic data. 

Introduction 

Although still poorly explained, the natural aggregative behavior of tropical tuna under floating objects is widely 
exploited by fishermen around the world, to improve their catches (Kakuma 2001; Dempster and Taquet 2004). 
In the tropical tuna purse-seine fishery, the use of artificial drifting devices referred to as “drifting fish aggregating 
devices” or DFADs has significantly improved the probability of success of tuna seiners' fishing sets (Fonteneau 
et al. 2000) and, currently, over half of the yearly tuna catches worldwide originate from DFADs (Miyake et al. 
2010; Fonteneau et al. 2013, Dagorn et al. 2013). It has been estimated that between 50 000 and 100 000 DFADs, 
generally instrumented with GPS and echosounder devices, are deployed every year in the world, by the purse-
seine fishery in the three major oceans (Baske et al. 2012; Maufroy et al. 2017). The number and wide spatial 
distribution of DFADs across the different oceans, coupled with their constantly evolving technology (Lopez et al. 
2014), grant to these fishing tools the status of a privileged platform for the observation of the pelagic 
communities that aggregate under floating objects (Moreno et al. 2016; Brehmer et al. 2018).  For instance, the 
exploitation of data collected at FADs could provide fisheries-independent abundance indices for tropical tuna, 
as highlighted by the works of Capello et al. (2016) and Santiago et al. (2016). However, the characterization of 
fish aggregations under FADs through echosounder buoys remains severely limited by the reliability and 
variability of the information provided, which depends on the hardware and software characteristics of the 
buoys, which vary between manufacturers (Lopez et al. 2014; Moreno et al. 2016; Santiago et al. 2016). Currently 
echosounder buoys data are of heterogeneous types, natures and formats and few studies provided an 
assessment of their accuracies to the purpose of exploiting them for scientific purposes (Lopez et al. 2016; Baidai 
et al. 2017). We present here a dedicated approach using data collected by echosounder buoys to characterize 
tuna aggregations under DFADs, based on machine learning algorithms. The accuracy of the method is evaluated 
in the Atlantic and Indian Oceans. 

Material and Methods 

This study focused on the M3I Marine Instruments echosounder buoy, one of the main buoy models which equips 
the DFADs deployed by the French fleet of tuna purse-seiners. This buoy internally processes the raw acoustic 
signals sampled by 3-meter depth layers into discrete indices (varying from 0 to 7). By cross referencing the 



 

echosounder buoys database hosted by Ob7/IRD1 and the fishing activities reported in logbook and observer 
databases, we designed a training dataset for the Atlantic and Indian oceans. This dataset consisted of acoustic 
data associated to catch data, as well as to new DFADs deployments and DFAD visits without fishing sets (both 
considered as DFADs without tuna). The dimensions of acoustic data were reduced following two steps: (1) a 
temporal sub-sampling, selecting the best echo (namely, the highest value of the total acoustic energy) every 4 
hours over 24 hours and (2) a spatial clustering, which combines the discrete indices recorded in the different 
depth layers into scores per group of homogenous layers. The dimensionality reduction transforms the 12x50 
acoustic matrix collected over a full day of sampling (corresponding to 12 acoustic samples for the default mode 
for 50 depth layers) into a matrix of 6 rows (for the groups of layers) and 6 columns (for each time slot), referred 
to as “daily acoustic matrix”, which summarizes the acoustic information on a daily scale. The final dataset 
consisted of 3381 acoustic matrices from catch data (916 and 2465 respectively in Atlantic and Indian oceans) 
labelled as tuna presence, and 8336 matrices identified as tuna absence (880 and 7456 for Atlantic and Indian 
oceans, respectively). Two types of classification models were built, relying on the random forest algorithm 
(Breiman 2001): (1) a binary model describing the absence or presence of tuna, and (2) a multiclass classification 
model considering different sizes of aggregations under DFAD (no tuna, less than 10 tons, between 10 and 25 
tons, more than 25 tons). Model training and evaluation were performed through a two-fold cross-validation 
replicated 10 times (Dietterich 1998), and importance of the different predictors in the classification process, in 
each ocean, was assessed through the analysis of mean decrease accuracy (Breiman, 2001). 

Results and discussion 

The classification models exhibited a good performance in successfully discriminating tuna presence and 
absence, in both oceans, with an overall accuracy of 75 and 85 % in the Atlantic and Indian ocean, respectively. 
In the Atlantic Ocean, the model is highly effective in detecting DFAD aggregations with tuna (0.82 for sensitivity). 
However, its outputs remain characterized by a noticeable level of false positive classifications (0.67 for 
specificity). An opposite trend is observed in the Indian Ocean. The evaluation metrics indicates a slightly lower 
ability than in Atlantic ocean for correctly classifying tuna presence (0.78 for sensitivity), contrasted with a much 
higher performance for recognition of acoustic patterns from non-tuna aggregations (0.91 for specificity). Multi-
class classifications were considerably less efficient than binary classifications, as indicated by their low overall 
accuracies (50 and 45 %) observed for Atlantic and Indian oceans respectively. This poor performance could 
potentially result from biases induced by the multispecific composition of the tuna aggregations. Indeed, acoustic 
signature associated with a given aggregation class size can significantly vary depending on the specific 
composition of the aggregation (mix of species with different target strengths). In the Atlantic, the highest 
proportion of misclassifications is associated with tuna aggregations between 10 and 25 tons (0.23 in precision), 
whereas tuna schools below 10 tons, and above 25 tons, share relatively similar classification performances 
(precision of 0.36 and 0.35 respectively). In the Indian ocean, tuna schools over 25 tons constitute the best 
detected size class (precision of 0.43), while the classification performances of small and intermediate 
aggregation sizes (less than 10 tons, and between 10 and 25 tons) are less good (precision of 0.37 and 0.31 
respectively). The importance of predictive factors is highly ocean-dependent. In the Atlantic Ocean, the 
characterization of fish schools under DFADs is mainly driven by a set of acoustic variables recorded from 6 to 45 
meters and from 0 to 4 pm (8 am to 4 pm for multiclass classification), while in the Indian Ocean, the main 
predictors correspond to deeper layers (from 30 to 150 meters), over a wider period of time (4 am to 4 pm) 
(Figures 1 and 2). Although several reasons can be mentioned to explain these differences, one of the most likely 
is related to a possible ocean-specific vertical distribution of fish under DFADs. Further studies, comparing the 
presence-at-depth profiles of tuna species in the two oceans, should be conducted to confirm these findings. 

Assessing the reliability of biomass estimates obtained from the echosounder buoy constitutes an essential step 

towards the exploitation of this data for scientific purposes. This work opens the way towards future studies 

aiming at deriving fisheries-independent indices for assessing the spatial distribution and abundance of tropical 

tuna in both oceans. 
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Figure 1 : Importance of depth layers and day period in presence/absence classification for the Atlantic and Indian oceans. 
Each cell represents a combination between a depth and a time period. Color indicates the relevance of the predictor in 
the classification 

 

Figure 2 : Importance of depth layers and day period in multiclass classification for the Atlantic and Indian oceans. Each 
cell represents a combination between a depth and a time period. Color indicates the relevance of the predictor in the 
classification 
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